The Vishnu Basement Rocks is the name recommended for all Early Proterozoic crystalline rocks ( metamorphic and igneous ) exposed in the Grand Canyon region. They form the crystalline basement rocks that underlie the Bass Limestone of the Unkar Group of the Grand Canyon Supergroup and the Tapeats Sandstone of the Tonto Group . These basement rocks have also been called either the Vishnu Complex or Vishnu Metamorphic Complex . These Early Proterozoic crystalline rocks consist of metamorphic rocks that are collectively known as the Granite Gorge Metamorphic Suite ; sections of the Vishnu Basement Rocks contain Early Paleoproterozoic granite , granitic pegmatite , aplite , and granodiorite that have intruded these metamorphic rocks, and also, intrusive Early Paleoproterozoic ultramafic rocks.
101-486: The term Zoroaster Plutonic Complex is used for all Paleoproterozoic granitic and grandioritic plutonic rocks in the Grand Canyon. Specific names have been assigned to individual plutons and dike swarms because the plutons and swarms differ greatly in their age, origin, and tectonic significance. The oldest of these plutonic complexes, Elves Chasm Gneiss, likely represent a small fragment of basement upon which
202-400: A chilled margin is often found on the intrusion side of the contact, while a contact aureole is found on the country rock side. The chilled margin is much finer grained than most of the intrusion, and may be different in composition, reflecting the initial composition of the intrusion before fractional crystallization, assimilation of country rock, or further magmatic injections modified
303-429: A glacial armor . Ice can not only erode mountains but also protect them from erosion. Depending on glacier regime, even steep alpine lands can be preserved through time with the help of ice. Scientists have proved this theory by sampling eight summits of northwestern Svalbard using Be10 and Al26, showing that northwestern Svalbard transformed from a glacier-erosion state under relatively mild glacial maxima temperature, to
404-402: A layered intrusion . The ultimate source of magma is partial melting of rock in the upper mantle and lower crust . This produces magma that is less dense than its source rock. For example, a granitic magma, which is high in silica, has a density of 2.4 Mg/m , much less than the 2.8 Mg/m of high-grade metamorphic rock. This gives the magma tremendous buoyancy, so that ascent of the magma
505-426: A considerable depth. A gully is distinguished from a rill based on a critical cross-sectional area of at least one square foot, i.e. the size of a channel that can no longer be erased via normal tillage operations. Extreme gully erosion can progress to formation of badlands . These form under conditions of high relief on easily eroded bedrock in climates favorable to erosion. Conditions or disturbances that limit
606-506: A contact aureole, and often contain xenolithic fragments of country rock suggesting brittle fracturing. Such intrusions are interpreted as occurring at shallow depth, and are commonly associated with volcanic rocks and collapse structures. An intrusion does not crystallize all minerals at once; rather, there is a sequence of crystallization that is reflected in the Bowen reaction series . Crystals formed early in cooling are generally denser than
707-531: A depth of about 25 km (16 mi) to a depth of about 10 km (6.2 mi), between 1.75 and 1.66 billion years ago, and from a depth of about 10 km (6.2 mi) to the weathered surface on which the Bass Formation of the Unkar Group accumulated – between 1.66 and 1.25 billion years ago. Pluton In geology , an igneous intrusion (or intrusive body or simply intrusion )
808-408: A fall in sea level, can produce a distinctive landform called a raised beach . Chemical erosion is the loss of matter in a landscape in the form of solutes . Chemical erosion is usually calculated from the solutes found in streams. Anders Rapp pioneered the study of chemical erosion in his work about Kärkevagge published in 1960. Formation of sinkholes and other features of karst topography
909-485: A glacier-armor state occupied by cold-based, protective ice during much colder glacial maxima temperatures as the Quaternary ice age progressed. These processes, combined with erosion and transport by the water network beneath the glacier, leave behind glacial landforms such as moraines , drumlins , ground moraine (till), glaciokarst , kames, kame deltas, moulins, and glacial erratics in their wake, typically at
1010-464: A homogeneous bedrock erosion pattern, curved channel cross-section beneath the ice is created. Though the glacier continues to incise vertically, the shape of the channel beneath the ice eventually remain constant, reaching a U-shaped parabolic steady-state shape as we now see in glaciated valleys . Scientists also provide a numerical estimate of the time required for the ultimate formation of a steady-shaped U-shaped valley —approximately 100,000 years. In
1111-423: A large river can remove enough sediments to produce a river anticline , as isostatic rebound raises rock beds unburdened by erosion of overlying beds. Shoreline erosion, which occurs on both exposed and sheltered coasts, primarily occurs through the action of currents and waves but sea level (tidal) change can also play a role. Hydraulic action takes place when the air in a joint is suddenly compressed by
SECTION 10
#17327726613991212-492: A mountain mass similar to the Himalaya into an almost-flat peneplain if there are no significant sea-level changes . Erosion of mountains massifs can create a pattern of equally high summits called summit accordance . It has been argued that extension during post-orogenic collapse is a more effective mechanism of lowering the height of orogenic mountains than erosion. Examples of heavily eroded mountain ranges include
1313-576: A pluton. The upper contact of the Vishnu Basement Rocks is a major unconformity between it and either the Tonto Group or Unkar Group that resulted from uplift and the deep erosion, by at least 25 km (16 mi), of the Vishnu Basement Rocks and any overlying strata. In the case of the unconformity between the Vishnu Basement Rocks and the Unkar Group, studies of the underlying Vishnu Basement Rocks indicate they were uplifted from
1414-432: A surface is eroded. Typically, physical erosion proceeds the fastest on steeply sloping surfaces, and rates may also be sensitive to some climatically controlled properties including amounts of water supplied (e.g., by rain), storminess, wind speed, wave fetch , or atmospheric temperature (especially for some ice-related processes). Feedbacks are also possible between rates of erosion and the amount of eroded material that
1515-412: A synonym for all igneous intrusions; as a dustbin category for intrusions whose size or character are not well determined; or as a name for a very large intrusion or for a crystallized magma chamber . A pluton that has intruded and obscured the contact between a terrane and adjacent rock is called a stitching pluton . Intrusions are broadly divided into discordant intrusions , which cut across
1616-501: A wave closing the entrance of the joint. This then cracks it. Wave pounding is when the sheer energy of the wave hitting the cliff or rock breaks pieces off. Abrasion or corrasion is caused by waves launching sea load at the cliff. It is the most effective and rapid form of shoreline erosion (not to be confused with corrosion ). Corrosion is the dissolving of rock by carbonic acid in sea water. Limestone cliffs are particularly vulnerable to this kind of erosion. Attrition
1717-412: A weak bedrock (containing material more erodible than the surrounding rocks) erosion pattern, on the contrary, the amount of over deepening is limited because ice velocities and erosion rates are reduced. Glaciers can also cause pieces of bedrock to crack off in the process of plucking. In ice thrusting, the glacier freezes to its bed, then as it surges forward, it moves large sheets of frozen sediment at
1818-860: Is a body of intrusive igneous rock that forms by crystallization of magma slowly cooling below the surface of the Earth . Intrusions have a wide variety of forms and compositions, illustrated by examples like the Palisades Sill of New York and New Jersey ; the Henry Mountains of Utah ; the Bushveld Igneous Complex of South Africa ; Shiprock in New Mexico ; the Ardnamurchan intrusion in Scotland; and
1919-546: Is already carried by, for example, a river or glacier. The transport of eroded materials from their original location is followed by deposition, which is arrival and emplacement of material at a new location. While erosion is a natural process, human activities have increased by 10–40 times the rate at which soil erosion is occurring globally. At agriculture sites in the Appalachian Mountains , intensive farming practices have caused erosion at up to 100 times
2020-494: Is also more prone to mudslides, landslides, and other forms of gravitational erosion processes. Tectonic processes control rates and distributions of erosion at the Earth's surface. If the tectonic action causes part of the Earth's surface (e.g., a mountain range) to be raised or lowered relative to surrounding areas, this must necessarily change the gradient of the land surface. Because erosion rates are almost always sensitive to
2121-484: Is an example of extreme chemical erosion. Glaciers erode predominantly by three different processes: abrasion/scouring, plucking , and ice thrusting. In an abrasion process, debris in the basal ice scrapes along the bed, polishing and gouging the underlying rocks, similar to sandpaper on wood. Scientists have shown that, in addition to the role of temperature played in valley-deepening, other glaciological processes, such as erosion also control cross-valley variations. In
SECTION 20
#17327726613992222-409: Is distinguished from changes on the bed of the watercourse, which is referred to as scour . Erosion and changes in the form of river banks may be measured by inserting metal rods into the bank and marking the position of the bank surface along the rods at different times. Thermal erosion is the result of melting and weakening permafrost due to moving water. It can occur both along rivers and at
2323-404: Is inevitable once enough magma has accumulated. However, the question of precisely how large quantities of magma are able to shove aside country rock to make room for themselves (the room problem ) is still a matter of research. The composition of the magma and country rock and the stresses affecting the country rock strongly influence the kinds of intrusions that take place. For example, where
2424-405: Is of two primary varieties: deflation , where the wind picks up and carries away loose particles; and abrasion , where surfaces are worn down as they are struck by airborne particles carried by wind. Deflation is divided into three categories: (1) surface creep , where larger, heavier particles slide or roll along the ground; (2) saltation , where particles are lifted a short height into
2525-408: Is particularly important in classifying intrusive igneous rocks. Intrusions must displace existing country rock to make room for themselves. The question of how this takes place is called the room problem , and it remains a subject of active investigation for many kinds of intrusions. The term pluton is poorly defined, but has been used to describe an intrusion emplaced at great depth; as
2626-510: Is regarded to be an older granodioritic pluton that was exposed by erosion prior to being buried by the original volcanic and submarine sedimentary rocks of the Granite Gorge Metamorphic Suite. The Elves Chasm pluton is likely part of the basement rocks on which the original volcanic rocks and sediments of the Granite Gorge Metamorphic Suite were deposited. The highly tectonized contact between Elves Chasm pluton and
2727-503: Is removed from an area by dissolution . Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres. Agents of erosion include rainfall ; bedrock wear in rivers ; coastal erosion by the sea and waves ; glacial plucking , abrasion , and scour; areal flooding; wind abrasion; groundwater processes; and mass movement processes in steep landscapes like landslides and debris flows . The rates at which such processes act control how fast
2828-404: Is sparse and soil is dry (and so is more erodible). Other climatic factors such as average temperature and temperature range may also affect erosion, via their effects on vegetation and soil properties. In general, given similar vegetation and ecosystems, areas with more precipitation (especially high-intensity rainfall), more wind, or more storms are expected to have more erosion. In some areas of
2929-467: Is the action of surface processes (such as water flow or wind ) that removes soil , rock , or dissolved material from one location on the Earth's crust and then transports it to another location where it is deposited . Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material
3030-457: Is the main climatic factor governing soil erosion by water. The relationship is particularly strong if heavy rainfall occurs at times when, or in locations where, the soil's surface is not well protected by vegetation . This might be during periods when agricultural activities leave the soil bare, or in semi-arid regions where vegetation is naturally sparse. Wind erosion requires strong winds, particularly during times of drought when vegetation
3131-400: Is where particles/sea load carried by the waves are worn down as they hit each other and the cliffs. This then makes the material easier to wash away. The material ends up as shingle and sand. Another significant source of erosion, particularly on carbonate coastlines, is boring, scraping and grinding of organisms, a process termed bioerosion . Sediment is transported along the coast in
Vishnu Basement Rocks - Misplaced Pages Continue
3232-647: The Aleutian Islands and Indonesia (e.g., Sumatra and Java ). The second group of younger Early Paleoproterozoic igneous intrusive rocks is quite different in style, age, and significance. These igneous intrusive rocks consist of granitic and pegmatitic dike swarms, i.e. the Cottonwood, Cremation, Sapphire, and Garnet pegmatite complexes, that cut the Granite Gorge Metamorphic Suite from east to west. They formed as granite magma , and related pegmatite fluids, filled crack-systems as magma migrated through
3333-581: The Coastal Batholith of Peru is 1,100 kilometers (680 mi) long and 50 kilometers (31 mi) wide. They are usually formed from magma rich in silica , and never from gabbro or other rock rich in mafic minerals, but some batholiths are composed almost entirely of anorthosite . A sill is a tabular concordant intrusion, typically taking the form of a sheet parallel to sedimentary beds. They are otherwise similar to dikes. Most are of mafic composition, relatively low in silica, which gives them
3434-664: The Great Plains , it is estimated that soil loss due to wind erosion can be as much as 6100 times greater in drought years than in wet years. Mass wasting or mass movement is the downward and outward movement of rock and sediments on a sloped surface, mainly due to the force of gravity . Mass wasting is an important part of the erosional process and is often the first stage in the breakdown and transport of weathered materials in mountainous areas. It moves material from higher elevations to lower elevations where other eroding agents such as streams and glaciers can then pick up
3535-532: The Sierra Nevada Batholith of California . Because the solid country rock into which magma intrudes is an excellent insulator , cooling of the magma is extremely slow, and intrusive igneous rock is coarse-grained ( phaneritic ). Intrusive igneous rocks are classified separately from extrusive igneous rocks, generally on the basis of their mineral content. The relative amounts of quartz , alkali feldspar , plagioclase , and feldspathoid
3636-737: The Timanides of Northern Russia. Erosion of this orogen has produced sediments that are now found in the East European Platform , including the Cambrian Sablya Formation near Lake Ladoga . Studies of these sediments indicate that it is likely that the erosion of the orogen began in the Cambrian and then intensified in the Ordovician . If the erosion rate exceeds soil formation , erosion destroys
3737-416: The accumulation zone above the glacial equilibrium line altitude), which causes increased rates of erosion of the mountain, decreasing mass faster than isostatic rebound can add to the mountain. This provides a good example of a negative feedback loop . Ongoing research is showing that while glaciers tend to decrease mountain size, in some areas, glaciers can actually reduce the rate of erosion, acting as
3838-399: The country rock adjacent to them. Because of this, they were likely shallowly emplaced beneath the volcanic arc in which the metavolcanics and metasediments of the Granite Gorge Metamorphic Suite accumulated. In addition, these intrusive rocks have undergone all the deformation that has also affected their adjacent country rock. This further indicates that they are just slightly younger than
3939-405: The impact of a falling raindrop creates a small crater in the soil , ejecting soil particles. The distance these soil particles travel can be as much as 0.6 m (2.0 ft) vertically and 1.5 m (4.9 ft) horizontally on level ground. If the soil is saturated , or if the rainfall rate is greater than the rate at which water can infiltrate into the soil, surface runoff occurs. If
4040-455: The lower crust and mantle . Because tectonic processes are driven by gradients in the stress field developed in the crust, this unloading can in turn cause tectonic or isostatic uplift in the region. In some cases, it has been hypothesised that these twin feedbacks can act to localize and enhance zones of very rapid exhumation of deep crustal rocks beneath places on the Earth's surface with extremely high erosion rates, for example, beneath
4141-407: The surface runoff which may result from rainfall, produces four main types of soil erosion : splash erosion , sheet erosion , rill erosion , and gully erosion . Splash erosion is generally seen as the first and least severe stage in the soil erosion process, which is followed by sheet erosion, then rill erosion and finally gully erosion (the most severe of the four). In splash erosion ,
Vishnu Basement Rocks - Misplaced Pages Continue
4242-499: The 21st century, a strong link has been drawn between the increase in storm frequency with an increase in sediment load in rivers and reservoirs, highlighting the impacts climate change can have on erosion. Vegetation acts as an interface between the atmosphere and the soil. It increases the permeability of the soil to rainwater, thus decreasing runoff. It shelters the soil from winds, which results in decreased wind erosion, as well as advantageous changes in microclimate. The roots of
4343-667: The Brahma Schist is composed of mafic to felsic -composition metavolcanic rocks. The Rama Schist consists of massive, fine-grained quartzofeldspathic schist and gneiss that likely are probable felsic metavolcanic rocks. On the basis of the presence of relict pillow structures , interlayering of metavolcanic strata, and the large volumes of metavolcanic rocks, the Brahma and Rama schists are interpreted to consist of metamorphosed, volcanic island-arc and associated submarine volcanic rocks. These metavolcanic rocks are locally overlain by
4444-879: The Colorado River valley which was named " Temple of Vishnu " from its appearance. The Granite Gorge Metamorphic Suite consists of lithologic units, the Brahma, Rama, and Vishnu schists , that have been mapped within the Upper, Middle, and Lower Granite Gorges of the Grand Canyon. The Vishnu Schist consists of quartz - mica schist, pelitic schist, and meta- arenites . They exhibit relict sedimentary structures and textures that demonstrate that they are metamorphosed submarine sedimentary rocks . The Brahma Schist consists of amphibolite , hornblende - biotite - plagioclase schist, biotite-plagioclase schist, ortho amphibole -bearing schist and gneiss , and metamorphosed sulfide deposits. As inferred from relict structures and textures,
4545-512: The Granite Gorge Metamorphic Suite is exposed near Waltenberg Canyon, in 115-Mile Canyon, near Blacktail Canyon, and in the Middle Granite Gorge. This contact is characterized by a high-grade orthoamphibole-bearing gneiss. This gneiss is interpreted to be a highly metamorphosed and sheared paleosol and associated regolith that originally consisted of several meters of weathered rock debris eroded from older plutonic rocks. On
4646-529: The Rama Schist have yielded an age of 1.742 billion years ago. The oldest rocks that are part of the Vishnu Basement Rocks is the Elves Chasm pluton. It consists of metamorphosed mafic (hornblende-biotite tonalite ) and intermediate-composition plutonic rocks (quartz diorite ). Within it, there are tabular amphibolite bodies that might be dikes, that have been dated at about 1.84 billion years ago. It
4747-433: The air, and bounce and saltate across the surface of the soil; and (3) suspension , where very small and light particles are lifted into the air by the wind, and are often carried for long distances. Saltation is responsible for the majority (50–70%) of wind erosion, followed by suspension (30–40%), and then surface creep (5–25%). Wind erosion is much more severe in arid areas and during times of drought. For example, in
4848-470: The base along with the glacier. This method produced some of the many thousands of lake basins that dot the edge of the Canadian Shield . Differences in the height of mountain ranges are not only being the result tectonic forces, such as rock uplift, but also local climate variations. Scientists use global analysis of topography to show that glacial erosion controls the maximum height of mountains, as
4949-602: The basis of rock type, type of intrusion, chemistry, and age of rocks, two main groups of younger Early Paleoproterozoic igneous intrusive (plutonic) rocks have been distinguished within the Vishnu Basement Rocks. One group, which dates between 1.74 and 1.71 billion years ago, consists of large plutons such as the Zoroaster pluton, the Ruby pluton, and the Diamond Creek pluton. There is no noticeable baking and metamorphism of
5050-522: The coast. Rapid river channel migration observed in the Lena River of Siberia is due to thermal erosion, as these portions of the banks are composed of permafrost-cemented non-cohesive materials. Much of this erosion occurs as the weakened banks fail in large slumps. Thermal erosion also affects the Arctic coast , where wave action and near-shore temperatures combine to undercut permafrost bluffs along
5151-409: The coastline. Where there is a bend in the coastline, quite often a buildup of eroded material occurs forming a long narrow bank (a spit ). Armoured beaches and submerged offshore sandbanks may also protect parts of a coastline from erosion. Over the years, as the shoals gradually shift, the erosion may be redirected to attack different parts of the shore. Erosion of a coastal surface, followed by
SECTION 50
#17327726613995252-423: The composition of the rest of the intrusion. Isotherms (surfaces of constant temperature) propagate away from the margin according to a square root law, so that if the outermost meter of the magma takes ten years to cool to a given temperature, the next inward meter will take 40 years, the next will take 90 years, and so on. This is an idealization, and such processes as magma convection (where cooled magma next to
5353-461: The contact between intrusion and country rock give clues to the conditions under which the intrusion took place. Catazonal intrusions have a thick aureole that grades into the intrusive body with no sharp margin, indicating considerable chemical reaction between intrusion and country rock, and often have broad migmatite zones. Foliations in the intrusion and the surrounding country rock are roughly parallel, with indications of extreme deformation in
5454-416: The contact is given by the relationship T / T 0 = 1 2 + 1 2 erf ( x 2 k t ) {\displaystyle T/T_{0}={\frac {1}{2}}+{\frac {1}{2}}\operatorname {erf} ({\frac {x}{2{\sqrt {kt}}}})} where T 0 {\displaystyle T_{0}} is the initial temperature of
5555-468: The contact sinks to the bottom of the magma chamber and hotter magma takes its place) can alter the cooling process, reducing the thickness of chilled margins while hastening cooling of the intrusion as a whole. However, it is clear that thin dikes will cool much faster than larger intrusions, which explains why small intrusions near the surface (where the country rock is initially cold) are often nearly as fine-grained as volcanic rock. Structural features of
5656-510: The country rock. Such intrusions are interpreted as taking placed at great depth. Mesozonal intrusions have a much lower degree of metamorphism in their contact aureoles, and the contact between country rock and intrusion is clearly discernible. Migmatites are rare and deformation of country rock is moderate. Such intrusions are interpreted as occurring at medium depth. Epizonal intrusions are discordant with country rock and have sharp contacts with chilled margins, with only limited metamorphism in
5757-501: The crust is undergoing extension, magma can easily rise into tensional fractures in the upper crust to form dikes. Where the crust is under compression, magma at shallow depth will tend to form laccoliths instead, with the magma penetrating the least competent beds, such as shale beds. Ring dikes and cone sheets form only at shallow depth, where a plug of overlying country rock can be raised or lowered. The immense volumes of magma involved in batholiths can force their way upwards only when
5858-465: The crust. The chemical composition of the granite and pegmatite comprising these dike swarms is indicative of the partial melting of the metasedimentary and metavolcanic rocks of the Granite Gorge Metamorphic Suite both in-place and at greater depth, in the crust. These dikes exhibit a wide variability in the degree that they have been deformed from straight and nearly undeformed – to varying degrees of folding, stretching, and shearing. The variable degree of
5959-761: The deformation of these structures is interpreted to indicate that these dike swarms were emplaced during a period of significant mountain building and crustal thickening that was possibly associated with continental collision. Also present within the Vishnu Basement Rocks, are thin, discontinuous, and unnamed lenses of ultramafic rocks . They are found in several places within the Inner Gorge, such as at River Miles 81, 83, and 91; Salt Creek; Granite Park; and Diamond Creek. These ultramafic rocks occur typically as tectonic fault-bounded slivers, which are often associated with tectonic shear zones and exhibit coarse-grained relict cumulate textures . These rocks are interpreted to be
6060-411: The direction of the prevailing current ( longshore drift ). When the upcurrent supply of sediment is less than the amount being carried away, erosion occurs. When the upcurrent amount of sediment is greater, sand or gravel banks will tend to form as a result of deposition . These banks may slowly migrate along the coast in the direction of the longshore drift, alternately protecting and exposing parts of
6161-516: The existing structure of the country rock, and concordant intrusions that intrude parallel to existing bedding or fabric . These are further classified according to such criteria as size, evident mode of origin, or whether they are tabular in shape. An intrusive suite is a group of intrusions related in time and space. Dikes are tabular discordant intrusions, taking the form of sheets that cut across existing rock beds. They tend to resist erosion, so that they stand out as natural walls on
SECTION 60
#17327726613996262-448: The exposure may be only the tip of a larger intrusive body, the classification is meaningful for bodies which do not change much in area with depth and that have other features suggesting a distinctive origin and mode of emplacement. Batholiths are discordant intrusions with an exposed area greater than 100 square kilometers (39 sq mi). Some are of truly enormous size, and their lower contacts are very rarely exposed. For example,
6363-405: The extremely steep terrain of Nanga Parbat in the western Himalayas . Such a place has been called a " tectonic aneurysm ". Human land development, in forms including agricultural and urban development, is considered a significant factor in erosion and sediment transport , which aggravate food insecurity . In Taiwan, increases in sediment load in the northern, central, and southern regions of
6464-401: The field, there is geochemical evidence. Zircon zoning provides important evidence for determining if a single magmatic event or a series of injections were the methods of emplacement. Large felsic intrusions likely form from melting of lower crust that has been heated by an intrusion of mafic magma from the upper mantle. The different densities of felsic and mafic magma limit mixing, so that
6565-582: The flood regions result from glacial Lake Missoula , which created the channeled scablands in the Columbia Basin region of eastern Washington . Wind erosion is a major geomorphological force, especially in arid and semi-arid regions. It is also a major source of land degradation, evaporation, desertification, harmful airborne dust, and crop damage—especially after being increased far above natural rates by human activities such as deforestation , urbanization , and agriculture . Wind erosion
6666-538: The formation of calderas . Volcanic necks are feeder pipes for volcanoes that have been exposed by erosion . Surface exposures are typically cylindrical, but the intrusion often becomes elliptical or even cloverleaf -shaped at depth. Dikes often radiate from a volcanic neck, suggesting that necks tend to form at intersections of dikes where passage of magma is least obstructed. Diatremes and breccia pipes are pipe-like bodies of breccia that are formed by particular kinds of explosive eruptions . As they have reached
6767-417: The growth of protective vegetation ( rhexistasy ) are a key element of badland formation. Valley or stream erosion occurs with continued water flow along a linear feature. The erosion is both downward , deepening the valley , and headward , extending the valley into the hillside, creating head cuts and steep banks. In the earliest stage of stream erosion, the erosive activity is dominantly vertical,
6868-407: The hot material, k is the thermal diffusivity (typically close to 10 m s for most geologic materials), x is the distance from the contact, and t is the time since intrusion. This formula suggests that the magma close to the contact will be rapidly chilled while the country rock close to the contact is rapidly heated, while material further from the contact will be much slower to cool or heat. Thus
6969-411: The island can be tracked with the timeline of development for each region throughout the 20th century. The intentional removal of soil and rock by humans is a form of erosion that has been named lisasion . Mountain ranges take millions of years to erode to the degree they effectively cease to exist. Scholars Pitman and Golovchenko estimate that it takes probably more than 450 million years to erode
7070-452: The landscape. They vary in thickness from millimeter-thick films to over 300 meters (980 ft) and an individual sheet can have an area of 12,000 square kilometers (4,600 sq mi). They also vary widely in composition. Dikes form by hydraulic fracturing of the country rock by magma under pressure, and are more common in regions of crustal tension. Ring dikes and cone sheets are dikes with particular forms that are associated with
7171-409: The local slope (see above), this will change the rates of erosion in the uplifted area. Active tectonics also brings fresh, unweathered rock towards the surface, where it is exposed to the action of erosion. However, erosion can also affect tectonic processes. The removal by erosion of large amounts of rock from a particular region, and its deposition elsewhere, can result in a lightening of the load on
7272-541: The low viscosity necessary to penetrate between sedimentary beds. A laccolith is a concordant intrusion with a flat base and domed roof. Laccoliths typically form at shallow depth, less than 3 kilometers (1.9 mi), and in regions of crustal compression. Lopoliths are concordant intrusions with a saucer shape, somewhat resembling an inverted laccolith, but they can be much larger and form by different processes. Their immense size promotes very slow cooling, and this produces an unusually complete mineral segregation called
7373-517: The magma is highly silicic and buoyant, and are likely do so as diapirs in the ductile deep crust and through a variety of other mechanisms in the brittle upper crust. Igneous intrusions may form from a single magmatic event or several incremental events. Recent evidence suggests that incremental formation is more common for large intrusions. For example, the Palisades Sill was never a single body of magma 300 meters (980 ft) thick, but
7474-418: The material and move it to even lower elevations. Mass-wasting processes are always occurring continuously on all slopes; some mass-wasting processes act very slowly; others occur very suddenly, often with disastrous results. Any perceptible down-slope movement of rock or sediment is often referred to in general terms as a landslide . However, landslides can be classified in a much more detailed way that reflects
7575-407: The material has begun to slide downhill. In some cases, the slump is caused by water beneath the slope weakening it. In many cases it is simply the result of poor engineering along highways where it is a regular occurrence. Surface creep is the slow movement of soil and rock debris by gravity which is usually not perceptible except through extended observation. However, the term can also describe
7676-438: The mechanisms responsible for the movement and the velocity at which the movement occurs. One of the visible topographical manifestations of a very slow form of such activity is a scree slope. Slumping happens on steep hillsides, occurring along distinct fracture zones, often within materials like clay that, once released, may move quite rapidly downhill. They will often show a spoon-shaped isostatic depression , in which
7777-488: The meta volcanic rocks that comprise the Granite Gorge Metamorphic Suite accumulated. The remainder of the Early Paleoproterozoic granites, granitic pegmatites, aplites, and granodiorites – are parts of either younger plutons or dike swarms, that have intruded the Granite Gorge Metamorphic Suite, either contemporaneously with, or after they were metamorphosed. It was named after a natural rock structure in
7878-652: The metamorphosed submarine sedimentary rocks of the Vishnu Schist that are interpreted to have accumulated in oceanic trenches . These meta sedimentary rocks were originally composed of particles of quartz, clay , and volcanic rock fragments that have become metamorphosed into various schists. The Vishnu Schist exhibits relict graded bedding and structures indicative of turbidite deposits that accumulated in oceanic trenches and other relatively deep-marine settings. The Brahma Schist has been dated to about 1.75 billion years ago. The felsic metavolcanic rocks that comprise
7979-413: The metavolcanic and metasedimentary rocks they intrude. This and their calc-alkaline granitic composition, which is similar to plutons forming in modern ' subduction zone related' volcanic arcs, indicates that they are remnants of early volcanic arc systems associated with Early Paleoproterozoic subduction zones. Comparable volcanic arc systems, which are associated with subduction zones, are active today in
8080-484: The morphologic impact of glaciations on active orogens, by both influencing their height, and by altering the patterns of erosion during subsequent glacial periods via a link between rock uplift and valley cross-sectional shape. At extremely high flows, kolks , or vortices are formed by large volumes of rapidly rushing water. Kolks cause extreme local erosion, plucking bedrock and creating pothole-type geographical features called rock-cut basins . Examples can be seen in
8181-404: The most erosion occurs during times of flood when more and faster-moving water is available to carry a larger sediment load. In such processes, it is not the water alone that erodes: suspended abrasive particles, pebbles , and boulders can also act erosively as they traverse a surface, in a process known as traction . Bank erosion is the wearing away of the banks of a stream or river. This
8282-531: The natural rate of erosion in the region. Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes ) ecological collapse , both because of loss of the nutrient-rich upper soil layers . In some cases, this leads to desertification . Off-site effects include sedimentation of waterways and eutrophication of water bodies , as well as sediment-related damage to roads and houses. Water and wind erosion are
8383-434: The nutrient-rich upper soil layers . In some cases, the eventual result is desertification . Off-site effects include sedimentation of waterways and eutrophication of water bodies, as well as sediment-related damage to roads and houses. Water and wind erosion are the two primary causes of land degradation ; combined, they are responsible for about 84% of the global extent of degraded land , making excessive erosion one of
8484-411: The order of a few centimetres (about an inch) or less and along-channel slopes may be quite steep. This means that rills exhibit hydraulic physics very different from water flowing through the deeper, wider channels of streams and rivers. Gully erosion occurs when runoff water accumulates and rapidly flows in narrow channels during or immediately after heavy rains or melting snow, removing soil to
8585-556: The plants bind the soil together, and interweave with other roots, forming a more solid mass that is less susceptible to both water and wind erosion. The removal of vegetation increases the rate of surface erosion. The topography of the land determines the velocity at which surface runoff will flow, which in turn determines the erosivity of the runoff. Longer, steeper slopes (especially those without adequate vegetative cover) are more susceptible to very high rates of erosion during heavy rains than shorter, less steep slopes. Steeper terrain
8686-413: The relief between mountain peaks and the snow line are generally confined to altitudes less than 1500 m. The erosion caused by glaciers worldwide erodes mountains so effectively that the term glacial buzzsaw has become widely used, which describes the limiting effect of glaciers on the height of mountain ranges. As mountains grow higher, they generally allow for more glacial activity (especially in
8787-676: The remaining magma and can settle to the bottom of a large intrusive body. This forms a cumulate layer with distinctive texture and composition. Such cumulate layers may contain valuable ore deposits of chromite . The vast Bushveld Igneous Complex of South Africa includes cumulate layers of the rare rock type, chromitite, composed of 90% chromite, Volcanic rocks : Subvolcanic rocks : Plutonic rocks : Picrite basalt Peridotite Basalt Diabase (Dolerite) Gabbro Andesite Microdiorite Diorite Dacite Microgranodiorite Granodiorite Rhyolite Microgranite Granite Erosion Erosion
8888-828: The rolling of dislodged soil particles 0.5 to 1.0 mm (0.02 to 0.04 in) in diameter by wind along the soil surface. On the continental slope , erosion of the ocean floor to create channels and submarine canyons can result from the rapid downslope flow of sediment gravity flows , bodies of sediment-laden water that move rapidly downslope as turbidity currents . Where erosion by turbidity currents creates oversteepened slopes it can also trigger underwater landslides and debris flows . Turbidity currents can erode channels and canyons into substrates ranging from recently deposited unconsolidated sediments to hard crystalline bedrock. Almost all continental slopes and deep ocean basins display such channels and canyons resulting from sediment gravity flows and submarine canyons act as conduits for
8989-515: The runoff has sufficient flow energy , it will transport loosened soil particles ( sediment ) down the slope. Sheet erosion is the transport of loosened soil particles by overland flow. Rill erosion refers to the development of small, ephemeral concentrated flow paths which function as both sediment source and sediment delivery systems for erosion on hillslopes. Generally, where water erosion rates on disturbed upland areas are greatest, rills are active. Flow depths in rills are typically of
9090-538: The shoreline and cause them to fail. Annual erosion rates along a 100-kilometre (62-mile) segment of the Beaufort Sea shoreline averaged 5.6 metres (18 feet) per year from 1955 to 2002. Most river erosion happens nearer to the mouth of a river. On a river bend, the longest least sharp side has slower moving water. Here deposits build up. On the narrowest sharpest side of the bend, there is faster moving water so this side tends to erode away mostly. Rapid erosion by
9191-405: The silicic magma floats on the mafic magma. Such limited mixing as takes place results in the small inclusions of mafic rock commonly found in granites and granodiorites. An intrusion of magma loses heat to the surrounding country rock through heat conduction. Near the contact of hot material with cold material, if the hot material is initially uniform in temperature, the temperature profile across
9292-593: The soil. Lower rates of erosion can prevent the formation of soil features that take time to develop. Inceptisols develop on eroded landscapes that, if stable, would have supported the formation of more developed Alfisols . While erosion of soils is a natural process, human activities have increased by 10-40 times the rate at which erosion occurs globally. Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes ) ecological collapse , both because of loss of
9393-520: The surface they are really extrusions, but the non erupted material is an intrusion and indeed due to erosion may be difficult to distinguish from an intrusion that never reached the surface when magma/lava. The root material of a diatreme is identical to intrusive material nearby, if it exists, that never reached the then surface when formed. A stock is a non-tabular discordant intrusion whose exposure covers less than 100 square kilometers (39 sq mi). Although this seems arbitrary, particularly since
9494-451: The tectonically dismembered parts of the bases of large 1.74 and 1.71 billion years ago plutons that have intruded the Granite Gorge Metamorphic Suite. This interpretation is based upon the abundance of phlogopite and geochemistry of light rare-earth elements that imply a geochemical contribution from subducting slab material. The composition of these ultramafic rocks is consistent with their origin by simple fractional crystallization within
9595-433: The terminus or during glacier retreat . The best-developed glacial valley morphology appears to be restricted to landscapes with low rock uplift rates (less than or equal to 2mm per year) and high relief, leading to long-turnover times. Where rock uplift rates exceed 2mm per year, glacial valley morphology has generally been significantly modified in postglacial time. Interplay of glacial erosion and tectonic forcing governs
9696-409: The transfer of sediment from the continents and shallow marine environments to the deep sea. Turbidites , which are the sedimentary deposits resulting from turbidity currents, comprise some of the thickest and largest sedimentary sequences on Earth, indicating that the associated erosional processes must also have played a prominent role in Earth's history. The amount and intensity of precipitation
9797-563: The two primary causes of land degradation ; combined, they are responsible for about 84% of the global extent of degraded land, making excessive erosion one of the most significant environmental problems worldwide. Intensive agriculture , deforestation , roads , anthropogenic climate change and urban sprawl are amongst the most significant human activities in regard to their effect on stimulating erosion. However, there are many prevention and remediation practices that can curtail or limit erosion of vulnerable soils. Rainfall , and
9898-427: The valleys have a typical V-shaped cross-section and the stream gradient is relatively steep. When some base level is reached, the erosive activity switches to lateral erosion, which widens the valley floor and creates a narrow floodplain. The stream gradient becomes nearly flat, and lateral deposition of sediments becomes important as the stream meanders across the valley floor. In all stages of stream erosion, by far
9999-554: The world (e.g. western Europe ), runoff and erosion result from relatively low intensities of stratiform rainfall falling onto the previously saturated soil. In such situations, rainfall amount rather than intensity is the main factor determining the severity of soil erosion by water. According to the climate change projections, erosivity will increase significantly in Europe and soil erosion may increase by 13–22.5% by 2050 In Taiwan , where typhoon frequency increased significantly in
10100-491: The world (e.g. the mid-western US ), rainfall intensity is the primary determinant of erosivity (for a definition of erosivity check, ) with higher intensity rainfall generally resulting in more soil erosion by water. The size and velocity of rain drops is also an important factor. Larger and higher-velocity rain drops have greater kinetic energy , and thus their impact will displace soil particles by larger distances than smaller, slower-moving rain drops. In other regions of
10201-401: Was formed from multiple injections of magma. An intrusive body is described as multiple when it forms from repeated injections of magma of similar composition, and as composite when formed of repeated injections of magma of unlike composition. A composite dike can include rocks as different as granophyre and diabase . While there is often little visual evidence of multiple injections in
#398601