Misplaced Pages

TSG101

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

1KPP , 1KPQ , 1M4P , 1M4Q , 1S1Q , 2F0R , 3IV1 , 3OBQ , 3OBS , 3OBU , 3OBX , 3P9G , 3P9H , 4EJE , 4YC1 , 4ZNY

#329670

155-489: 7251 22088 ENSG00000074319 ENSMUSG00000014402 Q99816 Q61187 NM_006292 NM_021884 NM_001348088 NM_001348089 NP_006283 NP_068684 NP_001335017 NP_001335018 Tumor susceptibility gene 101 , also known as TSG101 , is a human gene that encodes for a cellular protein of the same name. The protein encoded by this gene belongs to a group of apparently inactive homologs of ubiquitin-conjugating enzymes. The gene product contains

310-535: A last universal common ancestor that lived about 3.5 billion years ago . Geologists have developed a geologic time scale that divides the history of the Earth into major divisions, starting with four eons ( Hadean , Archean , Proterozoic , and Phanerozoic ), the first three of which are collectively known as the Precambrian , which lasted approximately 4 billion years. Each eon can be divided into eras, with

465-440: A lipid bilayer , including cholesterols that sit between phospholipids to maintain their fluidity at various temperatures. Cell membranes are semipermeable , allowing small molecules such as oxygen, carbon dioxide, and water to pass through while restricting the movement of larger molecules and charged particles such as ions . Cell membranes also contain membrane proteins , including integral membrane proteins that go across

620-443: A nucleus , and prokaryotic cells, which do not. Prokaryotes are single-celled organisms such as bacteria , whereas eukaryotes can be single-celled or multicellular. In multicellular organisms , every cell in the organism's body is derived ultimately from a single cell in a fertilized egg . Every cell is enclosed within a cell membrane that separates its cytoplasm from the extracellular space . A cell membrane consists of

775-508: A number of shapes , ranging from spheres to rods and spirals . Bacteria were among the first life forms to appear on Earth, and are present in most of its habitats . Bacteria inhabit soil, water, acidic hot springs , radioactive waste , and the deep biosphere of the Earth's crust . Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised, and only about 27 percent of

930-588: A promoter sequence. The promoter is recognized and bound by transcription factors that recruit and help RNA polymerase bind to the region to initiate transcription. The recognition typically occurs as a consensus sequence like the TATA box . A gene can have more than one promoter, resulting in messenger RNAs ( mRNA ) that differ in how far they extend in the 5' end. Highly transcribed genes have "strong" promoter sequences that form strong associations with transcription factors, thereby initiating transcription at

1085-483: A " start codon ", and three " stop codons " indicate the beginning and end of the protein coding region . There are 64 possible codons (four possible nucleotides at each of three positions, hence 4  possible codons) and only 20 standard amino acids; hence the code is redundant and multiple codons can specify the same amino acid. The correspondence between codons and amino acids is nearly universal among all known living organisms. Biology Biology

1240-474: A cell's size, shape, membrane potential , metabolic activity , and responsiveness to signals, which are largely due to highly controlled modifications in gene expression and epigenetics . With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence itself. Thus, different cells can have very different physical characteristics despite having the same genome . Morphogenesis, or

1395-408: A chemical (e.g., nitrous acid , benzopyrene ) or radiation (e.g., x-ray , gamma ray , ultraviolet radiation , particles emitted by unstable isotopes). Mutations can lead to phenotypic effects such as loss-of-function, gain-of-function , and conditional mutations. Some mutations are beneficial, as they are a source of genetic variation for evolution. Others are harmful if they were to result in

1550-570: A coiled-coil domain that interacts with stathmin , a cytosolic phosphoprotein implicated in tumorigenesis. The protein may play a role in cell growth and differentiation and act as a negative growth regulator. In vitro steady-state expression of this tumor susceptibility gene appears to be important for maintenance of genomic stability and cell cycle regulation. Mutations and alternative splicing in this gene occur in high frequency in breast cancer and suggest that defects occur during breast cancer tumorigenesis and/or progression. The main role of TSG101

1705-445: A continuous messenger RNA , referred to as a polycistronic mRNA . The term cistron in this context is equivalent to gene. The transcription of an operon's mRNA is often controlled by a repressor that can occur in an active or inactive state depending on the presence of specific metabolites. When active, the repressor binds to a DNA sequence at the beginning of the operon, called the operator region , and represses transcription of

SECTION 10

#1732793731330

1860-498: A double-helix run in opposite directions. Nucleic acid synthesis, including DNA replication and transcription occurs in the 5'→3' direction, because new nucleotides are added via a dehydration reaction that uses the exposed 3' hydroxyl as a nucleophile . The expression of genes encoded in DNA begins by transcribing the gene into RNA , a second type of nucleic acid that is very similar to DNA, but whose monomers contain

2015-1233: A few archaea have very different shapes, such as the flat and square cells of Haloquadratum walsbyi . Despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved in transcription and translation . Other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes , including archaeols . Archaea use more energy sources than eukaryotes: these range from organic compounds , such as sugars, to ammonia , metal ions or even hydrogen gas . Salt-tolerant archaea (the Haloarchaea ) use sunlight as an energy source, and other species of archaea fix carbon , but unlike plants and cyanobacteria , no known species of archaea does both. Archaea reproduce asexually by binary fission , fragmentation , or budding ; unlike bacteria, no known species of Archaea form endospores . The first observed archaea were extremophiles , living in extreme environments, such as hot springs and salt lakes with no other organisms. Improved molecular detection tools led to

2170-488: A few genes and are transferable between individuals. For example, the genes for antibiotic resistance are usually encoded on bacterial plasmids and can be passed between individual cells, even those of different species, via horizontal gene transfer . Whereas the chromosomes of prokaryotes are relatively gene-dense, those of eukaryotes often contain regions of DNA that serve no obvious function. Simple single-celled eukaryotes have relatively small amounts of such DNA, whereas

2325-403: A final electron acceptor, which is usually the oxidized form of NADP , which is reduced to NADPH, a process that takes place in a protein complex called photosystem I (PSI). The transport of electrons is coupled to the movement of protons (or hydrogen) from the stroma to the thylakoid membrane, which forms a pH gradient across the membrane as hydrogen becomes more concentrated in the lumen than in

2480-434: A gene - surprisingly, there is no definition that is entirely satisfactory. A gene is a DNA sequence that codes for a diffusible product. This product may be protein (as is the case in the majority of genes) or may be RNA (as is the case of genes that code for tRNA and rRNA). The crucial feature is that the product diffuses away from its site of synthesis to act elsewhere. The important parts of such definitions are: (1) that

2635-573: A gene corresponds to a transcription unit; (2) that genes produce both mRNA and noncoding RNAs; and (3) regulatory sequences control gene expression but are not part of the gene itself. However, there's one other important part of the definition and it is emphasized in Kostas Kampourakis' book Making Sense of Genes . Therefore in this book I will consider genes as DNA sequences encoding information for functional products, be it proteins or RNA molecules. With 'encoding information', I mean that

2790-410: A gene may be split across chromosomes but those transcripts are concatenated back together into a functional sequence by trans-splicing . It is also possible for overlapping genes to share some of their DNA sequence, either on opposite strands or the same strand (in a different reading frame, or even the same reading frame). In all organisms, two steps are required to read the information encoded in

2945-404: A gene's DNA and produce the protein it specifies. First, the gene's DNA is transcribed to messenger RNA ( mRNA ). Second, that mRNA is translated to protein. RNA-coding genes must still go through the first step, but are not translated into protein. The process of producing a biologically functional molecule of either RNA or protein is called gene expression , and the resulting molecule

3100-578: A gene: that of bacteriophage MS2 coat protein. The subsequent development of chain-termination DNA sequencing in 1977 by Frederick Sanger improved the efficiency of sequencing and turned it into a routine laboratory tool. An automated version of the Sanger method was used in early phases of the Human Genome Project . The theories developed in the early 20th century to integrate Mendelian genetics with Darwinian evolution are called

3255-439: A gene; however, members of a population may have different alleles at the locus, each with a slightly different gene sequence. The majority of eukaryotic genes are stored on a set of large, linear chromosomes. The chromosomes are packed within the nucleus in complex with storage proteins called histones to form a unit called a nucleosome . DNA packaged and condensed in this way is called chromatin . The manner in which DNA

SECTION 20

#1732793731330

3410-448: A high rate. Others genes have "weak" promoters that form weak associations with transcription factors and initiate transcription less frequently. Eukaryotic promoter regions are much more complex and difficult to identify than prokaryotic promoters. Additionally, genes can have regulatory regions many kilobases upstream or downstream of the gene that alter expression. These act by binding to transcription factors which then cause

3565-720: A loss of function of genes needed for survival. Gene expression is the molecular process by which a genotype encoded in DNA gives rise to an observable phenotype in the proteins of an organism's body. This process is summarized by the central dogma of molecular biology , which was formulated by Francis Crick in 1958. According to the Central Dogma, genetic information flows from DNA to RNA to protein. There are two gene expression processes: transcription (DNA to RNA) and translation (RNA to protein). The regulation of gene expression by environmental factors and during different stages of development can occur at each step of

3720-417: A more successful evolutionary theory based on natural selection ; similar reasoning and evidence led Alfred Russel Wallace to independently reach the same conclusions. The basis for modern genetics began with the work of Gregor Mendel in 1865. This outlined the principles of biological inheritance. However, the significance of his work was not realized until the early 20th century when evolution became

3875-457: A new cycle. In contrast to mitosis, meiosis results in four haploid daughter cells by undergoing one round of DNA replication followed by two divisions. Homologous chromosomes are separated in the first division ( meiosis I ), and sister chromatids are separated in the second division ( meiosis II ). Both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. Both are believed to be present in

4030-572: A new expanded definition that includes noncoding genes. However, some modern writers still do not acknowledge noncoding genes although this so-called "new" definition has been recognised for more than half a century. Although some definitions can be more broadly applicable than others, the fundamental complexity of biology means that no definition of a gene can capture all aspects perfectly. Not all genomes are DNA (e.g. RNA viruses ), bacterial operons are multiple protein-coding regions transcribed into single large mRNAs, alternative splicing enables

4185-400: A process known as RNA splicing . Finally, the ends of gene transcripts are defined by cleavage and polyadenylation (CPA) sites , where newly produced pre-mRNA gets cleaved and a string of ~200 adenosine monophosphates is added at the 3' end. The poly(A) tail protects mature mRNA from degradation and has other functions, affecting translation, localization, and transport of the transcript from

4340-409: A process known as allopatric speciation . A phylogeny is an evolutionary history of a specific group of organisms or their genes. It can be represented using a phylogenetic tree , a diagram showing lines of descent among organisms or their genes. Each line drawn on the time axis of a tree represents a lineage of descendants of a particular species or population. When a lineage divides into two, it

4495-419: A protein-coding gene consists of many elements of which the actual protein coding sequence is often only a small part. These include introns and untranslated regions of the mature mRNA. Noncoding genes can also contain introns that are removed during processing to produce the mature functional RNA. All genes are associated with regulatory sequences that are required for their expression. First, genes require

4650-408: A region of deoxyribonucleic acid (DNA) that carries genetic information that controls form or function of an organism. DNA is composed of two polynucleotide chains that coil around each other to form a double helix . It is found as linear chromosomes in eukaryotes , and circular chromosomes in prokaryotes . The set of chromosomes in a cell is collectively known as its genome . In eukaryotes, DNA

4805-541: A role in the synthesis and packaging of proteins, respectively. Biomolecules such as proteins can be engulfed by lysosomes , another specialized organelle. Plant cells have additional organelles that distinguish them from animal cells such as a cell wall that provides support for the plant cell, chloroplasts that harvest sunlight energy to produce sugar, and vacuoles that provide storage and structural support as well as being involved in reproduction and breakdown of plant seeds. Eukaryotic cells also have cytoskeleton that

TSG101 - Misplaced Pages Continue

4960-436: A separate clade as some protists may be more closely related to plants, fungi, or animals than they are to other protists. Like groupings such as algae , invertebrates , or protozoans , the protist grouping is not a formal taxonomic group but is used for convenience. Most protists are unicellular; these are called microbial eukaryotes. Plants are mainly multicellular organisms , predominantly photosynthetic eukaryotes of

5115-423: A single carbon atom can form four single covalent bonds such as in methane , two double covalent bonds such as in carbon dioxide (CO 2 ), or a triple covalent bond such as in carbon monoxide (CO). Moreover, carbon can form very long chains of interconnecting carbon–carbon bonds such as octane or ring-like structures such as glucose . The simplest form of an organic molecule is the hydrocarbon , which

5270-412: A single genomic region to encode multiple district products and trans-splicing concatenates mRNAs from shorter coding sequence across the genome. Since molecular definitions exclude elements such as introns, promotors, and other regulatory regions , these are instead thought of as "associated" with the gene and affect its function. An even broader operational definition is sometimes used to encompass

5425-446: A specific enzyme. Enzymes are crucial to metabolism because they allow organisms to drive desirable reactions that require energy that will not occur by themselves, by coupling them to spontaneous reactions that release energy. Enzymes act as catalysts —they allow a reaction to proceed more rapidly without being consumed by it—by reducing the amount of activation energy needed to convert reactants into products . Enzymes also allow

5580-475: A strict definition of the word "gene" with which nearly every expert can agree. First, in order for a nucleotide sequence to be considered a true gene, an open reading frame (ORF) must be present. The ORF can be thought of as the "gene itself"; it begins with a starting mark common for every gene and ends with one of three possible finish line signals. One of the key enzymes in this process, the RNA polymerase, zips along

5735-409: A true gene, by this definition, one has to prove that the transcript has a biological function. Early speculations on the size of a typical gene were based on high-resolution genetic mapping and on the size of proteins and RNA molecules. A length of 1500 base pairs seemed reasonable at the time (1965). This was based on the idea that the gene was the DNA that was directly responsible for production of

5890-399: A unified theory as the modern synthesis reconciled Darwinian evolution with classical genetics . In the 1940s and early 1950s, a series of experiments by Alfred Hershey and Martha Chase pointed to DNA as the component of chromosomes that held the trait-carrying units that had become known as genes . A focus on new kinds of model organisms such as viruses and bacteria, along with

6045-421: A varied mix of traits, and reproduction is able to increase any population, Darwin argued that in the natural world, it was nature that played the role of humans in selecting for specific traits. Darwin inferred that individuals who possessed heritable traits better adapted to their environments are more likely to survive and produce more offspring than other individuals. He further inferred that this would lead to

6200-492: A water molecule again. In pure water , the number of hydrogen ions balances (or equals) the number of hydroxyl ions, resulting in a pH that is neutral. Organic compounds are molecules that contain carbon bonded to another element such as hydrogen. With the exception of water, nearly all the molecules that make up each organism contain carbon. Carbon can form covalent bonds with up to four other atoms, enabling it to form diverse, large, and complex molecules. For example,

6355-695: Is a protein domain . Vps proteins are components of the ESCRTs (endosomal sorting complexes required for transport) which are required for protein sorting at the early endosome. More specifically, vps23 is a component of ESCRT-I. The ESCRT complexes form the machinery driving protein sorting from endosomes to lysosomes . ESCRT complexes are central to receptor down-regulation, lysosome biogenesis and budding of HIV. Yeast ESCRT-I consists of three protein subunits, VPS23, VPS28, and VPS37. In humans, ESCRT-I comprises TSG101, VPS28, and one of four potential human VPS37 homologues . Gene In biology ,

TSG101 - Misplaced Pages Continue

6510-444: Is a central feature of sexual reproduction in eukaryotes, and the most fundamental function of meiosis appears to be conservation of the integrity of the genome that is passed on to progeny by parents. Two aspects of sexual reproduction , meiotic recombination and outcrossing , are likely maintained respectively by the adaptive advantages of recombinational repair of genomic DNA damage and genetic complementation which masks

6665-641: Is a large family of organic compounds that are composed of hydrogen atoms bonded to a chain of carbon atoms. A hydrocarbon backbone can be substituted by other elements such as oxygen (O), hydrogen (H), phosphorus (P), and sulfur (S), which can change the chemical behavior of that compound. Groups of atoms that contain these elements (O-, H-, P-, and S-) and are bonded to a central carbon atom or skeleton are called functional groups . There are six prominent functional groups that can be found in organisms: amino group , carboxyl group , carbonyl group , hydroxyl group , phosphate group , and sulfhydryl group . In 1953,

6820-480: Is a small polar molecule with a bent shape formed by the polar covalent bonds of two hydrogen (H) atoms to one oxygen (O) atom (H 2 O). Because the O–H bonds are polar, the oxygen atom has a slight negative charge and the two hydrogen atoms have a slight positive charge. This polar property of water allows it to attract other water molecules via hydrogen bonds, which makes water cohesive . Surface tension results from

6975-918: Is a term of convenience as not all algae are closely related. Algae comprise several distinct clades such as glaucophytes , which are microscopic freshwater algae that may have resembled in form to the early unicellular ancestor of Plantae. Unlike glaucophytes, the other algal clades such as red and green algae are multicellular. Green algae comprise three major clades: chlorophytes , coleochaetophytes , and stoneworts . Fungi are eukaryotes that digest foods outside their bodies, secreting digestive enzymes that break down large food molecules before absorbing them through their cell membranes. Many fungi are also saprobes , feeding on dead organic matter, making them important decomposers in ecological systems. Animals are multicellular eukaryotes. With few exceptions, animals consume organic material , breathe oxygen , are able to move , can reproduce sexually , and grow from

7130-449: Is also important to life as it allows organisms to move , grow, and reproduce . Finally, all organisms are able to regulate their own internal environments . Biologists are able to study life at multiple levels of organization , from the molecular biology of a cell to the anatomy and physiology of plants and animals, and evolution of populations. Hence, there are multiple subdisciplines within biology , each defined by

7285-456: Is called a gene product . The nucleotide sequence of a gene's DNA specifies the amino acid sequence of a protein through the genetic code . Sets of three nucleotides, known as codons , each correspond to a specific amino acid. The principle that three sequential bases of DNA code for each amino acid was demonstrated in 1961 using frameshift mutations in the rIIB gene of bacteriophage T4 (see Crick, Brenner et al. experiment ). Additionally,

7440-403: Is catalyzed by lactate dehydrogenase in a reversible reaction. Lactate can also be used as an indirect precursor for liver glycogen. During recovery, when oxygen becomes available, NAD attaches to hydrogen from lactate to form ATP. In yeast, the waste products are ethanol and carbon dioxide. This type of fermentation is known as alcoholic or ethanol fermentation . The ATP generated in this process

7595-441: Is made by substrate-level phosphorylation , which does not require oxygen. Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organism's metabolic activities via cellular respiration. This chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water. In most cases, oxygen

7750-535: Is made up of microtubules , intermediate filaments , and microfilaments , all of which provide support for the cell and are involved in the movement of the cell and its organelles. In terms of their structural composition, the microtubules are made up of tubulin (e.g., α-tubulin and β-tubulin ) whereas intermediate filaments are made up of fibrous proteins. Microfilaments are made up of actin molecules that interact with other strands of proteins. All cells require energy to sustain cellular processes. Metabolism

7905-526: Is mainly in the cell nucleus . In prokaryotes, the DNA is held within the nucleoid . The genetic information is held within genes, and the complete assemblage in an organism is called its genotype . DNA replication is a semiconservative process whereby each strand serves as a template for a new strand of DNA. Mutations are heritable changes in DNA. They can arise spontaneously as a result of replication errors that were not corrected by proofreading or can be induced by an environmental mutagen such as

SECTION 50

#1732793731330

8060-400: Is nearly the same for all known organisms. The total complement of genes in an organism or cell is known as its genome , which may be stored on one or more chromosomes . A chromosome consists of a single, very long DNA helix on which thousands of genes are encoded. The region of the chromosome at which a particular gene is located is called its locus . Each locus contains one allele of

8215-399: Is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction , it clearly does not resemble one when it occurs in a cell because of the slow, controlled release of energy from the series of reactions. Sugar in

8370-407: Is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting. Growth of a new cell wall begins to separate the bacterium (triggered by FtsZ polymerization and "Z-ring" formation). The new cell wall ( septum ) fully develops, resulting in the complete split of the bacterium. The new daughter cells have tightly coiled DNA rods, ribosomes , and plasmids . Meiosis

8525-399: Is released as a waste product. Most plants, algae , and cyanobacteria perform photosynthesis, which is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the energy necessary for life on Earth. Photosynthesis has four stages: Light absorption , electron transport, ATP synthesis, and carbon fixation . Light absorption is

8680-412: Is represented as a fork or split on the phylogenetic tree. Phylogenetic trees are the basis for comparing and grouping different species. Different species that share a feature inherited from a common ancestor are described as having homologous features (or synapomorphy ). Phylogeny provides the basis of biological classification. This classification system is rank-based, with the highest rank being

8835-403: Is still part of the definition of a gene in most textbooks. For example, The primary function of the genome is to produce RNA molecules. Selected portions of the DNA nucleotide sequence are copied into a corresponding RNA nucleotide sequence, which either encodes a protein (if it is an mRNA) or forms a 'structural' RNA, such as a transfer RNA (tRNA) or ribosomal RNA (rRNA) molecule. Each region of

8990-399: Is stored on the histones, as well as chemical modifications of the histone itself, regulate whether a particular region of DNA is accessible for gene expression . In addition to genes, eukaryotic chromosomes contain sequences involved in ensuring that the DNA is copied without degradation of end regions and sorted into daughter cells during cell division: replication origins , telomeres , and

9145-468: Is the process by which genes and traits are passed on from parents to offspring. It has several principles. The first is that genetic characteristics, alleles , are discrete and have alternate forms (e.g., purple vs. white or tall vs. dwarf), each inherited from one of two parents. Based on the law of dominance and uniformity , which states that some alleles are dominant while others are recessive ; an organism with at least one dominant allele will display

9300-444: Is the scientific study of life . It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of at least one cell that processes hereditary information encoded in genes , which can be transmitted to future generations. Another major theme is evolution , which explains the unity and diversity of life. Energy processing

9455-485: Is the set of chemical reactions in an organism. The three main purposes of metabolism are: the conversion of food to energy to run cellular processes; the conversion of food/fuel to monomer building blocks; and the elimination of metabolic wastes . These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. Metabolic reactions may be categorized as catabolic —the breaking down of compounds (for example,

SECTION 60

#1732793731330

9610-410: Is the study of chemical processes within and relating to living organisms . Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions. Life arose from the Earth's first ocean, which formed some 3.8 billion years ago. Since then, water continues to be

9765-681: Is to participate in ESCRT pathway. This pathway facilitates reverse topology budding and formation of multivesicular bodies (MVB) which delivers cargo destined for degradation to the lysosomes. TSG101 recognises short linear motif  : P(T/S)AP via the UEV protein domain of the VPS23/TSG101 subunit. The assembly of the ESCRT-I complex is directed by the C-terminal steadiness box (SB) of VPS23,

9920-493: Is to store, transmit, and express hereditary information. Cell theory states that cells are the fundamental units of life, that all living things are composed of one or more cells, and that all cells arise from preexisting cells through cell division . Most cells are very small, with diameters ranging from 1 to 100  micrometers and are therefore only visible under a light or electron microscope . There are generally two types of cells: eukaryotic cells, which contain

10075-644: The Cambrian explosion . During the Permian period, synapsids , including the ancestors of mammals , dominated the land, but most of this group became extinct in the Permian–Triassic extinction event 252 million years ago. During the recovery from this catastrophe, archosaurs became the most abundant land vertebrates; one archosaur group, the dinosaurs, dominated the Jurassic and Cretaceous periods. After

10230-495: The Cretaceous–Paleogene extinction event 66 million years ago killed off the non-avian dinosaurs, mammals increased rapidly in size and diversity . Such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. Bacteria are a type of cell that constitute a large domain of prokaryotic microorganisms . Typically a few micrometers in length, bacteria have

10385-535: The Miller–Urey experiment showed that organic compounds could be synthesized abiotically within a closed system mimicking the conditions of early Earth , thus suggesting that complex organic molecules could have arisen spontaneously in early Earth (see abiogenesis ). Macromolecules are large molecules made up of smaller subunits or monomers . Monomers include sugars, amino acids, and nucleotides. Carbohydrates include monomers and polymers of sugars. Lipids are

10540-492: The Precambrian about 1.5 billion years ago and can be classified into eight major clades : alveolates , excavates , stramenopiles , plants, rhizarians , amoebozoans , fungi , and animals. Five of these clades are collectively known as protists , which are mostly microscopic eukaryotic organisms that are not plants, fungi, or animals. While it is likely that protists share a common ancestor (the last eukaryotic common ancestor ), protists by themselves do not constitute

10695-727: The activator is the transcription factor that stimulates transcription when it binds to the sequence near or at the promoter. Negative regulation occurs when another transcription factor called a repressor binds to a DNA sequence called an operator , which is part of an operon, to prevent transcription. Repressors can be inhibited by compounds called inducers (e.g., allolactose ), thereby allowing transcription to occur. Specific genes that can be activated by inducers are called inducible genes , in contrast to constitutive genes that are almost constantly active. In contrast to both, structural genes encode proteins that are not involved in gene regulation. In addition to regulatory events involving

10850-511: The aging process. The centromere is required for binding spindle fibres to separate sister chromatids into daughter cells during cell division . Prokaryotes ( bacteria and archaea ) typically store their genomes on a single, large, circular chromosome . Similarly, some eukaryotic organelles contain a remnant circular chromosome with a small number of genes. Prokaryotes sometimes supplement their chromosome with additional small circles of DNA called plasmids , which usually encode only

11005-592: The bacterial phyla have species that can be grown in the laboratory. Archaea constitute the other domain of prokaryotic cells and were initially classified as bacteria, receiving the name archaebacteria (in the Archaebacteria kingdom ), a term that has fallen out of use. Archaeal cells have unique properties separating them from the other two domains , Bacteria and Eukaryota . Archaea are further divided into multiple recognized phyla . Archaea and bacteria are generally similar in size and shape, although

11160-404: The cell . In 1838, Schleiden and Schwann began promoting the now universal ideas that (1) the basic unit of organisms is the cell and (2) that individual cells have all the characteristics of life, although they opposed the idea that (3) all cells come from the division of other cells, continuing to support spontaneous generation . However, Robert Remak and Rudolf Virchow were able to reify

11315-403: The cell membrane of another cell or located deep inside a cell. There are generally four types of chemical signals: autocrine , paracrine , juxtacrine , and hormones . In autocrine signaling, the ligand affects the same cell that releases it. Tumor cells, for example, can reproduce uncontrollably because they release signals that initiate their own self-division. In paracrine signaling,

11470-401: The central dogma of molecular biology , which states that proteins are translated from RNA , which is transcribed from DNA . This dogma has since been shown to have exceptions, such as reverse transcription in retroviruses . The modern study of genetics at the level of DNA is known as molecular genetics . In 1972, Walter Fiers and his team were the first to determine the sequence of

11625-419: The centromere . Replication origins are the sequence regions where DNA replication is initiated to make two copies of the chromosome. Telomeres are long stretches of repetitive sequences that cap the ends of the linear chromosomes and prevent degradation of coding and regulatory regions during DNA replication . The length of the telomeres decreases each time the genome is replicated and has been implicated in

11780-416: The circulatory systems of animals or vascular systems of plants to reach their target cells. Once a ligand binds with a receptor, it can influence the behavior of another cell, depending on the type of receptor. For instance, neurotransmitters that bind with an inotropic receptor can alter the excitability of a target cell. Other types of receptors include protein kinase receptors (e.g., receptor for

11935-528: The domain followed by kingdom , phylum , class , order , family , genus , and species . All organisms can be classified as belonging to one of three domains : Archaea (originally Archaebacteria), bacteria (originally eubacteria), or eukarya (includes the fungi, plant, and animal kingdoms). The history of life on Earth traces how organisms have evolved from the earliest emergence of life to present day. Earth formed about 4.5 billion years ago and all life on Earth, both living and extinct, descended from

12090-481: The duplication of its DNA and some of its organelles , and the subsequent partitioning of its cytoplasm into two daughter cells in a process called cell division . In eukaryotes (i.e., animal, plant, fungal , and protist cells), there are two distinct types of cell division: mitosis and meiosis . Mitosis is part of the cell cycle, in which replicated chromosomes are separated into two new nuclei. Cell division gives rise to genetically identical cells in which

12245-403: The kingdom Plantae, which would exclude fungi and some algae . Plant cells were derived by endosymbiosis of a cyanobacterium into an early eukaryote about one billion years ago, which gave rise to chloroplasts. The first several clades that emerged following primary endosymbiosis were aquatic and most of the aquatic photosynthetic eukaryotic organisms are collectively described as algae, which

12400-423: The microscope . It was then that scholars discovered spermatozoa , bacteria, infusoria and the diversity of microscopic life. Investigations by Jan Swammerdam led to new interest in entomology and helped to develop techniques of microscopic dissection and staining . Advances in microscopy had a profound impact on biological thinking. In the early 19th century, biologists pointed to the central importance of

12555-412: The mitochondrial cristae . Oxidative phosphorylation comprises the electron transport chain, which is a series of four protein complexes that transfer electrons from one complex to another, thereby releasing energy from NADH and FADH 2 that is coupled to the pumping of protons (hydrogen ions) across the inner mitochondrial membrane ( chemiosmosis ), which generates a proton motive force . Energy from

12710-554: The modern synthesis , a term introduced by Julian Huxley . This view of evolution was emphasized by George C. Williams ' gene-centric view of evolution . He proposed that the Mendelian gene is a unit of natural selection with the definition: "that which segregates and recombines with appreciable frequency." Related ideas emphasizing the centrality of Mendelian genes and the importance of natural selection in evolution were popularized by Richard Dawkins . The development of

12865-475: The neutral theory of evolution in the late 1960s led to the recognition that random genetic drift is a major player in evolution and that neutral theory should be the null hypothesis of molecular evolution. This led to the construction of phylogenetic trees and the development of the molecular clock , which is the basis of all dating techniques using DNA sequences. These techniques are not confined to molecular gene sequences but can be used on all DNA segments in

13020-750: The operon ; when the repressor is inactive transcription of the operon can occur (see e.g. Lac operon ). The products of operon genes typically have related functions and are involved in the same regulatory network . Though many genes have simple structures, as with much of biology, others can be quite complex or represent unusual edge-cases. Eukaryotic genes often have introns that are much larger than their exons, and those introns can even have other genes nested inside them . Associated enhancers may be many kilobase away, or even on entirely different chromosomes operating via physical contact between two chromosomes. A single gene can encode multiple different functional products by alternative splicing , and conversely

13175-546: The phenotype of that dominant allele. During gamete formation, the alleles for each gene segregate, so that each gamete carries only one allele for each gene. Heterozygotic individuals produce gametes with an equal frequency of two alleles. Finally, the law of independent assortment , states that genes of different traits can segregate independently during the formation of gametes, i.e., genes are unlinked. An exception to this rule would include traits that are sex-linked . Test crosses can be performed to experimentally determine

13330-508: The phenotype of the individual. Most biological traits occur under the combined influence of polygenes (a set of different genes) and gene–environment interactions . Some genetic traits are instantly visible, such as eye color or the number of limbs, others are not, such as blood type , the risk for specific diseases, or the thousands of basic biochemical processes that constitute life . A gene can acquire mutations in its sequence , leading to different variants, known as alleles , in

13485-449: The population . These alleles encode slightly different versions of a gene, which may cause different phenotypical traits. Genes evolve due to natural selection or survival of the fittest and genetic drift of the alleles. There are many different ways to use the term "gene" based on different aspects of their inheritance, selection, biological function, or molecular structure but most of these definitions fall into two categories,

13640-497: The regulation of the rate of a metabolic reaction, for example in response to changes in the cell's environment or to signals from other cells. Cellular respiration is a set of metabolic reactions and processes that take place in cells to convert chemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products. The reactions involved in respiration are catabolic reactions , which break large molecules into smaller ones, releasing energy. Respiration

13795-404: The DNA helix that produces a functional RNA molecule constitutes a gene. We define a gene as a DNA sequence that is transcribed. This definition includes genes that do not encode proteins (not all transcripts are messenger RNA). The definition normally excludes regions of the genome that control transcription but are not themselves transcribed. We will encounter some exceptions to our definition of

13950-450: The DNA sequence is used as a template for the production of an RNA molecule or a protein that performs some function. The emphasis on function is essential because there are stretches of DNA that produce non-functional transcripts and they do not qualify as genes. These include obvious examples such as transcribed pseudogenes as well as less obvious examples such as junk RNA produced as noise due to transcription errors. In order to qualify as

14105-766: The DNA to loop so that the regulatory sequence (and bound transcription factor) become close to the RNA polymerase binding site. For example, enhancers increase transcription by binding an activator protein which then helps to recruit the RNA polymerase to the promoter; conversely silencers bind repressor proteins and make the DNA less available for RNA polymerase. The mature messenger RNA produced from protein-coding genes contains untranslated regions at both ends which contain binding sites for ribosomes , RNA-binding proteins , miRNA , as well as terminator , and start and stop codons . In addition, most eukaryotic open reading frames contain untranslated introns , which are removed and exons , which are connected together in

14260-514: The Mendelian gene or the molecular gene. The Mendelian gene is the classical gene of genetics and it refers to any heritable trait. This is the gene described in The Selfish Gene . More thorough discussions of this version of a gene can be found in the articles Genetics and Gene-centered view of evolution . The molecular gene definition is more commonly used across biochemistry, molecular biology, and most of genetics —

14415-549: The N-terminal half of VPS28, and the C-terminal half of VPS37. The structure is primarily composed of three long, parallel helical hairpins, each corresponding to a different subunit. The additional domains and motifs extending beyond the core serve as gripping tools for ESCRT-I critical functions. TSG101 plays an important role in the pathogenesis of HIV and other viruses. In uninfected cells, TSG101 functions in

14570-481: The Phanerozoic eon that began 539 million years ago being subdivided into Paleozoic , Mesozoic , and Cenozoic eras. These three eras together comprise eleven periods ( Cambrian , Ordovician , Silurian , Devonian , Carboniferous , Permian , Triassic , Jurassic , Cretaceous , Tertiary , and Quaternary ). The similarities among all known present-day species indicate that they have diverged through

14725-696: The accumulation of favorable traits over successive generations, thereby increasing the match between the organisms and their environment. A species is a group of organisms that mate with one another and speciation is the process by which one lineage splits into two lineages as a result of having evolved independently from each other. For speciation to occur, there has to be reproductive isolation . Reproductive isolation can result from incompatibilities between genes as described by Bateson–Dobzhansky–Muller model . Reproductive isolation also tends to increase with genetic divergence . Speciation can occur when there are physical barriers that divide an ancestral species,

14880-433: The adenines of one strand are paired with the thymines of the other strand, and so on. Due to the chemical composition of the pentose residues of the bases, DNA strands have directionality. One end of a DNA polymer contains an exposed hydroxyl group on the deoxyribose ; this is known as the 3' end of the molecule. The other end contains an exposed phosphate group; this is the 5' end . The two strands of

15035-518: The biogenesis of the multivesicular body (MVB), which suggests that HIV may bind TSG101 in order to gain access to the downstream machinery that catalyzes MVB vesicle budding. TSG101 has been shown to interact with: In humans, the orthologue of vps23 which has a component of ESCRT-1 is called Tsg101. Mutations in Tsg-101 have been linked to cervical, breast, prostate and gastrointestinal cancers. In molecular biology, vps23 (vacuolar protein sorting)

15190-589: The body plan and the number, identity, and pattern of body parts. Among the most important toolkit genes are the Hox genes . Hox genes determine where repeating parts, such as the many vertebrae of snakes, will grow in a developing embryo or larva. Evolution is a central organizing concept in biology. It is the change in heritable characteristics of populations over successive generations . In artificial selection , animals were selectively bred for specific traits. Given that traits are inherited, populations contain

15345-450: The breaking down of glucose to pyruvate by cellular respiration ); or anabolic —the building up ( synthesis ) of compounds (such as proteins, carbohydrates, lipids, and nucleic acids). Usually, catabolism releases energy, and anabolism consumes energy. The chemical reactions of metabolism are organized into metabolic pathways , in which one chemical is transformed through a series of steps into another chemical, each step being facilitated by

15500-410: The cohesive force due to the attraction between molecules at the surface of the liquid. Water is also adhesive as it is able to adhere to the surface of any polar or charged non-water molecules. Water is denser as a liquid than it is as a solid (or ice). This unique property of water allows ice to float above liquid water such as ponds, lakes, and oceans, thereby insulating the liquid below from

15655-433: The cold air above. Water has the capacity to absorb energy, giving it a higher specific heat capacity than other solvents such as ethanol . Thus, a large amount of energy is needed to break the hydrogen bonds between water molecules to convert liquid water into water vapor . As a molecule, water is not completely stable as each water molecule continuously dissociates into hydrogen and hydroxyl ions before reforming into

15810-402: The complexity of these diverse phenomena, where a gene is defined as a union of genomic sequences encoding a coherent set of potentially overlapping functional products. This definition categorizes genes by their functional products (proteins or RNA) rather than their specific DNA loci, with regulatory elements classified as gene-associated regions. The existence of discrete inheritable units

15965-501: The cytoplasm of a cell, there are many biomolecules such as proteins and nucleic acids . In addition to biomolecules, eukaryotic cells have specialized structures called organelles that have their own lipid bilayers or are spatially units. These organelles include the cell nucleus , which contains most of the cell's DNA, or mitochondria , which generate adenosine triphosphate (ATP) to power cellular processes. Other organelles such as endoplasmic reticulum and Golgi apparatus play

16120-455: The cytoplasm, where it is converted to waste products that may be removed from the cell. This serves the purpose of oxidizing the electron carriers so that they can perform glycolysis again and removing the excess pyruvate. Fermentation oxidizes NADH to NAD so it can be re-used in glycolysis. In the absence of oxygen, fermentation prevents the buildup of NADH in the cytoplasm and provides NAD for glycolysis. This waste product varies depending on

16275-677: The development of biological knowledge. He explored biological causation and the diversity of life. His successor, Theophrastus , began the scientific study of plants. Scholars of the medieval Islamic world who wrote on biology included al-Jahiz (781–869), Al-Dīnawarī (828–896), who wrote on botany, and Rhazes (865–925) who wrote on anatomy and physiology . Medicine was especially well studied by Islamic scholars working in Greek philosopher traditions, while natural history drew heavily on Aristotelian thought. Biology began to quickly develop with Anton van Leeuwenhoek 's dramatic improvement of

16430-418: The development of body form, is the result of spatial differences in gene expression. A small fraction of the genes in an organism's genome called the developmental-genetic toolkit control the development of that organism. These toolkit genes are highly conserved among phyla , meaning that they are ancient and very similar in widely separated groups of animals. Differences in deployment of toolkit genes affect

16585-440: The developmental fate of a cell, which becomes more restrictive during development. Differentiation is the process by which specialized cells arise from less specialized cells such as stem cells . Stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. Cellular differentiation dramatically changes

16740-411: The discovery of archaea in almost every habitat , including soil, oceans, and marshlands . Archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. Archaea are a major part of Earth's life . They are part of the microbiota of all organisms. In the human microbiome , they are important in the gut , mouth, and on

16895-420: The discovery of the double-helical structure of DNA by James Watson and Francis Crick in 1953, marked the transition to the era of molecular genetics . From the 1950s onwards, biology has been vastly extended in the molecular domain. The genetic code was cracked by Har Gobind Khorana , Robert W. Holley and Marshall Warren Nirenberg after DNA was understood to contain codons . The Human Genome Project

17050-524: The distinction between a heterozygote and homozygote , and the phenomenon of discontinuous inheritance. Prior to Mendel's work, the dominant theory of heredity was one of blending inheritance , which suggested that each parent contributed fluids to the fertilization process and that the traits of the parents blended and mixed to produce the offspring. Charles Darwin developed a theory of inheritance he termed pangenesis , from Greek pan ("all, whole") and genesis ("birth") / genos ("origin"). Darwin used

17205-634: The earliest terrestrial ecosystems , at least 2.7 billion years ago. Microorganisms are thought to have paved the way for the inception of land plants in the Ordovician period. Land plants were so successful that they are thought to have contributed to the Late Devonian extinction event . Ediacara biota appear during the Ediacaran period, while vertebrates , along with most other modern phyla originated about 525 million years ago during

17360-410: The early 1950s the prevailing view was that the genes in a chromosome acted like discrete entities arranged like beads on a string. The experiments of Benzer using mutants defective in the rII region of bacteriophage T4 (1955–1959) showed that individual genes have a simple linear structure and are likely to be equivalent to a linear section of DNA. Collectively, this body of research established

17515-481: The expression of deleterious recessive mutations . The beneficial effect of genetic complementation, derived from outcrossing (cross-fertilization) is also referred to as hybrid vigor or heterosis. Charles Darwin in his 1878 book The Effects of Cross and Self-Fertilization in the Vegetable Kingdom at the start of chapter XII noted “The first and most important of the conclusions which may be drawn from

17670-522: The fact that both protein-coding genes and noncoding genes have been known for more than 50 years, there are still a number of textbooks, websites, and scientific publications that define a gene as a DNA sequence that specifies a protein. In other words, the definition is restricted to protein-coding genes. Here is an example from a recent article in American Scientist. ... to truly assess the potential significance of de novo genes, we relied on

17825-455: The form of glucose is the main nutrient used by animal and plant cells in respiration. Cellular respiration involving oxygen is called aerobic respiration, which has four stages: glycolysis , citric acid cycle (or Krebs cycle), electron transport chain , and oxidative phosphorylation . Glycolysis is a metabolic process that occurs in the cytoplasm whereby glucose is converted into two pyruvates , with two net molecules of ATP being produced at

17980-413: The functional product. The discovery of introns in the 1970s meant that many eukaryotic genes were much larger than the size of the functional product would imply. Typical mammalian protein-coding genes, for example, are about 62,000 base pairs in length (transcribed region) and since there are about 20,000 of them they occupy about 35–40% of the mammalian genome (including the human genome). In spite of

18135-630: The gene that is described in terms of DNA sequence. There are many different definitions of this gene — some of which are misleading or incorrect. Very early work in the field that became molecular genetics suggested the concept that one gene makes one protein (originally 'one gene - one enzyme'). However, genes that produce repressor RNAs were proposed in the 1950s and by the 1960s, textbooks were using molecular gene definitions that included those that specified functional RNA molecules such as ribosomal RNA and tRNA (noncoding genes) as well as protein-coding genes. This idea of two kinds of genes

18290-421: The genome. The vast majority of organisms encode their genes in long strands of DNA (deoxyribonucleic acid). DNA consists of a chain made from four types of nucleotide subunits, each composed of: a five-carbon sugar ( 2-deoxyribose ), a phosphate group, and one of the four bases adenine , cytosine , guanine , and thymine . Two chains of DNA twist around each other to form a DNA double helix with

18445-421: The genomes of complex multicellular organisms , including humans, contain an absolute majority of DNA without an identified function. This DNA has often been referred to as " junk DNA ". However, more recent analyses suggest that, although protein-coding DNA makes up barely 2% of the human genome , about 80% of the bases in the genome may be expressed, so the term "junk DNA" may be a misnomer. The structure of

18600-426: The hormone insulin ) and G protein-coupled receptors . Activation of G protein-coupled receptors can initiate second messenger cascades. The process by which a chemical or physical signal is transmitted through a cell as a series of molecular events is called signal transduction . The cell cycle is a series of events that take place in a cell that cause it to divide into two daughter cells. These events include

18755-414: The initial step of photosynthesis whereby light energy is absorbed by chlorophyll pigments attached to proteins in the thylakoid membranes . The absorbed light energy is used to remove electrons from a donor (water) to a primary electron acceptor, a quinone designated as Q. In the second stage, electrons move from the quinone primary electron acceptor through a series of electron carriers until they reach

18910-477: The intermediate template for the synthesis of a protein. The transmission of genes to an organism's offspring , is the basis of the inheritance of phenotypic traits from one generation to the next. These genes make up different DNA sequences, together called a genotype , that is specific to every given individual, within the gene pool of the population of a given species . The genotype, along with environmental and developmental factors, ultimately determines

19065-406: The last eukaryotic common ancestor. Prokaryotes (i.e., archaea and bacteria) can also undergo cell division (or binary fission ). Unlike the processes of mitosis and meiosis in eukaryotes, binary fission in prokaryotes takes place without the formation of a spindle apparatus on the cell. Before binary fission, DNA in the bacterium is tightly coiled. After it has uncoiled and duplicated, it

19220-405: The ligand diffuses to nearby cells and affects them. For example, brain cells called neurons release ligands called neurotransmitters that diffuse across a synaptic cleft to bind with a receptor on an adjacent cell such as another neuron or muscle cell . In juxtacrine signaling, there is direct contact between the signaling and responding cells. Finally, hormones are ligands that travel through

19375-444: The membrane serving as membrane transporters , and peripheral proteins that loosely attach to the outer side of the cell membrane, acting as enzymes shaping the cell. Cell membranes are involved in various cellular processes such as cell adhesion , storing electrical energy , and cell signalling and serve as the attachment surface for several extracellular structures such as a cell wall , glycocalyx , and cytoskeleton . Within

19530-403: The mitotic phase of an animal cell cycle—the division of the mother cell into two genetically identical daughter cells. The cell cycle is a vital process by which a single-celled fertilized egg develops into a mature organism, as well as the process by which hair, skin, blood cells , and some internal organs are renewed. After cell division, each of the daughter cells begin the interphase of

19685-437: The most abundant molecule in every organism. Water is important to life because it is an effective solvent , capable of dissolving solutes such as sodium and chloride ions or other small molecules to form an aqueous solution . Once dissolved in water, these solutes are more likely to come in contact with one another and therefore take part in chemical reactions that sustain life. In terms of its molecular structure , water

19840-403: The nature of their research questions and the tools that they use. Like other scientists, biologists use the scientific method to make observations , pose questions, generate hypotheses , perform experiments, and form conclusions about the world around them. Life on Earth, which emerged more than 3.7 billion years ago, is immensely diverse. Biologists have sought to study and classify

19995-413: The nucleus. Splicing, followed by CPA, generate the final mature mRNA , which encodes the protein or RNA product. Many noncoding genes in eukaryotes have different transcription termination mechanisms and they do not have poly(A) tails. Many prokaryotic genes are organized into operons , with multiple protein-coding sequences that are transcribed as a unit. The genes in an operon are transcribed as

20150-441: The observations given in this volume, is that generally cross-fertilisation is beneficial and self-fertilisation often injurious, at least with the plants on which I experimented.” Genetic variation , often produced as a byproduct of sexual reproduction, may provide long-term advantages to those sexual lineages that engage in outcrossing . Genetics is the scientific study of inheritance. Mendelian inheritance , specifically,

20305-517: The only class of macromolecules that are not made up of polymers. They include steroids , phospholipids , and fats, largely nonpolar and hydrophobic (water-repelling) substances. Proteins are the most diverse of the macromolecules. They include enzymes , transport proteins , large signaling molecules, antibodies , and structural proteins . The basic unit (or monomer) of a protein is an amino acid . Twenty amino acids are used in proteins. Nucleic acids are polymers of nucleotides . Their function

20460-404: The organism. In skeletal muscles, the waste product is lactic acid . This type of fermentation is called lactic acid fermentation . In strenuous exercise, when energy demands exceed energy supply, the respiratory chain cannot process all of the hydrogen atoms joined by NADH. During anaerobic glycolysis, NAD regenerates when pairs of hydrogen combine with pyruvate to form lactate. Lactate formation

20615-431: The phosphate–sugar backbone spiralling around the outside, and the bases pointing inward with adenine base pairing to thymine and guanine to cytosine. The specificity of base pairing occurs because adenine and thymine align to form two hydrogen bonds , whereas cytosine and guanine form three hydrogen bonds. The two strands in a double helix must, therefore, be complementary , with their sequence of bases matching such that

20770-428: The possibility of common descent . Serious evolutionary thinking originated with the works of Jean-Baptiste Lamarck , who presented a coherent theory of evolution. The British naturalist Charles Darwin , combining the biogeographical approach of Humboldt , the uniformitarian geology of Lyell , Malthus's writings on population growth, and his own morphological expertise and extensive natural observations, forged

20925-907: The process of evolution from their common ancestor. Biologists regard the ubiquity of the genetic code as evidence of universal common descent for all bacteria , archaea , and eukaryotes . Microbial mats of coexisting bacteria and archaea were the dominant form of life in the early Archean eon and many of the major steps in early evolution are thought to have taken place in this environment. The earliest evidence of eukaryotes dates from 1.85 billion years ago, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism . Later, around 1.7 billion years ago, multicellular organisms began to appear, with differentiated cells performing specialised functions. Algae-like multicellular land plants are dated back to about 1 billion years ago, although evidence suggests that microorganisms formed

21080-539: The process such as transcription , RNA splicing , translation , and post-translational modification of a protein. Gene expression can be influenced by positive or negative regulation, depending on which of the two types of regulatory proteins called transcription factors bind to the DNA sequence close to or at a promoter. A cluster of genes that share the same promoter is called an operon , found mainly in prokaryotes and some lower eukaryotes (e.g., Caenorhabditis elegans ). In positive regulation of gene expression,

21235-517: The promoter, gene expression can also be regulated by epigenetic changes to chromatin , which is a complex of DNA and protein found in eukaryotic cells. Development is the process by which a multicellular organism (plant or animal) goes through a series of changes, starting from a single cell, and taking on various forms that are characteristic of its life cycle. There are four key processes that underlie development: Determination , differentiation , morphogenesis , and growth. Determination sets

21390-406: The proton motive force drives the enzyme ATP synthase to synthesize more ATPs by phosphorylating ADPs . The transfer of electrons terminates with molecular oxygen being the final electron acceptor . If oxygen were not present, pyruvate would not be metabolized by cellular respiration but undergoes a process of fermentation . The pyruvate is not transported into the mitochondrion but remains in

21545-449: The same time. Each pyruvate is then oxidized into acetyl-CoA by the pyruvate dehydrogenase complex , which also generates NADH and carbon dioxide. Acetyl-CoA enters the citric acid cycle, which takes places inside the mitochondrial matrix. At the end of the cycle, the total yield from 1 glucose (or 2 pyruvates) is 6 NADH, 2 FADH 2 , and 2 ATP molecules. Finally, the next stage is oxidative phosphorylation, which in eukaryotes, occurs in

21700-680: The second and third stages, respectively, provide the energy and electrons to drive the synthesis of glucose by fixing atmospheric carbon dioxide into existing organic carbon compounds, such as ribulose bisphosphate (RuBP) in a sequence of light-independent (or dark) reactions called the Calvin cycle . Cell signaling (or communication) is the ability of cells to receive, process, and transmit signals with its environment and with itself. Signals can be non-chemical such as light, electrical impulses , and heat, or chemical signals (or ligands ) that interact with receptors , which can be found embedded in

21855-553: The skin. Their morphological, metabolic, and geographical diversity permits them to play multiple ecological roles: carbon fixation; nitrogen cycling; organic compound turnover; and maintaining microbial symbiotic and syntrophic communities, for example. Eukaryotes are hypothesized to have split from archaea, which was followed by their endosymbioses with bacteria (or symbiogenesis ) that gave rise to mitochondria and chloroplasts, both of which are now part of modern-day eukaryotic cells. The major lineages of eukaryotes diversified in

22010-467: The strand of DNA like a train on a monorail, transcribing it into its messenger RNA form. This point brings us to our second important criterion: A true gene is one that is both transcribed and translated. That is, a true gene is first used as a template to make transient messenger RNA, which is then translated into a protein. This restricted definition is so common that it has spawned many recent articles that criticize this "standard definition" and call for

22165-479: The stroma. This is analogous to the proton-motive force generated across the inner mitochondrial membrane in aerobic respiration. During the third stage of photosynthesis, the movement of protons down their concentration gradients from the thylakoid lumen to the stroma through the ATP synthase is coupled to the synthesis of ATP by that same ATP synthase. The NADPH and ATPs generated by the light-dependent reactions in

22320-461: The sugar ribose rather than deoxyribose . RNA also contains the base uracil in place of thymine . RNA molecules are less stable than DNA and are typically single-stranded. Genes that encode proteins are composed of a series of three- nucleotide sequences called codons , which serve as the "words" in the genetic "language". The genetic code specifies the correspondence during protein translation between codons and amino acids . The genetic code

22475-809: The term gemmule to describe hypothetical particles that would mix during reproduction. Mendel's work went largely unnoticed after its first publication in 1866, but was rediscovered in the late 19th century by Hugo de Vries , Carl Correns , and Erich von Tschermak , who (claimed to have) reached similar conclusions in their own research. Specifically, in 1889, Hugo de Vries published his book Intracellular Pangenesis , in which he postulated that different characters have individual hereditary carriers and that inheritance of specific traits in organisms comes in particles. De Vries called these units "pangenes" ( Pangens in German), after Darwin's 1868 pangenesis theory. Twenty years later, in 1909, Wilhelm Johannsen introduced

22630-436: The term gene , he explained his results in terms of discrete inherited units that give rise to observable physical characteristics. This description prefigured Wilhelm Johannsen 's distinction between genotype (the genetic material of an organism) and phenotype (the observable traits of that organism). Mendel was also the first to demonstrate independent assortment , the distinction between dominant and recessive traits,

22785-412: The term "gene" (inspired by the ancient Greek : γόνος, gonos , meaning offspring and procreation) and, in 1906, William Bateson , that of " genetics " while Eduard Strasburger , among others, still used the term "pangene" for the fundamental physical and functional unit of heredity. Advances in understanding genes and inheritance continued throughout the 20th century. Deoxyribonucleic acid (DNA)

22940-471: The third tenet, and by the 1860s most biologists accepted all three tenets which consolidated into cell theory . Meanwhile, taxonomy and classification became the focus of natural historians. Carl Linnaeus published a basic taxonomy for the natural world in 1735, and in the 1750s introduced scientific names for all his species. Georges-Louis Leclerc, Comte de Buffon , treated species as artificial categories and living forms as malleable—even suggesting

23095-439: The total number of chromosomes is maintained. In general, mitosis (division of the nucleus) is preceded by the S stage of interphase (during which the DNA is replicated) and is often followed by telophase and cytokinesis ; which divides the cytoplasm , organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis all together define

23250-431: The underlying genotype of an organism with a dominant phenotype. A Punnett square can be used to predict the results of a test cross. The chromosome theory of inheritance , which states that genes are found on chromosomes, was supported by Thomas Morgans 's experiments with fruit flies , which established the sex linkage between eye color and sex in these insects. A gene is a unit of heredity that corresponds to

23405-656: The various forms of life, from prokaryotic organisms such as archaea and bacteria to eukaryotic organisms such as protists , fungi, plants, and animals. These various organisms contribute to the biodiversity of an ecosystem , where they play specialized roles in the cycling of nutrients and energy through their biophysical environment . The earliest of roots of science, which included medicine, can be traced to ancient Egypt and Mesopotamia in around 3000 to 1200 BCE . Their contributions shaped ancient Greek natural philosophy . Ancient Greek philosophers such as Aristotle (384–322 BCE) contributed extensively to

23560-424: The word gene has two meanings. The Mendelian gene is a basic unit of heredity . The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA . There are two types of molecular genes: protein-coding genes and non-coding genes. During gene expression (the synthesis of RNA or protein from a gene), DNA is first copied into RNA . RNA can be directly functional or be

23715-450: Was first suggested by Gregor Mendel (1822–1884). From 1857 to 1864, in Brno , Austrian Empire (today's Czech Republic), he studied inheritance patterns in 8000 common edible pea plants , tracking distinct traits from parent to offspring. He described these mathematically as 2  combinations where n is the number of differing characteristics in the original peas. Although he did not use

23870-434: Was launched in 1990 to map the human genome . All organisms are made up of chemical elements ; oxygen , carbon , hydrogen , and nitrogen account for most (96%) of the mass of all organisms, with calcium , phosphorus , sulfur , sodium , chlorine , and magnesium constituting essentially all the remainder. Different elements can combine to form compounds such as water, which is fundamental to life. Biochemistry

24025-430: Was shown to be the molecular repository of genetic information by experiments in the 1940s to 1950s. The structure of DNA was studied by Rosalind Franklin and Maurice Wilkins using X-ray crystallography , which led James D. Watson and Francis Crick to publish a model of the double-stranded DNA molecule whose paired nucleotide bases indicated a compelling hypothesis for the mechanism of genetic replication. In

#329670