Misplaced Pages

Volksempfänger

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Radio is the technology of communicating using radio waves . Radio waves are electromagnetic waves of frequency between 3  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates oscillating electrical energy, often characterized as a wave . They can be received by other antennas connected to a radio receiver ; this is the fundamental principle of radio communication. In addition to communication, radio is used for radar , radio navigation , remote control , remote sensing , and other applications.

#208791

108-678: The Volksempfänger ( German: [ˈfɔlks.ɛmˌpfɛŋɐ] , “people’s receiver”) was a range of low-cost radio receivers produced in Nazi Germany , developed by engineer Otto Griessing at the request of Joseph Goebbels , the Reich Minister of Propaganda . Its purpose was to make radio reception technology affordable to the general public. Goebbels realized the great propaganda potential of this relatively new medium and thus considered widespread availability of receivers highly important. The original Volksempfänger VE301 model

216-471: A directional antenna transmits radio waves in a beam in a particular direction, or receives waves from only one direction. Radio waves travel at the speed of light in vacuum and at slightly lower velocity in air. The other types of electromagnetic waves besides radio waves, infrared , visible light , ultraviolet , X-rays and gamma rays , can also carry information and be used for communication. The wide use of radio waves for telecommunication

324-418: A microphone , a video signal representing moving images from a video camera , or a digital signal consisting of a sequence of bits representing binary data from a computer. The modulation signal is applied to a radio transmitter . In the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency , called the carrier wave because it serves to generate

432-497: A radar screen . Doppler radar can measure a moving object's velocity, by measuring the change in frequency of the return radio waves due to the Doppler effect . Radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. Parabolic (dish) antennas are widely used. In most radars

540-563: A skywave . The medium-wave transmitter at Berlin-Britz for transmitting RIAS used a cross dipole mounted on five 30.5-metre-high guyed masts to transmit the skywave to the ionosphere at nighttime. Because at these frequencies atmospheric noise is far above the receiver signal-to-noise ratio , inefficient antennas much smaller than a wavelength can be used for receiving. For reception at frequencies below 1.6 MHz, which includes long and medium waves, loop antennas are popular because of their ability to reject locally generated noise. By far

648-474: A " push to talk " button on their radio which switches off the receiver and switches on the transmitter. Or the radio link may be full duplex , a bidirectional link using two radio channels so both people can talk at the same time, as in a cell phone. One way, unidirectional radio transmission is called simplex . This is radio communication between a spacecraft and an Earth-based ground station, or another spacecraft. Communication with spacecraft involves

756-559: A Hollywood cliche for the intrusion of the 'distant' Nazi state into the (otherwise innocent) domestic sphere..." Today, historical exhibitions often use it as a "visual shorthand for Nazi propaganda". Under the slogan "every national comrade a radio listener", Minister of Propaganda Joseph Goebbels' intention with the Volksempfänger was to double the number of radio listeners. Hitler's architect and Minister for Armaments and War Production, Albert Speer , said in his final speech at

864-627: A Service Regulation specifying that "Radiotelegrams shall show in the preamble that the service is 'Radio ' ". The switch to radio in place of wireless took place slowly and unevenly in the English-speaking world. Lee de Forest helped popularize the new word in the United States—in early 1907, he founded the DeForest Radio Telephone Company, and his letter in the 22 June 1907 Electrical World about

972-419: A consequence they generally lacked shortwave bands and did not follow the practice, common at the time, of marking the approximate dial positions of major European stations on its tuning scale. Only German and (after the 1938 annexation ) Austrian stations were marked, and cheaper models listed only arbitrary numbers. Sensitivity to receive weak signals was limited, to reduce production costs further; so long as

1080-412: A controller device control the actions of a remote device. The existence of radio waves was first proven by German physicist Heinrich Hertz on 11 November 1886. In the mid-1890s, building on techniques physicists were using to study electromagnetic waves, Italian physicist Guglielmo Marconi developed the first apparatus for long-distance radio communication, sending a wireless Morse Code message to

1188-747: A few specially licensed AM broadcasting stations. These channels are called clear channels , and they are required to broadcast at higher powers of 10 to 50 kW. Initially, broadcasting in the United States was restricted to two wavelengths: "entertainment" was broadcast at 360 meters (833 kHz), with stations required to switch to 485 meters (619 kHz) when broadcasting weather forecasts, crop price reports and other government reports. This arrangement had numerous practical difficulties. Early transmitters were technically crude and virtually impossible to set accurately on their intended frequency and if (as frequently happened) two (or more) stations in

SECTION 10

#1732775754209

1296-421: A given bandwidth than analog modulation , by using data compression algorithms, which reduce redundancy in the data to be sent, and more efficient modulation. Other reasons for the transition is that digital modulation has greater noise immunity than analog, digital signal processing chips have more power and flexibility than analog circuits, and a wide variety of types of information can be transmitted using

1404-548: A government license, such as the general radiotelephone operator license in the US, obtained by taking a test demonstrating adequate technical and legal knowledge of safe radio operation. Exceptions to the above rules allow the unlicensed operation by the public of low power short-range transmitters in consumer products such as cell phones, cordless phones , wireless devices , walkie-talkies , citizens band radios , wireless microphones , garage door openers , and baby monitors . In

1512-587: A large economic cost, but it can also be life-threatening (for example, in the case of interference with emergency communications or air traffic control ). To prevent interference between different users, the emission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU), which allocates bands in the radio spectrum for different uses. Radio transmitters must be licensed by governments, under

1620-518: A lower one for omnidirectional and a higher one for directional radiation with minima in certain directions. The power limit can also be depending on daytime and it is possible that a station may not operate at nighttime, because it would then produce too much interference. Other countries may only operate low-powered transmitters on the same frequency, again subject to agreement. International medium wave broadcasting in Europe has decreased markedly with

1728-595: A metal conductor called an antenna . As they travel farther from the transmitting antenna, radio waves spread out so their signal strength ( intensity in watts per square meter) decreases (see Inverse-square law ), so radio transmissions can only be received within a limited range of the transmitter, the distance depending on the transmitter power, the antenna radiation pattern , receiver sensitivity, background noise level, and presence of obstructions between transmitter and receiver . An omnidirectional antenna transmits or receives radio waves in all directions, while

1836-427: A more limited information-carrying capacity and so work best with audio signals (speech and music), and the sound quality can be degraded by radio noise from natural and artificial sources. The shortwave bands have a greater potential range but are more subject to interference by distant stations and varying atmospheric conditions that affect reception. In the very high frequency band, greater than 30 megahertz,

1944-570: A more modern electrodynamic loudspeaker . The legacy of the Volksempfänger as a tool of propaganda is significant. Historian Oliver Rathkolb called it a "vital element of success" in spreading the Nazi ideology "which could not be ignored by the majority of the German population". According to media historian Alexander Badenoch, "Hitler's voice through the Volksempfänger is both a German and

2052-404: A poor vertical radiation pattern, and 195 electrical degrees (about 400 millivolts per meter using one kilowatt at one kilometre) is generally considered ideal in these cases. Mast antennas are usually series-excited (base driven); the feedline is attached to the mast at the base. The base of the antenna is at high electrical potential and must be supported on a ceramic insulator to isolate it from

2160-470: A primitive spark-gap transmitter . Experiments by Hertz and physicists Jagadish Chandra Bose , Oliver Lodge , Lord Rayleigh , and Augusto Righi , among others, showed that radio waves like light demonstrated reflection, refraction , diffraction , polarization , standing waves , and traveled at the same speed as light, confirming that both light and radio waves were electromagnetic waves, differing only in frequency. In 1895, Guglielmo Marconi developed

2268-420: A public audience. Analog audio is the earliest form of radio broadcast. AM broadcasting began around 1920. FM broadcasting was introduced in the late 1930s with improved fidelity . A broadcast radio receiver is called a radio . Most radios can receive both AM and FM. Television broadcasting is the transmission of moving images by radio, which consist of sequences of still images, which are displayed on

SECTION 20

#1732775754209

2376-436: A quarter- wavelength (about 310 millivolts per meter using one kilowatt at one kilometre) to 5/8 wavelength (225 electrical degrees; about 440 millivolts per meter using one kilowatt at one kilometre), while high power stations mostly use half-wavelength to 5/9 wavelength. The usage of masts taller than 5/9 wavelength (200 electrical degrees; about 410 millivolts per meter using one kilowatt at one kilometre) with high power gives

2484-459: A radio signal is usually concentrated in narrow frequency bands called sidebands ( SB ) just above and below the carrier frequency. The width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth ( BW ). For any given signal-to-noise ratio , an amount of bandwidth can carry the same amount of information ( data rate in bits per second) regardless of where in

2592-489: A receiver that is typically colocated with the transmitter. In radio navigation systems such as GPS and VOR , a mobile navigation instrument receives radio signals from multiple navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless radio remote control devices like drones , garage door openers , and keyless entry systems , radio signals transmitted from

2700-533: A recipient over a kilometer away in 1895, and the first transatlantic signal on 12 December 1901. The first commercial radio broadcast was transmitted on 2 November 1920, when the live returns of the Harding-Cox presidential election were broadcast by Westinghouse Electric and Manufacturing Company in Pittsburgh, under the call sign KDKA . The emission of radio waves is regulated by law, coordinated by

2808-673: A reference to the radiotelegraph and radiotelegraphy . The use of radio as a standalone word dates back to at least 30 December 1904, when instructions issued by the British Post Office for transmitting telegrams specified that "The word 'Radio'... is sent in the Service Instructions." This practice was universally adopted, and the word "radio" introduced internationally, by the 1906 Berlin Radiotelegraphic Convention, which included

2916-446: A screen on a television receiver (a "television" or TV) along with a synchronized audio (sound) channel. Television ( video ) signals occupy a wider bandwidth than broadcast radio ( audio ) signals. Analog television , the original television technology, required 6 MHz, so the television frequency bands are divided into 6 MHz channels, now called "RF channels". The current television standard, introduced beginning in 2006,

3024-441: A smaller bandwidth than the old analog channels, saving scarce radio spectrum space. Therefore, each of the 6 MHz analog RF channels now carries up to 7 DTV channels – these are called "virtual channels". Digital television receivers have different behavior in the presence of poor reception or noise than analog television, called the " digital cliff " effect. Unlike analog television, in which increasingly poor reception causes

3132-564: A standardized and government approved design, and were built by a consortium of manufacturers using standard components. A similar model of radio receiver was produced in East Germany under the RFT /Stern brand called the "Kolibri" (EN: "Hummingbird") which sold for 50 marks and was very similar in cabinet styling to the Volksempfänger. A feature of the Kolibri design often misattributed to

3240-416: A television (video) signal has a greater data rate than an audio signal . The radio spectrum , the total range of radio frequencies that can be used for communication in a given area, is a limited resource. Each radio transmission occupies a portion of the total bandwidth available. Radio bandwidth is regarded as an economic good which has a monetary cost and is in increasing demand. In some parts of

3348-400: A transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location to

Volksempfänger - Misplaced Pages Continue

3456-652: A transmitter to control the actions of a device at a remote location. Remote control systems may also include telemetry channels in the other direction, used to transmit real-time information on the state of the device back to the control station. Uncrewed spacecraft are an example of remote-controlled machines, controlled by commands transmitted by satellite ground stations . Most handheld remote controls used to control consumer electronics products like televisions or DVD players actually operate by infrared light rather than radio waves, so are not examples of radio remote control. A security concern with remote control systems

3564-435: A variety of license classes depending on use, and are restricted to certain frequencies and power levels. In some classes, such as radio and television broadcasting stations, the transmitter is given a unique identifier consisting of a string of letters and numbers called a call sign , which must be used in all transmissions. In order to adjust, maintain, or internally repair radiotelephone transmitters, individuals must hold

3672-420: A vertical radiator wire. A popular choice for lower-powered stations is the umbrella antenna , which needs only one mast one-tenth wavelength or less in height. This antenna uses a single mast insulated from ground and fed at the lower end against ground. At the top of the mast, radial top-load wires are connected (usually about six) which slope downwards at an angle of 40–45 degrees as far as about one-third of

3780-762: A wire on the power transformer to select 110 volt, 130 volt, or 220 volt power sources. The set employed two or three vacuum tubes , depending on what kind of power source the radio was designed to operate from: the REN904/AF7 as the RF regenerative circuit, the RES 164 as the audio amplifier and the RGN354 rectifier for receivers designed to run on AC power. The radio set was capable of reception on two bands: Langwelle ( long wave ) from 150 to 350 kilohertz , and Mittelwelle ( medium wave ) from 550 to 1700 kilohertz. On later models,

3888-413: Is amplified in the transmitter and applied to a transmitting antenna which radiates the energy as radio waves. The radio waves carry the information to the receiver location. At the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna which is a weaker replica of the current in the transmitting antenna. This voltage is applied to the radio receiver , which amplifies

3996-703: Is spoofing , in which an unauthorized person transmits an imitation of the control signal to take control of the device. Examples of radio remote control: Radio jamming is the deliberate radiation of radio signals designed to interfere with the reception of other radio signals. Jamming devices are called "signal suppressors" or "interference generators" or just jammers. During wartime, militaries use jamming to interfere with enemies' tactical radio communication. Since radio waves can pass beyond national borders, some totalitarian countries which practice censorship use jamming to prevent their citizens from listening to broadcasts from radio stations in other countries. Jamming

4104-445: Is a digital format called high-definition television (HDTV), which transmits pictures at higher resolution, typically 1080 pixels high by 1920 pixels wide, at a rate of 25 or 30 frames per second. Digital television (DTV) transmission systems, which replaced older analog television in a transition beginning in 2006, use image compression and high-efficiency digital modulation such as OFDM and 8VSB to transmit HDTV video within

4212-462: Is a part of the medium frequency (MF) radio band used mainly for AM radio broadcasting . The spectrum provides about 120 channels with more limited sound quality than FM stations on the FM broadcast band . During the daytime, reception is usually limited to more local stations, though this is dependent on the signal conditions and quality of radio receiver used. Improved signal propagation at night allows

4320-480: Is adequate for talk and news but not for high-fidelity music. However, many stations use audio bandwidths up 10 kHz, which is not hi-fi but sufficient for casual listening. In the UK, until 2024 most stations used a bandwidth of 6.3 kHz. However in 2024, Ofcom expanded the allowed bandwidth to 9khz, giving a noticeable improvement in quality. With AM, it largely depends on the frequency filters of each receiver how

4428-433: Is an audio transceiver , a receiver and transmitter in the same device, used for bidirectional person-to-person voice communication with other users with similar radios. An older term for this mode of communication is radiotelephony . The radio link may be half-duplex , as in a walkie-talkie , using a single radio channel in which only one radio can transmit at a time, so different users take turns talking, pressing

Volksempfänger - Misplaced Pages Continue

4536-433: Is available, (however digital radio still has coverage issues in many parts of Europe). Many countries in Europe have switched off or limited their MW transmitters since the 2010s. The term is a historic one, dating from the early 20th century, when the radio spectrum was divided on the basis of the wavelength of the waves into long wave (LW), medium wave, and short wave (SW) radio bands. For Europe, Africa and Asia

4644-410: Is called "tuning". The oscillating radio signal from the desired station causes the tuned circuit to resonate , oscillate in sympathy, and it passes the signal on to the rest of the receiver. Radio signals at other frequencies are blocked by the tuned circuit and not passed on. A modulated radio wave, carrying an information signal, occupies a range of frequencies . The information ( modulation ) in

4752-427: Is called an uplink , while a link that transmits data from the spacecraft to the ground is called a downlink. Radar is a radiolocation method used to locate and track aircraft, spacecraft, missiles, ships, vehicles, and also to map weather patterns and terrain. A radar set consists of a transmitter and receiver. The transmitter emits a narrow beam of radio waves which is swept around the surrounding space. When

4860-565: Is in radio clocks and watches, which include an automated receiver that periodically (usually weekly) receives and decodes the time signal and resets the watch's internal quartz clock to the correct time, thus allowing a small watch or desk clock to have the same accuracy as an atomic clock. Government time stations are declining in number because GPS satellites and the Internet Network Time Protocol (NTP) provide equally accurate time standards. A two-way radio

4968-417: Is mainly due to their desirable propagation properties stemming from their longer wavelength. In radio communication systems, information is carried across space using radio waves. At the sending end, the information to be sent is converted by some type of transducer to a time-varying electrical signal called the modulation signal. The modulation signal may be an audio signal representing sound from

5076-646: Is possible and is or was offered by some stations in the U.S., Canada, Mexico, the Dominican Republic, Paraguay, Australia, The Philippines, Japan, South Korea, South Africa, Italy and France. However, there have been multiple standards for AM stereo . C-QUAM is the official standard in the United States as well as other countries, but receivers that implement the technology are no longer readily available to consumers. Used receivers with AM Stereo can be found. Names such as "FM/AM Stereo" or "AM & FM Stereo" can be misleading and usually do not signify that

5184-433: Is primarily only used by low-power stations; it is the preferred range for services with automated traffic, weather, and tourist information. The channel steps of 9 and 10 kHz require limiting the audio bandwidth to 9 and 10 kHz (at maximum without causing interference; ±4.5 kHz (9 kHz) and ±5 kHz (10 kHz) on each two sidebands) because the audio spectrum is transmitted twice on each side band . This

5292-516: Is the ITU-approved system for use outside North America and U.S. territories . Some HD Radio receivers also support C-QUAM AM stereo, although this feature is usually not advertised by the manufacturer. For broadcasting, mast radiators are the most common type of antenna used, consisting of a steel lattice guyed mast in which the mast structure itself is used as the antenna. Stations broadcasting with low power can use masts with heights of

5400-524: Is the one-way transmission of information from a transmitter to receivers belonging to a public audience. Since the radio waves become weaker with distance, a broadcasting station can only be received within a limited distance of its transmitter. Systems that broadcast from satellites can generally be received over an entire country or continent. Older terrestrial radio and television are paid for by commercial advertising or governments. In subscription systems like satellite television and satellite radio

5508-485: Is usually accomplished by a powerful transmitter which generates noise on the same frequency as the target transmitter. US Federal law prohibits the nonmilitary operation or sale of any type of jamming devices, including ones that interfere with GPS, cellular, Wi-Fi and police radars. ELF 3 Hz/100 Mm 30 Hz/10 Mm SLF 30 Hz/10 Mm 300 Hz/1 Mm ULF 300 Hz/1 Mm 3 kHz/100 km Medium wave Medium wave ( MW )

SECTION 50

#1732775754209

5616-449: The FM broadcast band but require more energy and longer antennas. Digital modes are possible but have not reached momentum yet. MW was the main radio band for broadcasting from the beginnings in the 1920s into the 1950s until FM with a better sound quality took over. In Europe, digital radio is gaining popularity and offers AM stations the chance to switch over if no frequency in the FM band

5724-624: The Federal Communications Commission (FCC) to shut down, reduce power, or employ a directional antenna array at night in order to avoid interference with each other due to night-time only long-distance skywave propagation (sometimes loosely called ‘skip’). Those stations which shut down completely at night are often known as "daytimers". Similar regulations are in force for Canadian stations, administered by Industry Canada ; however, daytimers no longer exist in Canada,

5832-595: The International Telecommunication Union (ITU), which allocates frequency bands in the radio spectrum for various uses. The word radio is derived from the Latin word radius , meaning "spoke of a wheel, beam of light, ray". It was first applied to communications in 1881 when, at the suggestion of French scientist Ernest Mercadier  [ fr ] , Alexander Graham Bell adopted radiophone (meaning "radiated sound") as an alternate name for his photophone optical transmission system. Following Hertz's discovery of

5940-479: The Nuremberg trials : Hitler's dictatorship differed in one fundamental point from all its predecessors in history. His was the first dictatorship in the present period of modern technical development, a dictatorship which made the complete use of all technical means for domination of its own country. Through technical devices like the radio and loudspeaker, 80 million people were deprived of independent thought. It

6048-490: The ionosphere and return to Earth at much greater distances; this is called the skywave . At night, especially in winter months and at times of low solar activity, the lower ionospheric D layer virtually disappears. When this happens, MW radio waves can easily be received many hundreds or even thousands of miles away as the signal will be reflected by the higher F layer . This can allow very long-distance broadcasting, but can also interfere with distant local stations. Due to

6156-504: The ionosphere without refraction , and at microwave frequencies the high-gain antennas needed to focus the radio energy into a narrow beam pointed at the receiver are small and take up a minimum of space in a satellite. Portions of the UHF , L , C , S , k u and k a band are allocated for space communication. A radio link that transmits data from the Earth's surface to a spacecraft

6264-601: The last station having signed off in 2013, after migrating to the FM band . Many countries have switched off most of their MW transmitters in the 2010s due to cost-cutting and low usage of MW by the listeners. Among those are Germany, France, Russia, Poland, Sweden, the Benelux, Austria, Switzerland, Slovenia and most of the Balkans. Other countries that have no or few MW transmitters include Iceland, Ireland, Finland and Norway. Large networks of transmitters are remaining in

6372-400: The radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten (10 ) metres, with corresponding frequency of 3 times a power of ten, and each covering a decade of frequency or wavelength. Each of these bands has a traditional name: It can be seen that the bandwidth , the range of frequencies, contained in each band is not equal but increases exponentially as

6480-531: The 1920s with the introduction of broadcasting. Electromagnetic waves were predicted by James Clerk Maxwell in his 1873 theory of electromagnetism , now called Maxwell's equations , who proposed that a coupled oscillating electric field and magnetic field could travel through space as a wave, and proposed that light consisted of electromagnetic waves of short wavelength . On 11 November 1886, German physicist Heinrich Hertz , attempting to confirm Maxwell's theory, first observed radio waves he generated using

6588-474: The Earth's atmosphere has less of an effect on the range of signals, and line-of-sight propagation becomes the principal mode. These higher frequencies permit the great bandwidth required for television broadcasting. Since natural and artificial noise sources are less present at these frequencies, high-quality audio transmission is possible, using frequency modulation . Radio broadcasting means transmission of audio (sound) to radio receivers belonging to

SECTION 60

#1732775754209

6696-533: The MW band consists of 120 channels with carrier frequencies from 531 to 1602 kHz spaced every 9 kHz. Frequency coordination avoids the use of adjacent channels in one area. The total allocated spectrum including the modulated audio ranges from 526.5 to 1606.5 kHz. Australia uses an expanded band up to 1701 kHz. North and South America use 118 channels from 530 to 1700 kHz using 10 kHz spaced channels. The range above 1610 kHz

6804-542: The MW band is thinning out, many local stations from the remaining countries as well as from North Africa and the Middle East can now be received all over Europe, but often only weak with much interference. In Europe, each country is allocated a number of frequencies on which high power (up to 2 MW) can be used; the maximum power is also subject to international agreement by the International Telecommunication Union (ITU). In most cases there are two power limits:

6912-560: The UK, Spain and Romania. In the Netherlands and Scandinavia, some new idealistically driven stations have launched low power services on the former high power frequencies. This also applies to the ex-offshore pioneer Radio Caroline that now has a licence to use 648 kHz, which was used by the BBC World Service over decades. In Italy, the government closed its high power transmitters but low power private stations remain. As

7020-508: The US, these fall under Part 15 of the Federal Communications Commission (FCC) regulations. Many of these devices use the ISM bands , a series of frequency bands throughout the radio spectrum reserved for unlicensed use. Although they can be operated without a license, like all radio equipment these devices generally must be type-approved before the sale. Below are some of the most important uses of radio, organized by function. Broadcasting

7128-516: The Volksempfänger (with the Eagle/Swastika badge removed). Production of the sets ended when the stock of components was exhausted and the factory shifted to producing Polish designed sets. Radio In radio communication , used in radio and television broadcasting , cell phones, two-way radios , wireless networking , and satellite communication , among numerous other uses, radio waves are used to carry information across space from

7236-454: The Volksempfänger was that it was designed to receive only two (pre-tuned) stations. Sets without such limitations were also produced by RFT but were more expensive. In 1946 a small number of DKE38 and VE-301 "Ludowy" (People's) receivers were produced at the formerly German held radio factory in Dzierżoniów , Poland. These were produced from materials leftover after the war and were similar to

7344-405: The air simultaneously without interfering with each other because each transmitter's radio waves oscillate at a different rate, in other words, each transmitter has a different frequency , measured in hertz (Hz), kilohertz (kHz), megahertz (MHz) or gigahertz (GHz). The receiving antenna typically picks up the radio signals of many transmitters. The receiver uses tuned circuits to select

7452-755: The audio is reproduced. This is a major disadvantage compared to FM and digital modes where the demodulated audio is more objective. Extended audio bandwidths cause interference on adjacent channels. Wavelengths in this band are long enough that radio waves are not blocked by buildings and hills and can propagate beyond the horizon following the curvature of the Earth; this is called the groundwave . Practical groundwave reception of strong transmitters typically extends to 200–300 miles (320–480 km), with greater distances over terrain with higher ground conductivity , and greatest distances over salt water. The groundwave reaches further on lower medium wave frequencies. Medium waves can also reflect off charged particle layers in

7560-414: The beam strikes a target object, radio waves are reflected back to the receiver. The direction of the beam reveals the object's location. Since radio waves travel at a constant speed close to the speed of light , by measuring the brief time delay between the outgoing pulse and the received "echo", the range to the target can be calculated. The targets are often displayed graphically on a map display called

7668-499: The budget of all German families), the DKE38 (sometimes called Goebbels-Schnauze – "Goebbels' snout" – by the general public) fitted with a multisection vacuum tube , was also later produced, along with a series of other models under the Volksempfänger , Gemeinschaftsempfänger , KdF ( Kraft durch Freude ), DKE ( Deutscher Kleinempfänger ), and other brands . The Volksempfänger was designed to be produced as cheaply as possible; as

7776-668: The continuous waves which were needed for audio modulation , so radio was used for person-to-person commercial, diplomatic and military text messaging. Starting around 1908 industrial countries built worldwide networks of powerful transoceanic transmitters to exchange telegram traffic between continents and communicate with their colonies and naval fleets. During World War I the development of continuous wave radio transmitters, rectifying electrolytic, and crystal radio receiver detectors enabled amplitude modulation (AM) radiotelephony to be achieved by Reginald Fessenden and others, allowing audio to be transmitted. On 2 November 1920,

7884-494: The country and/or abroad), no longer having to broadcast weather and government reports on a different frequency than entertainment. Class A and B stations were segregated into sub-bands. In the US and Canada the maximum transmitter power is restricted to 50 kilowatts, while in Europe there are medium wave stations with transmitter power up to 2 megawatts daytime. Most United States AM radio stations are required by

7992-466: The customer pays a monthly fee. In these systems, the radio signal is encrypted and can only be decrypted by the receiver, which is controlled by the company and can be deactivated if the customer does not pay. Broadcasting uses several parts of the radio spectrum, depending on the type of signals transmitted and the desired target audience. Longwave and medium wave signals can give reliable coverage of areas several hundred kilometers across, but have

8100-618: The end of the Cold War and the increased availability of satellite and Internet TV and radio, although the cross-border reception of neighbouring countries' broadcasts by expatriates and other interested listeners still takes place. In the late 20th century, overcrowding on the Medium wave band was a serious problem in parts of Europe contributing to the early adoption of VHF FM broadcasting by many stations (particularly in Germany). Due to

8208-570: The existence of radio waves in 1886, the term Hertzian waves was initially used for this radiation. The first practical radio communication systems, developed by Marconi in 1894–1895, transmitted telegraph signals by radio waves, so radio communication was first called wireless telegraphy . Up until about 1910 the term wireless telegraphy also included a variety of other experimental systems for transmitting telegraph signals without wires, including electrostatic induction , electromagnetic induction and aquatic and earth conduction , so there

8316-413: The first commercial radio broadcast was transmitted by Westinghouse Electric and Manufacturing Company in Pittsburgh, under the call sign KDKA featuring live coverage of the Harding-Cox presidential election . Radio waves are radiated by electric charges undergoing acceleration . They are generated artificially by time-varying electric currents , consisting of electrons flowing back and forth in

8424-592: The first radio communication system, using a spark-gap transmitter to send Morse code over long distances. By December 1901, he had transmitted across the Atlantic Ocean. Marconi and Karl Ferdinand Braun shared the 1909 Nobel Prize in Physics "for their contributions to the development of wireless telegraphy". During radio's first two decades, called the radiotelegraphy era, the primitive radio transmitters could only transmit pulses of radio waves, not

8532-618: The frequency increases; each band contains ten times the bandwidth of the preceding band. The term "tremendously low frequency" (TLF) has been used for wavelengths from 1–3 Hz (300,000–100,000 km), though the term has not been defined by the ITU. The airwaves are a resource shared by many users. Two radio transmitters in the same area that attempt to transmit on the same frequency will interfere with each other, causing garbled reception, so neither transmission may be received clearly. Interference with radio transmissions can not only have

8640-578: The frequency. Because such tall masts can be costly and uneconomic, other types of antennas are often used, which employ capacitive top-loading ( electrical lengthening ) to achieve equivalent signal strength with vertical masts shorter than a quarter wavelength. A "top hat" of radial wires is occasionally added to the top of mast radiators, to allow the mast to be made shorter. For local broadcast stations and amateur stations of under 5 kW, T- and L-antennas are often used, which consist of one or more horizontal wires suspended between two masts, attached to

8748-462: The glass tuning dial was imprinted with the names of German and Austrian cities corresponding to the frequencies of broadcast stations located in them. Three antenna jacks were provided for antennas of differing lengths, used to optimize reception on the different frequency bands. Volksempfänger models produced between 1933 and 1937 used an inexpensive metal reed type speaker. The 1938 models (VE301 Dyn) added an audio output transformer and featured

8856-423: The ground. Shunt-excited masts, in which the base of the mast is at a node of the standing wave at ground potential and so does not need to be insulated from the ground, have fallen into disuse, except in cases of exceptionally high power, 1 MW or more, where series excitation might be impractical. If grounded masts or towers are required, cage or long-wire aerials are used. Another possibility consists of feeding

8964-678: The high demand for frequencies in Europe, many countries set up single frequency networks; in Britain , BBC Radio Five Live broadcasts from various transmitters on either 693 or 909 kHz. These transmitters are carefully synchronized to minimize interference from more distant transmitters on the same frequency. In Asia and the Middle East, many high-powered transmitters remain in operation. China , Indonesia , South Korea , North Korea , Japan , Thailand , Vietnam , Philippines , Saudi Arabia , Egypt , India , Pakistan and Bangladesh still use medium wave. Israel returns to mediumwave after

9072-596: The limited number of available channels in the MW broadcast band, the same frequencies are re-allocated to different broadcasting stations several hundred miles apart. On nights of good skywave propagation, the skywave signals of a distant station may interfere with the signals of local stations on the same frequency. In North America, the North American Regional Broadcasting Agreement (NARBA) sets aside certain channels for nighttime use over extended service areas via skywave by

9180-402: The longest transmission distances of any radio links, up to billions of kilometers for interplanetary spacecraft . In order to receive the weak signals from distant spacecraft, satellite ground stations use large parabolic "dish" antennas up to 25 metres (82 ft) in diameter and extremely sensitive receivers. High frequencies in the microwave band are used, since microwaves pass through

9288-486: The mast or the tower by cables running from the tuning unit to the guys or crossbars at a certain height. Directional aerials consist of multiple masts , which need not to be of the same height. It is also possible to realize directional aerials for mediumwave with cage aerials where some parts of the cage are fed with a certain phase difference. For medium-wave (AM) broadcasting, quarter-wave masts are between 153 feet (47 m) and 463 feet (141 m) high, depending on

9396-613: The most common antenna for broadcast reception is the ferrite-rod antenna , also known as a loopstick antenna. The high permeability ferrite core allows it to be compact enough to be enclosed inside the radio's case and still have adequate sensitivity. For weak signal reception or to discriminate between different signals sharing a common frequency directional antennas are used. For best signal-to-noise ratio these are best located outdoors away from sources of electrical interference. Examples of such medium wave antennas include broadband untuned loops, elongated terminated loops, wave antennas (e.g.

9504-472: The need for legal restrictions warned that "Radio chaos will certainly be the result until such stringent regulation is enforced." The United States Navy would also play a role. Although its translation of the 1906 Berlin Convention used the terms wireless telegraph and wireless telegram , by 1912 it began to promote the use of radio instead. The term started to become preferred by the general public in

9612-416: The outbreak of Israel-Hamas war . China operates many single-frequency networks across the country. As of May 2023, many Japanese broadcasters like NHK broadcast in medium wave, with many high power transmitters operating across Japan. There are also some low power relay transmitters for rural areas. Some countries have stopped using mediumwave, including Malaysia and Singapore. Stereo transmission

9720-505: The picture quality to gradually degrade, in digital television picture quality is not affected by poor reception until, at a certain point, the receiver stops working and the screen goes black. Government standard frequency and time signal services operate time radio stations which continuously broadcast extremely accurate time signals produced by atomic clocks , as a reference to synchronize other clocks. Examples are BPC , DCF77 , JJY , MSF , RTZ , TDF , WWV , and YVTO . One use

9828-451: The radio frequency spectrum it is located, so bandwidth is a measure of information-carrying capacity . The bandwidth required by a radio transmission depends on the data rate of the information (modulation signal) being sent, and the spectral efficiency of the modulation method used; how much data it can transmit in each kilohertz of bandwidth. Different types of information signals carried by radio have different data rates. For example,

9936-409: The radio signal desired out of all the signals picked up by the antenna and reject the others. A tuned circuit (also called resonant circuit or tank circuit) acts like a resonator , similar to a tuning fork . It has a natural resonant frequency at which it oscillates. The resonant frequency of the receiver's tuned circuit is adjusted by the user to the frequency of the desired radio station; this

10044-451: The radio spectrum, the right to use a frequency band or even a single radio channel is bought and sold for millions of dollars. So there is an incentive to employ technology to minimize the bandwidth used by radio services. A slow transition from analog to digital radio transmission technologies began in the late 1990s. Part of the reason for this is that digital modulation can often transmit more information (a greater data rate) in

10152-456: The radio waves that carry the information through the air. The modulation signal is used to modulate the carrier, varying some aspect of the carrier wave, impressing the information in the modulation signal onto the carrier. Different radio systems use different modulation methods: Many other types of modulation are also used. In some types, a carrier wave is not transmitted but just one or both modulation sidebands . The modulated carrier

10260-563: The radio will decode C-QUAM AM stereo, whereas a set labelled "FM Stereo/AM Stereo" or "AMAX Stereo" will support AM stereo. In September 2002, the United States Federal Communications Commission approved the proprietary iBiquity in-band on-channel (IBOC) HD Radio system of digital audio broadcasting , which is meant to improve the audio quality of signals. The Digital Radio Mondiale (DRM) system standardised by ETSI supports stereo and

10368-411: The reception of much longer distance signals (within a range of about 2,000 km or 1,200 miles). This can cause increased interference because on most channels multiple transmitters operate simultaneously worldwide. In addition, amplitude modulation (AM) is often more prone to interference by various electronic devices, especially power supplies and computers. Strong transmitters cover larger areas than on

10476-481: The same digital modulation. Because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to use it more effectively is driving many additional radio innovations such as trunked radio systems , spread spectrum (ultra-wideband) transmission, frequency reuse , dynamic spectrum management , frequency pooling, and cognitive radio . The ITU arbitrarily divides

10584-575: The same part of the country broadcast simultaneously the resultant interference meant that usually neither could be heard clearly. The Commerce Department rarely intervened in such cases but left it up to stations to enter into voluntary timesharing agreements amongst themselves. The addition of a third "entertainment" wavelength, 400 meters, did little to solve this overcrowding. In 1923, the Commerce Department realized that as more and more stations were applying for commercial licenses, it

10692-570: The set could receive Deutschlandsender and the local Reichssender , it was considered sensitive enough. However, foreign stations could be received after dark with an external antenna, particularly as stations, such as the BBC European service , increased their transmission power over the course of the war. Listening to foreign stations became a criminal offence in Nazi Germany when the war began, while in some occupied territories, such as Poland , all radio listening by non-German citizens

10800-482: The total height, where they are terminated in insulators and thence outwards to ground anchors . Thus the umbrella antenna uses the guy wires as the top-load part of the antenna. In all these antennas the smaller radiation resistance of the short radiator is increased by the capacitance added by the wires attached to the top of the antenna. In some rare cases dipole antennas are used, which are slung between two masts or towers. Such antennas are intended to radiate

10908-431: The transmitting antenna also serves as the receiving antenna; this is called a monostatic radar . A radar which uses separate transmitting and receiving antennas is called a bistatic radar . Radiolocation is a generic term covering a variety of techniques that use radio waves to find the location of objects, or for navigation. Radio remote control is the use of electronic control signals sent by radio waves from

11016-676: The war) in Germany itself. The Germans also attempted radio jamming of some enemy stations with limited success. First introduced in 1933, the Volksempfänger Model VE301 used a regenerative circuit , an economical radio receiver design common during the 1920s. Three different VE301 models were produced to suit differing power supply requirements: batteries, alternating current (AC) mains, or direct current (DC) mains. Variations in AC line voltages were accommodated by moving

11124-510: The weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. The modulation signal is converted by a transducer back to a human-usable form: an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display , while a digital signal is applied to a computer or microprocessor, which interacts with human users. The radio waves from many transmitters pass through

11232-545: Was a need for a more precise term referring exclusively to electromagnetic radiation. The French physicist Édouard Branly , who in 1890 developed the radio wave detecting coherer , called it in French a radio-conducteur . The radio- prefix was later used to form additional descriptive compound and hyphenated words, especially in Europe. For example, in early 1898 the British publication The Practical Engineer included

11340-426: Was not practical to have every station broadcast on the same three wavelengths. On 15 May 1923, Commerce Secretary Herbert Hoover announced a new bandplan which set aside 81 frequencies, in 10 kHz steps, from 550 kHz to 1350 kHz (extended to 1500, then 1600 and ultimately 1700 kHz in later years). Each station would be assigned one frequency (albeit usually shared with stations in other parts of

11448-406: Was outlawed (later in the war this prohibition was extended to a few other occupied countries coupled with mass seizures of radio sets). Penalties ranged from fines and confiscation of radios to, particularly later in the war, sentencing to a concentration camp or capital punishment . Nevertheless, such clandestine listening was widespread in many Nazi-occupied countries and (particularly later in

11556-453: Was presented on August 18, 1933, at the 10. Große Deutsche Funkausstellung in Berlin. The VE301 was available at a readily affordable price of 76  ℛ︁ℳ︁ (equivalent to two weeks' average salary), and a cheaper 35 ℛ︁ℳ︁ model (only a little more than the average weekly wage of 32 ℛ︁ℳ︁, available on an installment plan to bring it within

11664-577: Was thereby possible to subject them to the will of one man... The Volksempfänger "people's radio" concept has been compared to the Utility Radio or "Civilian Receiver" produced by Britain between 1944 and 1945 . Unlike the Volksempfänger , the Utility Radio was produced primarily to remedy a shortage of consumer radio sets caused by the British radio industry's switch from civilian to military radio production. These Utility Radios followed

#208791