Misplaced Pages

Variable-length intake manifold

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#778221

113-445: In internal combustion engines , a variable-length intake manifold ( VLIM ), variable intake manifold ( VIM ), or variable intake system ( VIS ) is an automobile internal combustion engine manifold technology. As the name implies, VLIM/VIM/VIS can vary the length of the intake tract in order to optimise power and torque across the range of engine speed operation, as well as to help provide better fuel efficiency . This effect

226-433: A carburetor or fuel injection as port injection or direct injection . Most SI engines have a single spark plug per cylinder but some have 2 . A head gasket prevents the gas from leaking between the cylinder head and the engine block. The opening and closing of the valves is controlled by one or several camshafts and springs—or in some engines—a desmodromic mechanism that uses no springs. The camshaft may press directly

339-409: A deflector head . Pistons are open at the bottom and hollow except for an integral reinforcement structure (the piston web). When an engine is working, the gas pressure in the combustion chamber exerts a force on the piston crown which is transferred through its web to a gudgeon pin . Each piston has rings fitted around its circumference that mostly prevent the gases from leaking into the crankcase or

452-428: A gas engine . Also in 1794, Robert Street patented an internal combustion engine, which was also the first to use liquid fuel , and built an engine around that time. In 1798, John Stevens built the first American internal combustion engine. In 1807, French engineers Nicéphore Niépce (who went on to invent photography ) and Claude Niépce ran a prototype internal combustion engine, using controlled dust explosions,

565-470: A locomotive operated by electricity.) In boating, an internal combustion engine that is installed in the hull is referred to as an engine, but the engines that sit on the transom are referred to as motors. Reciprocating piston engines are by far the most common power source for land and water vehicles , including automobiles , motorcycles , ships and to a lesser extent, locomotives (some are electrical but most use diesel engines ). Rotary engines of

678-596: A south-pointing chariot , a vehicle with an early form of guidance system. The stagecoach , a four-wheeled vehicle drawn by horses, originated in 13th century England. Railways began reappearing in Europe after the Dark Ages . The earliest known record of a railway in Europe from this period is a stained-glass window in the Minster of Freiburg im Breisgau dating from around 1350. In 1515, Cardinal Matthäus Lang wrote

791-513: A wagonway , a predecessor of the railway, found so far was the 6 to 8.5 km (4 to 5 mi) long Diolkos wagonway, which transported boats across the Isthmus of Corinth in Greece since around 600 BC. Wheeled vehicles pulled by men and animals ran in grooves in limestone , which provided the track element, preventing the wagons from leaving the intended route. In 200 CE, Ma Jun built

904-594: A battery and charging system; nevertheless, this system is secondary and is added by manufacturers as a luxury for the ease of starting, turning fuel on and off (which can also be done via a switch or mechanical apparatus), and for running auxiliary electrical components and accessories. Most new engines rely on electrical and electronic engine control units (ECU) that also adjust the combustion process to increase efficiency and reduce emissions. Surfaces in contact and relative motion to other surfaces require lubrication to reduce wear, noise and increase efficiency by reducing

1017-433: A boost from high altitude winds. Compressed gas is currently an experimental method of storing energy. In this case, compressed gas is simply stored in a tank and released when necessary. Like elastics, they have hysteresis losses when gas heats up during compression. Gravitational potential energy is a form of energy used in gliders, skis, bobsleds and numerous other vehicles that go down hill. Regenerative braking

1130-404: A carefully timed high-voltage to the proper cylinder. This spark, via the spark plug, ignites the air-fuel mixture in the engine's cylinders. While gasoline internal combustion engines are much easier to start in cold weather than diesel engines, they can still have cold weather starting problems under extreme conditions. For years, the solution was to park the car in heated areas. In some parts of

1243-499: A common power source for lawnmowers , string trimmers , chain saws , leafblowers , pressure washers , snowmobiles , jet skis , outboard motors , mopeds , and motorcycles . There are several possible ways to classify internal combustion engines. By number of strokes: By type of ignition: By mechanical/thermodynamic cycle (these cycles are infrequently used but are commonly found in hybrid vehicles , along with other vehicles manufactured for fuel efficiency ): The base of

SECTION 10

#1732798614779

1356-597: A description of the Reisszug , a funicular railway at the Hohensalzburg Fortress in Austria. The line originally used wooden rails and a hemp haulage rope and was operated by human or animal power, through a treadwheel . 1769: Nicolas-Joseph Cugnot is often credited with building the first self-propelled mechanical vehicle or automobile in 1769. In Russia, in the 1780s, Ivan Kulibin developed

1469-853: A fact that the New York Times denied in error . Rocket engines can be particularly simple, sometimes consisting of nothing more than a catalyst, as in the case of a hydrogen peroxide rocket. This makes them an attractive option for vehicles such as jet packs. Despite their simplicity, rocket engines are often dangerous and susceptible to explosions. The fuel they run off may be flammable, poisonous, corrosive or cryogenic. They also suffer from poor efficiency. For these reasons, rocket engines are only used when absolutely necessary. Electric motors are used in electric vehicles such as electric bicycles , electric scooters, small boats, subways, trains , trolleybuses , trams and experimental aircraft . Electric motors can be very efficient: over 90% efficiency

1582-671: A flight with an actual ornithopter on July 31, 2010. Paddle wheels are used on some older watercraft and their reconstructions. These ships were known as paddle steamers . Because paddle wheels simply push against the water, their design and construction is very simple. The oldest such ship in scheduled service is the Skibladner . Many pedalo boats also use paddle wheels for propulsion. Screw-propelled vehicles are propelled by auger -like cylinders fitted with helical flanges. Because they can produce thrust on both land and water, they are commonly used on all-terrain vehicles. The ZiL-2906

1695-423: A gas station. Fuel cells are similar to batteries in that they convert from chemical to electrical energy, but have their own advantages and disadvantages. Electrified rails and overhead cables are a common source of electrical energy on subways, railways, trams, and trolleybuses. Solar energy is a more modern development, and several solar vehicles have been successfully built and tested, including Helios ,

1808-468: A go around is needed. Parachutes are used to slow down vehicles travelling very fast. Parachutes have been used in land, air and space vehicles such as the ThrustSSC , Eurofighter Typhoon and Apollo Command Module . Some older Soviet passenger jets had braking parachutes for emergency landings. Boats use similar devices called sea anchors to maintain stability in rough seas. To further increase

1921-452: A hand crank. Larger engines typically power their starting motors and ignition systems using the electrical energy stored in a lead–acid battery . The battery's charged state is maintained by an automotive alternator or (previously) a generator which uses engine power to create electrical energy storage. The battery supplies electrical power for starting when the engine has a starting motor system, and supplies electrical power when

2034-515: A hot exhaust. Trains using turbines are called gas turbine-electric locomotives . Examples of surface vehicles using turbines are M1 Abrams , MTT Turbine SUPERBIKE and the Millennium . Pulse jet engines are similar in many ways to turbojets but have almost no moving parts. For this reason, they were very appealing to vehicle designers in the past; however, their noise, heat, and inefficiency have led to their abandonment. A historical example of

2147-543: A human-pedalled, three-wheeled carriage with modern features such as a flywheel , brake , gear box and bearings ; however, it was not developed further. In 1783, the Montgolfier brothers developed the first balloon vehicle. In 1801, Richard Trevithick built and demonstrated his Puffing Devil road locomotive, which many believe was the first demonstration of a steam-powered road vehicle, though it could not maintain sufficient steam pressure for long periods and

2260-408: A problem would occur as the compression ratio increased as the fuel was igniting due to the rise in temperature that resulted. Charles Kettering developed a lead additive which allowed higher compression ratios, which was progressively abandoned for automotive use from the 1970s onward, partly due to lead poisoning concerns. The fuel mixture is ignited at different progressions of the piston in

2373-731: A reciprocating internal combustion engine is the engine block , which is typically made of cast iron (due to its good wear resistance and low cost) or aluminum . In the latter case, the cylinder liners are made of cast iron or steel, or a coating such as nikasil or alusil . The engine block contains the cylinders . In engines with more than one cylinder they are usually arranged either in 1 row ( straight engine ) or 2 rows ( boxer engine or V engine ); 3 or 4 rows are occasionally used ( W engine ) in contemporary engines, and other engine configurations are possible and have been used. Single-cylinder engines (or thumpers ) are common for motorcycles and other small engines found in light machinery. On

SECTION 20

#1732798614779

2486-422: A separate ICE as an auxiliary power unit . Wankel engines are fitted to many unmanned aerial vehicles . ICEs drive large electric generators that power electrical grids. They are found in the form of combustion turbines with a typical electrical output in the range of some 100 MW. Combined cycle power plants use the high temperature exhaust to boil and superheat water steam to run a steam turbine . Thus,

2599-481: A separate blower avoids many of the shortcomings of crankcase scavenging, at the expense of increased complexity which means a higher cost and an increase in maintenance requirement. An engine of this type uses ports or valves for intake and valves for exhaust, except opposed piston engines , which may also use ports for exhaust. The blower is usually of the Roots-type but other types have been used too. This design

2712-416: A separate crankcase ventilation system. The cylinder head is attached to the engine block by numerous bolts or studs . It has several functions. The cylinder head seals the cylinders on the side opposite to the pistons; it contains short ducts (the ports ) for intake and exhaust and the associated intake valves that open to let the cylinder be filled with fresh air and exhaust valves that open to allow

2825-597: A solar-powered aircraft. Nuclear power is a more exclusive form of energy storage, currently limited to large ships and submarines, mostly military. Nuclear energy can be released by a nuclear reactor , nuclear battery , or repeatedly detonating nuclear bombs . There have been two experiments with nuclear-powered aircraft, the Tupolev Tu-119 and the Convair X-6 . Mechanical strain is another method of storing energy, whereby an elastic band or metal spring

2938-407: A special arrangement in which all four main wheels can be angled. Skids can also be used to steer by angling them, as in the case of a snowmobile . Ships, boats, submarines, dirigibles and aeroplanes usually have a rudder for steering. On an airplane, ailerons are used to bank the airplane for directional control, sometimes assisted by the rudder. With no power applied, most vehicles come to

3051-411: A stop due to friction . But it is often required to stop a vehicle faster than by friction alone, so almost all vehicles are equipped with a braking system. Wheeled vehicles are typically equipped with friction brakes, which use the friction between brake pads (stators) and brake rotors to slow the vehicle. Many airplanes have high-performance versions of the same system in their landing gear for use on

3164-489: A vacuum, which limits their use to spaceborne vehicles. Ion thrusters run primarily off electricity, but they also need a propellant such as caesium , or, more recently xenon . Ion thrusters can achieve extremely high speeds and use little propellant; however, they are power-hungry. The mechanical energy that motors and engines produce must be converted to work by wheels, propellers, nozzles, or similar means. Aside from converting mechanical energy into motion, wheels allow

3277-422: A variety of conditions. One of the difficulties met when using gas motors is the cooling effect of expanding gas. These engines are limited by how quickly they absorb heat from their surroundings. The cooling effect can, however, double as air conditioning. Compressed gas motors also lose effectiveness with falling gas pressure. Ion thrusters are used on some satellites and spacecraft. They are only effective in

3390-528: A vehicle to roll along a surface and, with the exception of railed vehicles, to be steered. Wheels are ancient technology, with specimens being discovered from over 5000 years ago. Wheels are used in a plethora of vehicles, including motor vehicles, armoured personnel carriers , amphibious vehicles, airplanes, trains, skateboards and wheelbarrows. Nozzles are used in conjunction with almost all reaction engines. Vehicles using nozzles include jet aircraft, rockets, and personal watercraft . While most nozzles take

3503-400: A vehicle's steering through the gyroscopic effect . They have been used experimentally in gyrobuses . Wind energy is used by sailboats and land yachts as the primary source of energy. It is very cheap and fairly easy to use, the main issues being dependence on weather and upwind performance. Balloons also rely on the wind to move horizontally. Aircraft flying in the jet stream may get

Variable-length intake manifold - Misplaced Pages Continue

3616-405: Is fuel . External combustion engines can use almost anything that burns as fuel, whilst internal combustion engines and rocket engines are designed to burn a specific fuel, typically gasoline, diesel or ethanol . Food is the fuel used to power non-motor vehicles such as cycles, rickshaws and other pedestrian-controlled vehicles. Another common medium for storing energy is batteries , which have

3729-496: Is variable resonance induction system ( VRIS ). Internal combustion engine An internal combustion engine ( ICE or IC engine ) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high- temperature and high- pressure gases produced by combustion applies direct force to some component of

3842-405: Is a fly-back system, using interruption of electrical primary system current through some type of synchronized interrupter. The interrupter can be either contact points or a power transistor. The problem with this type of ignition is that as RPM increases the availability of electrical energy decreases. This is especially a problem, since the amount of energy needed to ignite a more dense fuel mixture

3955-421: Is also why diesel and HCCI engines are more susceptible to cold-starting issues, although they run just as well in cold weather once started. Light duty diesel engines with indirect injection in automobiles and light trucks employ glowplugs (or other pre-heating: see Cummins ISB#6BT ) that pre-heat the combustion chamber just before starting to reduce no-start conditions in cold weather. Most diesels also have

4068-519: Is an example of capturing kinetic energy where the brakes of a vehicle are augmented with a generator or other means of extracting energy. When needed, the energy is taken from the source and consumed by one or more motors or engines. Sometimes there is an intermediate medium, such as the batteries of a diesel submarine. Most motor vehicles have internal combustion engines . They are fairly cheap, easy to maintain, reliable, safe and small. Since these engines burn fuel, they have long ranges but pollute

4181-478: Is common. Electric motors can also be built to be powerful, reliable, low-maintenance and of any size. Electric motors can deliver a range of speeds and torques without necessarily using a gearbox (although it may be more economical to use one). Electric motors are limited in their use chiefly by the difficulty of supplying electricity. Compressed gas motors have been used on some vehicles experimentally. They are simple, efficient, safe, cheap, reliable and operate in

4294-503: Is commonplace in CI engines, and has been occasionally used in SI engines. CI engines that use a blower typically use uniflow scavenging . In this design the cylinder wall contains several intake ports placed uniformly spaced along the circumference just above the position that the piston crown reaches when at BDC. An exhaust valve or several like that of 4-stroke engines is used. The final part of

4407-414: Is deformed and releases energy as it is allowed to return to its ground state. Systems employing elastic materials suffer from hysteresis , and metal springs are too dense to be useful in many cases. Flywheels store energy in a spinning mass. Because a light and fast rotor is energetically favorable, flywheels can pose a significant safety hazard. Moreover, flywheels leak energy fairly quickly and affect

4520-738: Is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids for external combustion engines include air, hot water, pressurized water or even boiler -heated liquid sodium . While there are many stationary applications, most ICEs are used in mobile applications and are the primary power supply for vehicles such as cars , aircraft and boats . ICEs are typically powered by hydrocarbon -based fuels like natural gas , gasoline , diesel fuel , or ethanol . Renewable fuels like biodiesel are used in compression ignition (CI) engines and bioethanol or ETBE (ethyl tert-butyl ether) produced from bioethanol in spark ignition (SI) engines. As early as 1900

4633-438: Is desirable and important in supplying traction to facilitate motion on land. Most land vehicles rely on friction for accelerating, decelerating and changing direction. Sudden reductions in traction can cause loss of control and accidents. Most vehicles, with the notable exception of railed vehicles, have at least one steering mechanism. Wheeled vehicles steer by angling their front or rear wheels. The B-52 Stratofortress has

Variable-length intake manifold - Misplaced Pages Continue

4746-542: Is driven downward with power, it first uncovers the exhaust port where the burned fuel is expelled under high pressure and then the intake port where the process has been completed and will keep repeating. Later engines used a type of porting devised by the Deutz company to improve performance. It was called the Schnurle Reverse Flow system. DKW licensed this design for all their motorcycles. Their DKW RT 125

4859-415: Is held in place relative to the engine block by main bearings , which allow it to rotate. Bulkheads in the crankcase form a half of every main bearing; the other half is a detachable cap. In some cases a single main bearing deck is used rather than several smaller caps. A connecting rod is connected to offset sections of the crankshaft (the crankpins ) in one end and to the piston in the other end through

4972-406: Is higher. The result was often a high RPM misfire. Capacitor discharge ignition was developed. It produces a rising voltage that is sent to the spark plug. CD system voltages can reach 60,000 volts. CD ignitions use step-up transformers . The step-up transformer uses energy stored in a capacitance to generate electric spark . With either system, a mechanical or electrical control system provides

5085-524: Is never empty , a propeller could be made to work in space. Similarly to propeller vehicles, some vehicles use wings for propulsion. Sailboats and sailplanes are propelled by the forward component of lift generated by their sails/wings. Ornithopters also produce thrust aerodynamically. Ornithopters with large rounded leading edges produce lift by leading-edge suction forces. Research at the University of Toronto Institute for Aerospace Studies lead to

5198-445: Is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consists of: While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either

5311-554: Is often achieved by having two separate intake ports, each controlled by a valve, that open two different manifolds – one with a short path that operates at full engine load, and another with a significantly longer path that operates at lower load. The first patent issued for a variable length intake manifold was published in 1958, US Patent US2835235 by Daimler Benz AG . There are two main effects of variable intake geometry: Many automobile manufacturers use similar technology with different names. Another common term for this technology

5424-591: Is restricted to tip jet helicopters and high speed aircraft such as the Lockheed SR-71 Blackbird . Rocket engines are primarily used on rockets, rocket sleds and experimental aircraft. Rocket engines are extremely powerful. The heaviest vehicle ever to leave the ground, the Saturn V rocket, was powered by five F-1 rocket engines generating a combined 180 million horsepower (134.2 gigawatt). Rocket engines also have no need to "push off" anything,

5537-514: Is the Wärtsilä-Sulzer RTA96-C turbocharged 2-stroke diesel, used in large container ships. It is the most efficient and powerful reciprocating internal combustion engine in the world with a thermal efficiency over 50%. For comparison, the most efficient small four-stroke engines are around 43% thermally-efficient (SAE 900648); size is an advantage for efficiency due to the increase in the ratio of volume to surface area. See

5650-505: Is the most-produced helicopter. The top commercial jet airliner is the Boeing 737 , at about 10,000 in 2018. At around 14,000 for both, the most produced trams are the KTM-5 and Tatra T3 . The most common trolleybus is ZiU-9 . Locomotion consists of a means that allows displacement with little opposition, a power source to provide the required kinetic energy and a means to control

5763-618: The Pyréolophore , which was granted a patent by Napoleon Bonaparte . This engine powered a boat on the Saône river in France. In the same year, Swiss engineer François Isaac de Rivaz invented a hydrogen-based internal combustion engine and powered the engine by electric spark. In 1808, De Rivaz fitted his invention to a primitive working vehicle – "the world's first internal combustion powered automobile". In 1823, Samuel Brown patented

SECTION 50

#1732798614779

5876-608: The Wankel rotary engine . A second class of internal combustion engines use continuous combustion: gas turbines , jet engines and most rocket engines , each of which are internal combustion engines on the same principle as previously described. ( Firearms are also a form of internal combustion engine, though of a type so specialized that they are commonly treated as a separate category, along with weaponry such as mortars and anti-aircraft cannons.) In contrast, in external combustion engines , such as steam or Stirling engines , energy

5989-473: The external links for an in-cylinder combustion video in a 2-stroke, optically accessible motorcycle engine. Dugald Clerk developed the first two-cycle engine in 1879. It used a separate cylinder which functioned as a pump in order to transfer the fuel mixture to the cylinder. In 1899 John Day simplified Clerk's design into the type of 2 cycle engine that is very widely used today. Day cycle engines are crankcase scavenged and port timed. The crankcase and

6102-1142: The two-stroke oil in the air-fuel-oil mixture which is then burned along with the fuel. The valve train may be contained in a compartment flooded with lubricant so that no oil pump is required. Vehicle A vehicle (from Latin vehiculum ) is a machine designed for self- propulsion , usually to transport people, cargo , or both. The term "vehicle" typically refers to land vehicles such as human-powered vehicles (e.g. bicycles , tricycles , velomobiles ), animal-powered transports (e.g. horse-drawn carriages / wagons , ox carts , dog sleds ), motor vehicles (e.g. motorcycles , cars , trucks , buses , mobility scooters ) and railed vehicles ( trains , trams and monorails ), but more broadly also includes cable transport ( cable cars and elevators ), watercraft ( ships , boats and underwater vehicles ), amphibious vehicles (e.g. screw-propelled vehicles , hovercraft , seaplanes ), aircraft ( airplanes , helicopters , gliders and aerostats ) and space vehicles ( spacecraft , spaceplanes and launch vehicles ). This article primarily concerns

6215-619: The Wankel design are used in some automobiles, aircraft and motorcycles. These are collectively known as internal-combustion-engine vehicles (ICEV). Where high power-to-weight ratios are required, internal combustion engines appear in the form of combustion turbines , or sometimes Wankel engines. Powered aircraft typically use an ICE which may be a reciprocating engine. Airplanes can instead use jet engines and helicopters can instead employ turboshafts ; both of which are types of turbines. In addition to providing propulsion, aircraft may employ

6328-863: The advantages of being responsive, useful in a wide range of power levels, environmentally friendly, efficient, simple to install, and easy to maintain. Batteries also facilitate the use of electric motors, which have their own advantages. On the other hand, batteries have low energy densities, short service life, poor performance at extreme temperatures, long charging times, and difficulties with disposal (although they can usually be recycled). Like fuel, batteries store chemical energy and can cause burns and poisoning in event of an accident. Batteries also lose effectiveness with time. The issue of charge time can be resolved by swapping discharged batteries with charged ones; however, this incurs additional hardware costs and may be impractical for larger batteries. Moreover, there must be standard batteries for battery swapping to work at

6441-458: The air, causing harmful acid rain . While intermittent internal combustion engines were once the primary means of aircraft propulsion, they have been largely superseded by continuous internal combustion engines, such as gas turbines . Turbine engines are light and, particularly when used on aircraft, efficient. On the other hand, they cost more and require careful maintenance. They can also be damaged by ingesting foreign objects, and they produce

6554-417: The aircraft when retracted. Reverse thrust is also used in many aeroplane engines. Propeller aircraft achieve reverse thrust by reversing the pitch of the propellers, while jet aircraft do so by redirecting their engine exhausts forward. On aircraft carriers , arresting gears are used to stop an aircraft. Pilots may even apply full forward throttle on touchdown, in case the arresting gear does not catch and

6667-489: The associated process. While an engine is in operation, the crankshaft rotates continuously at a nearly constant speed . In a 4-stroke ICE, each piston experiences 2 strokes per crankshaft revolution in the following order. Starting the description at TDC, these are: The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it

6780-619: The combustion gases to escape. The valves are often poppet valves but they can also be rotary valves or sleeve valves . However, 2-stroke crankcase scavenged engines connect the gas ports directly to the cylinder wall without poppet valves; the piston controls their opening and occlusion instead. The cylinder head also holds the spark plug in the case of spark ignition engines and the injector for engines that use direct injection. All CI (compression ignition) engines use fuel injection, usually direct injection but some engines instead use indirect injection . SI (spark ignition) engines can use

6893-455: The compressed air and combustion products and slide continuously within it while the engine is in operation. In smaller engines, the pistons are made of aluminum; while in larger applications, they are typically made of cast iron. In performance applications, pistons can also be titanium or forged steel for greater strength. The top surface of the piston is called its crown and is typically flat or concave. Some two-stroke engines use pistons with

SECTION 60

#1732798614779

7006-432: The compressed charge, four-cycle engine. In 1879, Karl Benz patented a reliable two-stroke gasoline engine. Later, in 1886, Benz began the first commercial production of motor vehicles with an internal combustion engine, in which a three-wheeled, four-cycle engine and chassis formed a single unit. In 1892, Rudolf Diesel developed the first compressed charge, compression ignition engine. In 1926, Robert Goddard launched

7119-410: The corresponding ports. The intake manifold connects to the air filter directly, or to a carburetor when one is present, which is then connected to the air filter . It distributes the air incoming from these devices to the individual cylinders. The exhaust manifold is the first component in the exhaust system . It collects the exhaust gases from the cylinders and drives it to the following component in

7232-400: The crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging. SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging. Some SI engines are crankcase scavenged and do not use poppet valves. Instead, the crankcase and the part of

7345-401: The crankcase pressure is slightly below intake pressure, to let it be filled with a new charge; this happens when the piston is moving upwards. When the piston is moving downwards the pressure in the crankcase increases and the reed valve closes promptly, then the charge in the crankcase is compressed. When the piston is moving downwards, it also uncovers the exhaust port and the transfer port and

7458-413: The crankcase to the port in the cylinder to provide for intake and another from the exhaust port to the exhaust pipe. The height of the port in relationship to the length of the cylinder is called the "port timing". On the first upstroke of the engine there would be no fuel inducted into the cylinder as the crankcase was empty. On the downstroke, the piston now compresses the fuel mix, which has lubricated

7571-431: The cylinder below the piston is used as a pump. The intake port is connected to the crankcase through a reed valve or a rotary disk valve driven by the engine. For each cylinder, a transfer port connects in one end to the crankcase and in the other end to the cylinder wall. The exhaust port is connected directly to the cylinder wall. The transfer and exhaust port are opened and closed by the piston. The reed valve opens when

7684-411: The cylinder block has fins protruding away from it to cool the engine by directly transferring heat to the air. The cylinder walls are usually finished by honing to obtain a cross hatch , which is able to retain more oil. A too rough surface would quickly harm the engine by excessive wear on the piston. The pistons are short cylindrical parts which seal one end of the cylinder from the high pressure of

7797-407: The cylinder. Because there is no obstruction in the cylinder of the fuel to move directly out of the exhaust port prior to the piston rising far enough to close the port, early engines used a high domed piston to slow down the flow of fuel. Later the fuel was "resonated" back into the cylinder using an expansion chamber design. When the piston rose close to TDC, a spark ignited the fuel. As the piston

7910-414: The cylinder. At low rpm, the spark is timed to occur close to the piston achieving top dead center. In order to produce more power, as rpm rises the spark is advanced sooner during piston movement. The spark occurs while the fuel is still being compressed progressively more as rpm rises. The necessary high voltage, typically 10,000 volts, is supplied by an induction coil or transformer. The induction coil

8023-413: The early engines which used Hot Tube ignition. When Bosch developed the magneto it became the primary system for producing electricity to energize a spark plug. Many small engines still use magneto ignition. Small engines are started by hand cranking using a recoil starter or hand crank. Prior to Charles F. Kettering of Delco's development of the automotive starter all gasoline engined automobiles used

8136-453: The efficiency is higher because more energy is extracted from the fuel than what could be extracted by the combustion engine alone. Combined cycle power plants achieve efficiencies in the range of 50–60%. In a smaller scale, stationary engines like gas engines or diesel generators are used for backup or for providing electrical power to areas not connected to an electric grid . Small engines (usually 2‐stroke gasoline/petrol engines) are

8249-543: The engine is off. The battery also supplies electrical power during rare run conditions where the alternator cannot maintain more than 13.8 volts (for a common 12 V automotive electrical system). As alternator voltage falls below 13.8 volts, the lead-acid storage battery increasingly picks up electrical load. During virtually all running conditions, including normal idle conditions, the alternator supplies primary electrical power. Some systems disable alternator field (rotor) power during wide-open throttle conditions. Disabling

8362-415: The engine. The force is typically applied to pistons ( piston engine ), turbine blades ( gas turbine ), a rotor (Wankel engine) , or a nozzle ( jet engine ). This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to. The first commercially successful internal combustion engine

8475-410: The environment. A related engine is the external combustion engine . An example of this is the steam engine. Aside from fuel, steam engines also need water, making them impractical for some purposes. Steam engines also need time to warm up, whereas IC engines can usually run right after being started, although this may not be recommended in cold conditions. Steam engines burning coal release sulfur into

8588-435: The field reduces alternator pulley mechanical loading to nearly zero, maximizing crankshaft power. In this case, the battery supplies all primary electrical power. Gasoline engines take in a mixture of air and gasoline and compress it by the movement of the piston from bottom dead center to top dead center when the fuel is at maximum compression. The reduction in the size of the swept area of the cylinder and taking into account

8701-671: The first internal combustion engine to be applied industrially. In 1854, in the UK, the Italian inventors Eugenio Barsanti and Felice Matteucci obtained the certification: "Obtaining Motive Power by the Explosion of Gases". In 1857 the Great Seal Patent Office conceded them patent No.1655 for the invention of an "Improved Apparatus for Obtaining Motive Power from Gases". Barsanti and Matteucci obtained other patents for

8814-629: The first large-scale rocket program. The Opel RAK.1 became the first rocket car ; the following year, it also became the first rocket-powered aircraft . In 1961, the Soviet space program 's Vostok 1 carried Yuri Gagarin into space. In 1969, NASA 's Apollo 11 achieved the first Moon landing . In 2010, the number of motor vehicles in operation worldwide surpassed 1 billion, roughly one for every seven people. There are over 1 billion bicycles in use worldwide. In 2002 there were an estimated 590 million cars and 205 million motorcycles in service in

8927-595: The first liquid-fueled rocket. In 1939, the Heinkel He 178 became the world's first jet aircraft . At one time, the word engine (via Old French , from Latin ingenium , "ability") meant any piece of machinery —a sense that persists in expressions such as siege engine . A "motor" (from Latin motor , "mover") is any machine that produces mechanical power . Traditionally, electric motors are not referred to as "engines"; however, combustion engines are often referred to as "motors". (An electric engine refers to

9040-675: The first sustained, controlled, reproducible flights. In 1903, the Wright brothers flew the Wright Flyer , the first controlled, powered aircraft, in Kitty Hawk, North Carolina . In 1907, Gyroplane No.I became the first tethered rotorcraft to fly. The same year, the Cornu helicopter became the first rotorcraft to achieve free flight. In 1928, Opel initiated the Opel-RAK program,

9153-604: The following conditions: The main advantage of 2-stroke engines of this type is mechanical simplicity and a higher power-to-weight ratio than their 4-stroke counterparts. Despite having twice as many power strokes per cycle, less than twice the power of a comparable 4-stroke engine is attainable in practice. In the US, 2-stroke engines were banned for road vehicles due to the pollution. Off-road only motorcycles are still often 2-stroke but are rarely road legal. However, many thousands of 2-stroke lawn maintenance engines are in use. Using

9266-418: The ground. A Boeing 757 brake, for example, has 3 stators and 4 rotors. The Space Shuttle also uses frictional brakes on its wheels. As well as frictional brakes, hybrid and electric cars, trolleybuses and electric bicycles can also use regenerative brakes to recycle some of the vehicle's potential energy. High-speed trains sometimes use frictionless Eddy-current brakes ; however, widespread application of

9379-517: The gudgeon pin and thus transfers the force and translates the reciprocating motion of the pistons to the circular motion of the crankshaft. The end of the connecting rod attached to the gudgeon pin is called its small end, and the other end, where it is connected to the crankshaft, the big end. The big end has a detachable half to allow assembly around the crankshaft. It is kept together to the connecting rod by removable bolts. The cylinder head has an intake manifold and an exhaust manifold attached to

9492-505: The high temperature and pressure created by the engine in its compression process. The compression level that occurs is usually twice or more than a gasoline engine. Diesel engines take in air only, and shortly before peak compression, spray a small quantity of diesel fuel into the cylinder via a fuel injector that allows the fuel to instantly ignite. HCCI type engines take in both air and fuel, but continue to rely on an unaided auto-combustion process, due to higher pressures and temperature. This

9605-416: The higher pressure of the charge in the crankcase makes it enter the cylinder through the transfer port, blowing the exhaust gases. Lubrication is accomplished by adding two-stroke oil to the fuel in small ratios. Petroil refers to the mix of gasoline with the aforesaid oil. This kind of 2-stroke engine has a lower efficiency than comparable 4-strokes engines and releases more polluting exhaust gases for

9718-451: The highest thermal efficiencies among internal combustion engines of any kind. Some diesel–electric locomotive engines operate on the 2-stroke cycle. The most powerful of them have a brake power of around 4.5  MW or 6,000  HP . The EMD SD90MAC class of locomotives are an example of such. The comparable class GE AC6000CW , whose prime mover has almost the same brake power, uses a 4-stroke engine. An example of this type of engine

9831-419: The intake manifold is an air sleeve that feeds the intake ports. The intake ports are placed at a horizontal angle to the cylinder wall (I.e: they are in plane of the piston crown) to give a swirl to the incoming charge to improve combustion. The largest reciprocating IC are low speed CI engines of this type; they are used for marine propulsion (see marine diesel engine ) or electric power generation and achieve

9944-429: The inventor of the diesel engine, Rudolf Diesel , was using peanut oil to run his engines. Renewable fuels are commonly blended with fossil fuels. Hydrogen , which is rarely used, can be obtained from either fossil fuels or renewable energy. Various scientists and engineers contributed to the development of internal combustion engines. In 1791, John Barber developed the gas turbine . In 1794 Thomas Mead patented

10057-619: The more ubiquitous land vehicles, which can be broadly classified by the type of contact interface with the ground : wheels , tracks , rails or skis , as well as the non-contact technologies such as maglev . ISO 3833-1977 is the international standard for road vehicle types, terms and definitions. It is estimated by historians that boats have been used since prehistory ; rock paintings depicting boats, dated from around 50,000 to 15,000 BC, were found in Australia . The oldest boats found by archaeological excavation are logboats , with

10170-483: The motion, such as a brake and steering system. By far, most vehicles use wheels which employ the principle of rolling to enable displacement with very little rolling friction . It is essential that a vehicle have a source of energy to drive it. Energy can be extracted from external sources, as in the cases of a sailboat , a solar-powered car , or an electric streetcar that uses overhead lines. Energy can also be stored, provided it can be converted on demand and

10283-407: The oil into the combustion chamber. A ventilation system drives the small amount of gas that escapes past the pistons during normal operation (the blow-by gases) out of the crankcase so that it does not accumulate contaminating the oil and creating corrosion. In two-stroke gasoline engines the crankcase is part of the air–fuel path and due to the continuous flow of it, two-stroke engines do not need

10396-707: The oldest logboat found, the Pesse canoe found in a bog in the Netherlands, being carbon dated to 8040–7510 BC, making it 9,500–10,000 years old, A 7,000 year-old seagoing boat made from reeds and tar has been found in Kuwait. Boats were used between 4000 -3000 BC in Sumer , ancient Egypt and in the Indian Ocean. There is evidence of camel pulled wheeled vehicles about 4000–3000 BC. The earliest evidence of

10509-402: The outer side of the cylinder, passages that contain cooling fluid are cast into the engine block whereas, in some heavy duty engines, the passages are the types of removable cylinder sleeves which can be replaceable. Water-cooled engines contain passages in the engine block where cooling fluid circulates (the water jacket ). Some small engines are air-cooled, and instead of having a water jacket

10622-460: The part of the cylinder below the exhaust port is used as a pump. The operation of the Day cycle engine begins when the crankshaft is turned so that the piston moves from BDC upward (toward the head) creating a vacuum in the crankcase/cylinder area. The carburetor then feeds the fuel mixture into the crankcase through a reed valve or a rotary disk valve (driven by the engine). There are cast in ducts from

10735-427: The path. The exhaust system of an ICE may also include a catalytic converter and muffler . The final section in the path of the exhaust gases is the tailpipe . The top dead center (TDC) of a piston is the position where it is nearest to the valves; bottom dead center (BDC) is the opposite position where it is furthest from them. A stroke is the movement of a piston from TDC to BDC or vice versa, together with

10848-412: The piston in the cylinder and the bearings due to the fuel mix having oil added to it. As the piston moves downward it first uncovers the exhaust, but on the first stroke there is no burnt fuel to exhaust. As the piston moves downward further, it uncovers the intake port which has a duct that runs to the crankcase. Since the fuel mix in the crankcase is under pressure, the mix moves through the duct and into

10961-409: The power wasting in overcoming friction , or to make the mechanism work at all. Also, the lubricant used can reduce excess heat and provide additional cooling to components. At the very least, an engine requires lubrication in the following parts: In 2-stroke crankcase scavenged engines, the interior of the crankcase, and therefore the crankshaft, connecting rod and bottom of the pistons are sprayed by

11074-474: The propeller has been tested on many terrestrial vehicles, including the Schienenzeppelin train and numerous cars. In modern times, propellers are most prevalent on watercraft and aircraft, as well as some amphibious vehicles such as hovercraft and ground-effect vehicles . Intuitively, propellers cannot work in space as there is no working fluid; however, some sources have suggested that since space

11187-463: The rate of deceleration or where the brakes have failed, several mechanisms can be used to stop a vehicle. Cars and rolling stock usually have hand brakes that, while designed to secure an already parked vehicle, can provide limited braking should the primary brakes fail. A secondary procedure called forward-slip is sometimes used to slow airplanes by flying at an angle, causing more drag. Motor vehicle and trailer categories are defined according to

11300-452: The same invention in France, Belgium and Piedmont between 1857 and 1859. In 1860, Belgian engineer Jean Joseph Etienne Lenoir produced a gas-fired internal combustion engine. In 1864, Nicolaus Otto patented the first atmospheric gas engine. In 1872, American George Brayton invented the first commercial liquid-fueled internal combustion engine. In 1876, Nicolaus Otto began working with Gottlieb Daimler and Wilhelm Maybach , patented

11413-565: The shape of a cone or bell , some unorthodox designs have been created such as the aerospike . Some nozzles are intangible, such as the electromagnetic field nozzle of a vectored ion thruster. Continuous track is sometimes used instead of wheels to power land vehicles. Continuous track has the advantages of a larger contact area, easy repairs on small damage, and high maneuverability. Examples of vehicles using continuous tracks are tanks, snowmobiles and excavators. Two continuous tracks used together allow for steering. The largest land vehicle in

11526-400: The stem of the valve or may act upon a rocker arm , again, either directly or through a pushrod . The crankcase is sealed at the bottom with a sump that collects the falling oil during normal operation to be cycled again. The cavity created between the cylinder block and the sump houses a crankshaft that converts the reciprocating motion of the pistons to rotational motion. The crankshaft

11639-462: The storing medium's energy density and power density are sufficient to meet the vehicle's needs. Human power is a simple source of energy that requires nothing more than humans. Despite the fact that humans cannot exceed 500 W (0.67 hp) for meaningful amounts of time, the land speed record for human-powered vehicles (unpaced) is 133 km/h (83 mph), as of 2009 on a recumbent bicycle . The energy source used to power vehicles

11752-440: The technology has been limited by overheating and interference issues. Aside from landing gear brakes, most large aircraft have other ways of decelerating. In aircraft, air brakes are aerodynamic surfaces that provide braking force by increasing the frontal cross section, thus increasing the increasing the aerodynamic drag of the aircraft. These are usually implemented as flaps that oppose air flow when extended and are flush with

11865-544: The use of a pulse jet was the V-1 flying bomb . Pulse jets are still occasionally used in amateur experiments. With the advent of modern technology, the pulse detonation engine has become practical and was successfully tested on a Rutan VariEze . While the pulse detonation engine is much more efficient than the pulse jet and even turbine engines, it still suffers from extreme noise and vibration levels. Ramjets also have few moving parts, but they only work at high speed, so their use

11978-423: The volume of the combustion chamber is described by a ratio. Early engines had compression ratios of 6 to 1. As compression ratios were increased, the efficiency of the engine increased as well. With early induction and ignition systems the compression ratios had to be kept low. With advances in fuel technology and combustion management, high-performance engines can run reliably at 12:1 ratio. With low octane fuel,

12091-468: The world, the Bagger 293 , is propelled by continuous tracks. Propellers (as well as screws, fans and rotors) are used to move through a fluid. Propellers have been used as toys since ancient times; however, it was Leonardo da Vinci who devised what was one of the earliest propeller driven vehicles, the "aerial-screw". In 1661, Toogood & Hays adopted the screw for use as a ship propeller. Since then,

12204-549: The world, the oil was actually drained and heated overnight and returned to the engine for cold starts. In the early 1950s, the gasoline Gasifier unit was developed, where, on cold weather starts, raw gasoline was diverted to the unit where part of the fuel was burned causing the other part to become a hot vapor sent directly to the intake valve manifold. This unit was quite popular until electric engine block heaters became standard on gasoline engines sold in cold climates. For ignition, diesel, PPC and HCCI engines rely solely on

12317-660: The world. At least 500 million Chinese Flying Pigeon bicycles have been made, more than any other single model of vehicle. The most-produced model of motor vehicle is the Honda Super Cub motorcycle, having sold 60 million units in 2008. The most-produced car model is the Toyota Corolla , with at least 35 million made by 2010. The most common fixed-wing airplane is the Cessna 172 , with about 44,000 having been made as of 2017. The Soviet Mil Mi-8 , at 17,000,

12430-635: Was a Soviet-designed screw-propelled vehicle designed to retrieve cosmonauts from the Siberian wilderness. All or almost all of the useful energy produced by the engine is usually dissipated as friction; so minimizing frictional losses is very important in many vehicles. The main sources of friction are rolling friction and fluid drag (air drag or water drag). Wheels have low bearing friction, and pneumatic tires give low rolling friction. Steel wheels on steel tracks are lower still. Aerodynamic drag can be reduced by streamlined design features. Friction

12543-456: Was created by Étienne Lenoir around 1860, and the first modern internal combustion engine, known as the Otto engine , was created in 1876 by Nicolaus Otto . The term internal combustion engine usually refers to an engine in which combustion is intermittent , such as the more familiar two-stroke and four-stroke piston engines, along with variants, such as the six-stroke piston engine and

12656-662: Was of little practical use. In 1817, The Laufmaschine ("running machine"), invented by the German Baron Karl von Drais , became the first human means of transport to make use of the two-wheeler principle . It is regarded as the forerunner of the modern bicycle (and motorcycle). In 1885, Karl Benz built (and subsequently patented) the Benz Patent-Motorwagen , the first automobile, powered by his own four-stroke cycle gasoline engine . In 1885, Otto Lilienthal began experimental gliding and achieved

12769-405: Was one of the first motor vehicles to achieve over 100 mpg as a result. Internal combustion engines require ignition of the mixture, either by spark ignition (SI) or compression ignition (CI) . Before the invention of reliable electrical methods, hot tube and flame methods were used. Experimental engines with laser ignition have been built. The spark-ignition engine was a refinement of

#778221