Misplaced Pages

Zaca Fire

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#92907

119-626: The Zaca Fire was a very large wildfire in the San Rafael Mountains , northeast of the Santa Ynez Valley in Santa Barbara County , California . It was the single largest wildfire of the 2007 California wildfire season . The fire started on July 4, 2007, and by August 31, it had burned over 240,207 acres (972.083 km), making it California's second largest fire in recorded history at that time after

238-570: A defensible space be maintained by clearing flammable materials within a prescribed distance from the structure. Communities in the Philippines also maintain fire lines 5 to 10 meters (16 to 33 ft) wide between the forest and their village, and patrol these lines during summer months or seasons of dry weather. Continued residential development in fire-prone areas and rebuilding structures destroyed by fires has been met with criticism. The ecological benefits of fire are often overridden by

357-469: A 15 mile radius. Additionally, Sensaio Tech , based in Brazil and Toronto, has released a sensor device that continuously monitors 14 different variables common in forests, ranging from soil temperature to salinity. This information is connected live back to clients through dashboard visualizations, while mobile notifications are provided regarding dangerous levels. Satellite and aerial monitoring through

476-470: A 24-hour fire day that begins at 10:00 a.m. due to the predictable increase in intensity resulting from the daytime warmth. Climate change promotes the type of weather that makes wildfires more likely. In some areas, an increase of wildfires has been attributed directly to climate change. Evidence from Earth's past also shows more fire in warmer periods. Climate change increases evapotranspiration . This can cause vegetation and soils to dry out. When

595-562: A broader sense also includes previous long-term changes to Earth's climate. The current rise in global temperatures is driven by human activities , especially fossil fuel burning since the Industrial Revolution . Fossil fuel use, deforestation , and some agricultural and industrial practices release greenhouse gases . These gases absorb some of the heat that the Earth radiates after it warms from sunlight , warming

714-641: A bushfire ( in Australia ), desert fire, grass fire, hill fire, peat fire, prairie fire, vegetation fire, or veld fire. Some natural forest ecosystems depend on wildfire. Wildfires are different from controlled or prescribed burning , which are carried out to provide a benefit for people. Modern forest management often engages in prescribed burns to mitigate fire risk and promote natural forest cycles. However, controlled burns can turn into wildfires by mistake. Wildfires can be classified by cause of ignition, physical properties, combustible material present, and

833-590: A decadal timescale. Other changes are caused by an imbalance of energy from external forcings . Examples of these include changes in the concentrations of greenhouse gases , solar luminosity , volcanic eruptions, and variations in the Earth's orbit around the Sun. To determine the human contribution to climate change, unique "fingerprints" for all potential causes are developed and compared with both observed patterns and known internal climate variability . For example, solar forcing—whose fingerprint involves warming

952-566: A doubling in land area burned by wildfires compared to natural levels. Humans have impacted wildfire through climate change (e.g. more intense heat waves and droughts ), land-use change , and wildfire suppression . The carbon released from wildfires can add to carbon dioxide concentrations in the atmosphere and thus contribute to the greenhouse effect . This creates a climate change feedback . Naturally occurring wildfires can have beneficial effects on those ecosystems that have evolved with fire. In fact, many plant species depend on

1071-610: A fire starts in an area with very dry vegetation, it can spread rapidly. Higher temperatures can also lengthen the fire season. This is the time of year in which severe wildfires are most likely, particularly in regions where snow is disappearing. Weather conditions are raising the risks of wildfires. But the total area burnt by wildfires has decreased. This is mostly because savanna has been converted to cropland , so there are fewer trees to burn. Climate variability including heat waves , droughts , and El Niño , and regional weather patterns, such as high-pressure ridges, can increase

1190-542: A lot of light to being dark after the ice has melted, they start absorbing more heat . Local black carbon deposits on snow and ice also contribute to Arctic warming. Arctic surface temperatures are increasing between three and four times faster than in the rest of the world. Melting of ice sheets near the poles weakens both the Atlantic and the Antarctic limb of thermohaline circulation , which further changes

1309-412: A marked increase in temperature. Ongoing changes in climate have had no precedent for several thousand years. Multiple independent datasets all show worldwide increases in surface temperature, at a rate of around 0.2 °C per decade. The 2014–2023 decade warmed to an average 1.19 °C [1.06–1.30 °C] compared to the pre-industrial baseline (1850–1900). Not every single year was warmer than

SECTION 10

#1732780656093

1428-546: A new fire detection tool is in operation at the U.S. Department of Agriculture (USDA) Forest Service (USFS) which uses data from the Suomi National Polar-orbiting Partnership (NPP) satellite to detect smaller fires in more detail than previous space-based products. The high-resolution data is used with a computer model to predict how a fire will change direction based on weather and land conditions. In 2014, an international campaign

1547-415: A number expected to rise to 30,000 by 2050. The economic impact is also significant, with projected costs reaching $ 240 billion annually by 2050, surpassing other climate-related damages. Over the past century, wildfires have accounted for 20–25% of global carbon emissions, the remainder from human activities. Global carbon emissions from wildfires through August 2020 equaled the average annual emissions of

1666-408: A physical climate model. These models simulate how population, economic growth , and energy use affect—and interact with—the physical climate. With this information, these models can produce scenarios of future greenhouse gas emissions. This is then used as input for physical climate models and carbon cycle models to predict how atmospheric concentrations of greenhouse gases might change. Depending on

1785-545: A policy of allowing some wildfires to burn is the cheapest method and an ecologically appropriate policy for many forests, they tend not to take into account the economic value of resources that are consumed by the fire, especially merchantable timber. Some studies conclude that while fuels may also be removed by logging, such thinning treatments may not be effective at reducing fire severity under extreme weather conditions. Building codes in fire-prone areas typically require that structures be built of flame-resistant materials and

1904-503: A possible resolution to human operator error. These systems may be semi- or fully automated and employ systems based on the risk area and degree of human presence, as suggested by GIS data analyses. An integrated approach of multiple systems can be used to merge satellite data, aerial imagery, and personnel position via Global Positioning System (GPS) into a collective whole for near-realtime use by wireless Incident Command Centers . A small, high risk area that features thick vegetation,

2023-531: A rapid forward rate of spread (FROS) when burning through dense uninterrupted fuels. They can move as fast as 10.8 kilometres per hour (6.7 mph) in forests and 22 kilometres per hour (14 mph) in grasslands. Wildfires can advance tangential to the main front to form a flanking front, or burn in the opposite direction of the main front by backing . They may also spread by jumping or spotting as winds and vertical convection columns carry firebrands (hot wood embers) and other burning materials through

2142-695: A remote site and sent via overnight mail to the fire manager . During the Yellowstone fires of 1988 , a data station was established in West Yellowstone , permitting the delivery of satellite-based fire information in approximately four hours. Public hotlines, fire lookouts in towers, and ground and aerial patrols can be used as a means of early detection of forest fires. However, accurate human observation may be limited by operator fatigue , time of day, time of year, and geographic location. Electronic systems have gained popularity in recent years as

2261-461: A result of climate change. Global sea level is rising as a consequence of thermal expansion and the melting of glaciers and ice sheets . Sea level rise has increased over time, reaching 4.8 cm per decade between 2014 and 2023. Over the 21st century, the IPCC projects 32–62 cm of sea level rise under a low emission scenario, 44–76 cm under an intermediate one and 65–101 cm under

2380-474: A result. The World Health Organization calls climate change one of the biggest threats to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming . Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for

2499-417: A small share of global emissions , yet have the least ability to adapt and are most vulnerable to climate change . Many climate change impacts have been observed in the first decades of the 21st century, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points , such as melting all of

SECTION 20

#1732780656093

2618-569: A strong human presence, or is close to a critical urban area can be monitored using a local sensor network . Detection systems may include wireless sensor networks that act as automated weather systems: detecting temperature, humidity, and smoke. These may be battery-powered, solar-powered, or tree-rechargeable : able to recharge their battery systems using the small electrical currents in plant material. Larger, medium-risk areas can be monitored by scanning towers that incorporate fixed cameras and sensors to detect smoke or additional factors such as

2737-548: A very high emission scenario. Marine ice sheet instability processes in Antarctica may add substantially to these values, including the possibility of a 2-meter sea level rise by 2100 under high emissions. Climate change has led to decades of shrinking and thinning of the Arctic sea ice . While ice-free summers are expected to be rare at 1.5 °C degrees of warming, they are set to occur once every three to ten years at

2856-519: A warming level of 2 °C. Higher atmospheric CO 2 concentrations cause more CO 2 to dissolve in the oceans, which is making them more acidic . Because oxygen is less soluble in warmer water, its concentrations in the ocean are decreasing , and dead zones are expanding. Greater degrees of global warming increase the risk of passing through ' tipping points '—thresholds beyond which certain major impacts can no longer be avoided even if temperatures return to their previous state. For instance,

2975-564: Is an estimated total sea level rise of 2.3 metres per degree Celsius (4.2 ft/°F) after 2000 years. Oceanic CO 2 uptake is slow enough that ocean acidification will also continue for hundreds to thousands of years. Deep oceans (below 2,000 metres (6,600 ft)) are also already committed to losing over 10% of their dissolved oxygen by the warming which occurred to date. Further, the West Antarctic ice sheet appears committed to practically irreversible melting, which would increase

3094-711: Is determined by modelling the carbon cycle and climate sensitivity to greenhouse gases. According to UNEP , global warming can be kept below 1.5 °C with a 50% chance if emissions after 2023 do not exceed 200 gigatonnes of CO 2 . This corresponds to around 4 years of current emissions. To stay under 2.0 °C, the carbon budget is 900 gigatonnes of CO 2 , or 16 years of current emissions. The climate system experiences various cycles on its own which can last for years, decades or even centuries. For example, El Niño events cause short-term spikes in surface temperature while La Niña events cause short term cooling. Their relative frequency can affect global temperature trends on

3213-405: Is governed in part by topography , as land shape determines factors such as available sunlight and water for plant growth. Overall, fire types can be generally characterized by their fuels as follows: Wildfires occur when all the necessary elements of a fire triangle come together in a susceptible area: an ignition source is brought into contact with a combustible material such as vegetation that

3332-399: Is independent of where greenhouse gases are emitted, because the gases persist long enough to diffuse across the planet. Since the pre-industrial period, the average surface temperature over land regions has increased almost twice as fast as the global average surface temperature. This is because oceans lose more heat by evaporation and oceans can store a lot of heat . The thermal energy in

3451-728: Is no longer an expectation, but the majority of wildfires are often extinguished before they grow out of control. While more than 99% of the 10,000 new wildfires each year are contained, escaped wildfires under extreme weather conditions are difficult to suppress without a change in the weather. Wildfires in Canada and the US burn an average of 54,500 square kilometers (13,000,000 acres) per year. Above all, fighting wildfires can become deadly. A wildfire's burning front may also change direction unexpectedly and jump across fire breaks. Intense heat and smoke can lead to disorientation and loss of appreciation of

3570-450: Is primarily attributed to sulfate aerosols produced by the combustion of fossil fuels with heavy sulfur concentrations like coal and bunker fuel . Smaller contributions come from black carbon (from combustion of fossil fuels and biomass), and from dust. Globally, aerosols have been declining since 1990 due to pollution controls, meaning that they no longer mask greenhouse gas warming as much. Aerosols also have indirect effects on

3689-473: Is prone to offset errors, anywhere from 2 to 3 kilometers (1 to 2 mi) for MODIS and AVHRR data and up to 12 kilometers (7.5 mi) for GOES data. Satellites in geostationary orbits may become disabled, and satellites in polar orbits are often limited by their short window of observation time. Cloud cover and image resolution may also limit the effectiveness of satellite imagery. Global Forest Watch provides detailed daily updates on fire alerts. In 2015

Zaca Fire - Misplaced Pages Continue

3808-444: Is radiating into space. Warming reduces average snow cover and forces the retreat of glaciers . At the same time, warming also causes greater evaporation from the oceans , leading to more atmospheric humidity , more and heavier precipitation . Plants are flowering earlier in spring, and thousands of animal species have been permanently moving to cooler areas. Different regions of the world warm at different rates . The pattern

3927-516: Is shaped by feedbacks, which either amplify or dampen the change. Self-reinforcing or positive feedbacks increase the response, while balancing or negative feedbacks reduce it. The main reinforcing feedbacks are the water-vapour feedback , the ice–albedo feedback , and the net effect of clouds. The primary balancing mechanism is radiative cooling , as Earth's surface gives off more heat to space in response to rising temperature. In addition to temperature feedbacks, there are feedbacks in

4046-662: Is subjected to enough heat and has an adequate supply of oxygen from the ambient air. A high moisture content usually prevents ignition and slows propagation, because higher temperatures are needed to evaporate any water in the material and heat the material to its fire point . Dense forests usually provide more shade, resulting in lower ambient temperatures and greater humidity , and are therefore less susceptible to wildfires. Less dense material such as grasses and leaves are easier to ignite because they contain less water than denser material such as branches and trunks. Plants continuously lose water by evapotranspiration , but water loss

4165-407: Is the major reason why different climate models project different magnitudes of warming for a given amount of emissions. A climate model is a representation of the physical, chemical and biological processes that affect the climate system. Models include natural processes like changes in the Earth's orbit, historical changes in the Sun's activity, and volcanic forcing. Models are used to estimate

4284-417: Is unclear. A related phenomenon driven by climate change is woody plant encroachment , affecting up to 500 million hectares globally. Climate change has contributed to the expansion of drier climate zones, such as the expansion of deserts in the subtropics . The size and speed of global warming is making abrupt changes in ecosystems more likely. Overall, it is expected that climate change will result in

4403-416: Is usually balanced by water absorbed from the soil, humidity, or rain. When this balance is not maintained, often as a consequence of droughts , plants dry out and are therefore more flammable. A wildfire front is the portion sustaining continuous flaming combustion, where unburned material meets active flames, or the smoldering transition between unburned and burned material. As the front approaches,

4522-418: The 2019–20 Australian bushfire season "an independent study found online bots and trolls exaggerating the role of arson in the fires." In the 2023 Canadian wildfires false claims of arson gained traction on social media; however, arson is generally not a main cause of wildfires in Canada. In California, generally 6–10% of wildfires annually are arson. Coal seam fires burn in the thousands around

4641-965: The Amazon rainforest . The fires in the latter were caused mainly by illegal logging . The smoke from the fires expanded on huge territory including major cities, dramatically reducing air quality. As of August 2020, the wildfires in that year were 13% worse than in 2019 due primarily to climate change , deforestation and agricultural burning. The Amazon rainforest 's existence is threatened by fires. Record-breaking wildfires in 2021 occurred in Turkey , Greece and Russia , thought to be linked to climate change. The carbon released from wildfires can add to greenhouse gas concentrations. Climate models do not yet fully reflect this feedback . Wildfires release large amounts of carbon dioxide, black and brown carbon particles, and ozone precursors such as volatile organic compounds and nitrogen oxides (NOx) into

4760-459: The Atlantic meridional overturning circulation (AMOC), and irreversible damage to key ecosystems like the Amazon rainforest and coral reefs can unfold in a matter of decades. The long-term effects of climate change on oceans include further ice melt, ocean warming , sea level rise, ocean acidification and ocean deoxygenation. The timescale of long-term impacts are centuries to millennia due to CO 2 's long atmospheric lifetime. The result

4879-640: The Cedar Fire of 2003. As of 2024, it is California's 13th-largest recorded fire in modern history. The fire was contained on September 4, 2007, with the fire being brought under control on October 29, 2007. On July 4, 2007, at 10:53 a.m. PDT , the Zaca Fire started as a result of sparks from a grinding machine on private property, which was being used to repair a water pipe. It spread to a size of 240,207 acres (972.08 km) in August. By August 12, progress

Zaca Fire - Misplaced Pages Continue

4998-661: The Earth's energy budget . Sulfate aerosols act as cloud condensation nuclei and lead to clouds that have more and smaller cloud droplets. These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets. They also reduce the growth of raindrops , which makes clouds more reflective to incoming sunlight. Indirect effects of aerosols are the largest uncertainty in radiative forcing . While aerosols typically limit global warming by reflecting sunlight, black carbon in soot that falls on snow or ice can contribute to global warming. Not only does this increase

5117-569: The European Union . In 2020, the carbon released by California's wildfires was significantly larger than the state's other carbon emissions. Forest fires in Indonesia in 1997 were estimated to have released between 0.81 and 2.57 giga tonnes (0.89 and 2.83 billion short tons ) of CO 2 into the atmosphere, which is between 13–40% of the annual global carbon dioxide emissions from burning fossil fuels. In June and July 2019, fires in

5236-480: The Fire Information for Resource Management System (FIRMS). Between 2022–2023, wildfires throughout North America prompted an uptake in the delivery and design of various technologies using artificial intelligence for early detection, prevention, and prediction of wildfires. Wildfire suppression depends on the technologies available in the area in which the wildfire occurs. In less developed nations

5355-573: The Greenland ice sheet is already melting, but if global warming reaches levels between 1.7 °C and 2.3 °C, its melting will continue until it fully disappears. If the warming is later reduced to 1.5 °C or less, it will still lose a lot more ice than if the warming was never allowed to reach the threshold in the first place. While the ice sheets would melt over millennia, other tipping points would occur faster and give societies less time to respond. The collapse of major ocean currents like

5474-840: The Greenland ice sheet . Under the 2015 Paris Agreement , nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.8 °C (5.0 °F) by the end of the century. Limiting warming to 1.5 °C would require halving emissions by 2030 and achieving net-zero emissions by 2050. Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind , solar , hydro , and nuclear power . Cleanly generated electricity can replace fossil fuels for powering transportation , heating buildings , and running industrial processes. Carbon can also be removed from

5593-635: The Industrial Revolution , naturally-occurring amounts of greenhouse gases caused the air near the surface to be about 33 °C warmer than it would have been in their absence. Human activity since the Industrial Revolution, mainly extracting and burning fossil fuels ( coal , oil , and natural gas ), has increased the amount of greenhouse gases in the atmosphere. In 2022, the concentrations of CO 2 and methane had increased by about 50% and 164%, respectively, since 1750. These CO 2 levels are higher than they have been at any time during

5712-504: The Paris climate agreement . Due to the complex oxidative chemistry occurring during the transport of wildfire smoke in the atmosphere, the toxicity of emissions was indicated to increase over time. Atmospheric models suggest that these concentrations of sooty particles could increase absorption of incoming solar radiation during winter months by as much as 15%. The Amazon is estimated to hold around 90 billion tons of carbon. As of 2019,

5831-518: The World Economic Forum , 14.5 million more deaths are expected due to climate change by 2050. 30% of the global population currently live in areas where extreme heat and humidity are already associated with excess deaths. By 2100, 50% to 75% of the global population would live in such areas. While total crop yields have been increasing in the past 50 years due to agricultural improvements, climate change has already decreased

5950-414: The carbon cycle . While plants on land and in the ocean absorb most excess emissions of CO 2 every year, that CO 2 is returned to the atmosphere when biological matter is digested, burns, or decays. Land-surface carbon sink processes, such as carbon fixation in the soil and photosynthesis, remove about 29% of annual global CO 2 emissions. The ocean has absorbed 20 to 30% of emitted CO 2 over

6069-402: The climate system . Solar irradiance has been measured directly by satellites , and indirect measurements are available from the early 1600s onwards. Since 1880, there has been no upward trend in the amount of the Sun's energy reaching the Earth, in contrast to the warming of the lower atmosphere (the troposphere ). The upper atmosphere (the stratosphere ) would also be warming if the Sun

SECTION 50

#1732780656093

6188-971: The extinction of many species. The oceans have heated more slowly than the land, but plants and animals in the ocean have migrated towards the colder poles faster than species on land. Just as on land, heat waves in the ocean occur more frequently due to climate change, harming a wide range of organisms such as corals, kelp , and seabirds . Ocean acidification makes it harder for marine calcifying organisms such as mussels , barnacles and corals to produce shells and skeletons ; and heatwaves have bleached coral reefs . Harmful algal blooms enhanced by climate change and eutrophication lower oxygen levels, disrupt food webs and cause great loss of marine life. Coastal ecosystems are under particular stress. Almost half of global wetlands have disappeared due to climate change and other human impacts. Plants have come under increased stress from damage by insects. The effects of climate change are impacting humans everywhere in

6307-432: The socioeconomic scenario and the mitigation scenario, models produce atmospheric CO 2 concentrations that range widely between 380 and 1400 ppm. The environmental effects of climate change are broad and far-reaching, affecting oceans , ice, and weather. Changes may occur gradually or rapidly. Evidence for these effects comes from studying climate change in the past, from modelling, and from modern observations. Since

6426-429: The taiga biome are particularly susceptible. Wildfires can severely impact humans and their settlements. Effects include for example the direct health impacts of smoke and fire, as well as destruction of property (especially in wildland–urban interfaces ), and economic losses. There is also the potential for contamination of water and soil. At a global level, human practices have made the impacts of wildfire worse, with

6545-405: The 18th century and 1970 there was little net warming, as the warming impact of greenhouse gas emissions was offset by cooling from sulfur dioxide emissions. Sulfur dioxide causes acid rain , but it also produces sulfate aerosols in the atmosphere, which reflect sunlight and cause global dimming . After 1970, the increasing accumulation of greenhouse gases and controls on sulfur pollution led to

6664-612: The 1950s, droughts and heat waves have appeared simultaneously with increasing frequency. Extremely wet or dry events within the monsoon period have increased in India and East Asia. Monsoonal precipitation over the Northern Hemisphere has increased since 1980. The rainfall rate and intensity of hurricanes and typhoons is likely increasing , and the geographic range likely expanding poleward in response to climate warming. Frequency of tropical cyclones has not increased as

6783-500: The 1980s, the terms global warming and climate change became more common, often being used interchangeably. Scientifically, global warming refers only to increased surface warming, while climate change describes both global warming and its effects on Earth's climate system , such as precipitation changes. Climate change can also be used more broadly to include changes to the climate that have happened throughout Earth's history. Global warming —used as early as 1975 —became

6902-440: The Arctic is forcing many species to relocate or become extinct . Even if efforts to minimize future warming are successful, some effects will continue for centuries. These include ocean heating , ocean acidification and sea level rise . Climate change threatens people with increased flooding , extreme heat, increased food and water scarcity, more disease, and economic loss . Human migration and conflict can also be

7021-410: The Arctic emitted more than 140 megatons of carbon dioxide, according to an analysis by CAMS. To put that into perspective this amounts to the same amount of carbon emitted by 36 million cars in a year. The recent wildfires and their massive CO 2 emissions mean that it will be important to take them into consideration when implementing measures for reaching greenhouse gas reduction targets accorded with

7140-435: The Arctic is another major feedback, this reduces the reflectivity of the Earth's surface in the region and accelerates Arctic warming . This additional warming also contributes to permafrost thawing, which releases methane and CO 2 into the atmosphere. Around half of human-caused CO 2 emissions have been absorbed by land plants and by the oceans. This fraction is not static and if future CO 2 emissions decrease,

7259-545: The CO 2 released by the chemical reactions for making cement , steel , aluminum , and fertilizer . Methane emissions come from livestock , manure, rice cultivation , landfills, wastewater, and coal mining , as well as oil and gas extraction . Nitrous oxide emissions largely come from the microbial decomposition of fertilizer . While methane only lasts in the atmosphere for an average of 12 years, CO 2 lasts much longer. The Earth's surface absorbs CO 2 as part of

SECTION 60

#1732780656093

7378-604: The Earth will be able to absorb up to around 70%. If they increase substantially, it'll still absorb more carbon than now, but the overall fraction will decrease to below 40%. This is because climate change increases droughts and heat waves that eventually inhibit plant growth on land, and soils will release more carbon from dead plants when they are warmer . The rate at which oceans absorb atmospheric carbon will be lowered as they become more acidic and experience changes in thermohaline circulation and phytoplankton distribution. Uncertainty over feedbacks, particularly cloud cover,

7497-505: The United States in the early 20th century and fires were reported using telephones, carrier pigeons , and heliographs . Aerial and land photography using instant cameras were used in the 1950s until infrared scanning was developed for fire detection in the 1960s. However, information analysis and delivery was often delayed by limitations in communication technology. Early satellite-derived fire analyses were hand-drawn on maps at

7616-779: The Western US, earlier snowmelt and associated warming has also been associated with an increase in length and severity of the wildfire season, or the most fire-prone time of the year. A 2019 study indicates that the increase in fire risk in California may be partially attributable to human-induced climate change . In the summer of 1974–1975 (southern hemisphere), Australia suffered its worst recorded wildfire, when 15% of Australia's land mass suffered "extensive fire damage". Fires that summer burned up an estimated 117 million hectares (290 million acres ; 1,170,000 square kilometres ; 450,000 square miles ). In Australia,

7735-595: The Zaca Fire was fully brought under control on October 29, 2007. Of the 43 non-fatal injuries, 2 occurred when a helicopter assigned to the incident crashed. The fire had primarily burned away from populated areas in extremely steep and rugged areas of the San Rafael Mountains in the Los Padres National Forest and the Santa Ynez River Recreation Area. It only destroyed one Forest Service outbuilding. Its impacts on

7854-441: The absorption of sunlight, it also increases melting and sea-level rise. Limiting new black carbon deposits in the Arctic could reduce global warming by 0.2 °C by 2050. The effect of decreasing sulfur content of fuel oil for ships since 2020 is estimated to cause an additional 0.05 °C increase in global mean temperature by 2050. As the Sun is the Earth's primary energy source, changes in incoming sunlight directly affect

7973-435: The air over roads, rivers, and other barriers that may otherwise act as firebreaks . Torching and fires in tree canopies encourage spotting, and dry ground fuels around a wildfire are especially vulnerable to ignition from firebrands. Spotting can create spot fires as hot embers and firebrands ignite fuels downwind from the fire. In Australian bushfires , spot fires are known to occur as far as 20 kilometres (12 mi) from

8092-732: The annual number of hot days (above 35 °C) and very hot days (above 40 °C) has increased significantly in many areas of the country since 1950. The country has always had bushfires but in 2019, the extent and ferocity of these fires increased dramatically. For the first time catastrophic bushfire conditions were declared for Greater Sydney. New South Wales and Queensland declared a state of emergency but fires were also burning in South Australia and Western Australia. In 2019, extreme heat and dryness caused massive wildfires in Siberia , Alaska , Canary Islands , Australia , and in

8211-411: The atmosphere , for instance by increasing forest cover and farming with methods that capture carbon in soil . Before the 1980s it was unclear whether the warming effect of increased greenhouse gases was stronger than the cooling effect of airborne particulates in air pollution . Scientists used the term inadvertent climate modification to refer to human impacts on the climate at this time. In

8330-444: The atmosphere. These emissions affect radiation, clouds, and climate on regional and even global scales. Wildfires also emit substantial amounts of semi-volatile organic species that can partition from the gas phase to form secondary organic aerosol (SOA) over hours to days after emission. In addition, the formation of the other pollutants as the air is transported can lead to harmful exposures for populations in regions far away from

8449-452: The atmosphere. volcanic CO 2 emissions are more persistent, but they are equivalent to less than 1% of current human-caused CO 2 emissions. Volcanic activity still represents the single largest natural impact (forcing) on temperature in the industrial era. Yet, like the other natural forcings, it has had negligible impacts on global temperature trends since the Industrial Revolution. The climate system's response to an initial forcing

8568-454: The biggest threats to global health in the 21st century. Scientists have warned about the irreversible harms it poses. Extreme weather events affect public health, and food and water security . Temperature extremes lead to increased illness and death. Climate change increases the intensity and frequency of extreme weather events. It can affect transmission of infectious diseases , such as dengue fever and malaria . According to

8687-540: The carbon cycle, such as the fertilizing effect of CO 2 on plant growth. Feedbacks are expected to trend in a positive direction as greenhouse gas emissions continue, raising climate sensitivity. These feedback processes alter the pace of global warming. For instance, warmer air can hold more moisture in the form of water vapour , which is itself a potent greenhouse gas. Warmer air can also make clouds higher and thinner, and therefore more insulating, increasing climate warming. The reduction of snow cover and sea ice in

8806-551: The climate cycled through ice ages . One of the hotter periods was the Last Interglacial , around 125,000 years ago, where temperatures were between 0.5 °C and 1.5 °C warmer than before the start of global warming. This period saw sea levels 5 to 10 metres higher than today. The most recent glacial maximum 20,000 years ago was some 5–7 °C colder. This period has sea levels that were over 125 metres (410 ft) lower than today. Temperatures stabilized in

8925-684: The current interglacial period beginning 11,700 years ago . This period also saw the start of agriculture. Historical patterns of warming and cooling, like the Medieval Warm Period and the Little Ice Age , did not occur at the same time across different regions. Temperatures may have reached as high as those of the late 20th century in a limited set of regions. Climate information for that period comes from climate proxies , such as trees and ice cores . Around 1850 thermometer records began to provide global coverage. Between

9044-403: The degree of warming future emissions will cause when accounting for the strength of climate feedbacks . Models also predict the circulation of the oceans, the annual cycle of the seasons, and the flows of carbon between the land surface and the atmosphere. The physical realism of models is tested by examining their ability to simulate current or past climates. Past models have underestimated

9163-427: The destroyed trees release CO 2 , and are not replaced by new trees, removing that carbon sink . Between 2001 and 2018, 27% of deforestation was from permanent clearing to enable agricultural expansion for crops and livestock. Another 24% has been lost to temporary clearing under the shifting cultivation agricultural systems. 26% was due to logging for wood and derived products, and wildfires have accounted for

9282-773: The direction of the fire, which can make fires particularly dangerous. For example, during the 1949 Mann Gulch fire in Montana , United States, thirteen smokejumpers died when they lost their communication links, became disoriented, and were overtaken by the fire. In the Australian February 2009 Victorian bushfires , at least 173 people died and over 2,029 homes and 3,500 structures were lost when they became engulfed by wildfire. Climate change Present-day climate change includes both global warming —the ongoing increase in global average temperature —and its wider effects on Earth's climate . Climate change in

9401-401: The distribution of heat and precipitation around the globe. The World Meteorological Organization estimates there is an 80% chance that global temperatures will exceed 1.5 °C warming for at least one year between 2024 and 2028. The chance of the 5-year average being above 1.5 °C is almost half. The IPCC expects the 20-year average global temperature to exceed +1.5 °C in

9520-444: The dominant direct influence on temperature from land use change. Thus, land use change to date is estimated to have a slight cooling effect. Air pollution, in the form of aerosols, affects the climate on a large scale. Aerosols scatter and absorb solar radiation. From 1961 to 1990, a gradual reduction in the amount of sunlight reaching the Earth's surface was observed. This phenomenon is popularly known as global dimming , and

9639-610: The early 2030s. The IPCC Sixth Assessment Report (2021) included projections that by 2100 global warming is very likely to reach 1.0–1.8 °C under a scenario with very low emissions of greenhouse gases , 2.1–3.5 °C under an intermediate emissions scenario , or 3.3–5.7 °C under a very high emissions scenario . The warming will continue past 2100 in the intermediate and high emission scenarios, with future projections of global surface temperatures by year 2300 being similar to millions of years ago. The remaining carbon budget for staying beneath certain temperature increases

9758-697: The earth's atmosphere has 415 parts per million of carbon, and the destruction of the Amazon would add about 38 parts per million. Some research has shown wildfire smoke can have a cooling effect. Research in 2007 stated that black carbon in snow changed temperature three times more than atmospheric carbon dioxide. As much as 94 percent of Arctic warming may be caused by dark carbon on snow that initiates melting. The dark carbon comes from fossil fuels burning, wood and other biofuels, and forest fires. Melting can occur even at low concentrations of dark carbon (below five parts per billion)". Wildfire prevention refers to

9877-411: The economic and safety benefits of protecting structures and human life. The demand for timely, high-quality fire information has increased in recent years. Fast and effective detection is a key factor in wildfire fighting. Early detection efforts were focused on early response, accurate results in both daytime and nighttime, and the ability to prioritize fire danger. Fire lookout towers were used in

9996-552: The effect of weather on the fire. Wildfire severity results from a combination of factors such as available fuels, physical setting, and weather. Climatic cycles with wet periods that create substantial fuels, followed by drought and heat, often precede severe wildfires. These cycles have been intensified by climate change . Wildfires are a common type of disaster in some regions, including Siberia (Russia), California (United States), British Columbia (Canada), and Australia . Areas with Mediterranean climates or in

10115-412: The effects of fire for growth and reproduction. The ignition of a fire takes place through either natural causes or human activity (deliberate or not). Natural occurrences that can ignite wildfires without the involvement of humans include lightning , volcanic eruptions , sparks from rock falls, and spontaneous combustions . Sources of human-caused fire may include arson, accidental ignition, or

10234-430: The entire atmosphere—is ruled out because only the lower atmosphere has warmed. Atmospheric aerosols produce a smaller, cooling effect. Other drivers, such as changes in albedo , are less impactful. Greenhouse gases are transparent to sunlight , and thus allow it to pass through the atmosphere to heat the Earth's surface. The Earth radiates it as heat , and greenhouse gases absorb a portion of it. This absorption slows

10353-520: The environment and area water resources are not yet fully known. Many trails and campgrounds in the Dick Smith Wilderness were destroyed. Since then, a number of them have been rebuilt. Wildfire A wildfire , forest fire , or a bushfire is an unplanned, uncontrolled and unpredictable fire in an area of combustible vegetation . Depending on the type of vegetation present, a wildfire may be more specifically identified as

10472-402: The fire front. Especially large wildfires may affect air currents in their immediate vicinities by the stack effect : air rises as it is heated, and large wildfires create powerful updrafts that will draw in new, cooler air from surrounding areas in thermal columns . Great vertical differences in temperature and humidity encourage pyrocumulus clouds , strong winds, and fire whirls with

10591-417: The fire heats both the surrounding air and woody material through convection and thermal radiation . First, wood is dried as water is vaporized at a temperature of 100 °C (212 °F). Next, the pyrolysis of wood at 230 °C (450 °F) releases flammable gases. Finally, wood can smolder at 380 °C (720 °F) or, when heated sufficiently, ignite at 590 °C (1,000 °F). Even before

10710-452: The flames of a wildfire arrive at a particular location, heat transfer from the wildfire front warms the air to 800 °C (1,470 °F), which pre-heats and dries flammable materials, causing materials to ignite faster and allowing the fire to spread faster. High-temperature and long-duration surface wildfires may encourage flashover or torching : the drying of tree canopies and their subsequent ignition from below. Wildfires have

10829-441: The force of tornadoes at speeds of more than 80 kilometres per hour (50 mph). Rapid rates of spread, prolific crowning or spotting, the presence of fire whirls, and strong convection columns signify extreme conditions. Intensity also increases during daytime hours. Burn rates of smoldering logs are up to five times greater during the day due to lower humidity, increased temperatures, and increased wind speeds. Sunlight warms

10948-604: The global climate system has grown with only brief pauses since at least 1970, and over 90% of this extra energy has been stored in the ocean . The rest has heated the atmosphere , melted ice, and warmed the continents. The Northern Hemisphere and the North Pole have warmed much faster than the South Pole and Southern Hemisphere . The Northern Hemisphere not only has much more land, but also more seasonal snow cover and sea ice . As these surfaces flip from reflecting

11067-454: The ground during the day which creates air currents that travel uphill. At night the land cools, creating air currents that travel downhill. Wildfires are fanned by these winds and often follow the air currents over hills and through valleys. Fires in Europe occur frequently during the hours of 12:00 p.m. and 2:00 p.m. Wildfire suppression operations in the United States revolve around

11186-495: The infrared signature of carbon dioxide produced by fires. Additional capabilities such as night vision , brightness detection, and color change detection may also be incorporated into sensor arrays . The Department of Natural Resources signed a contract with PanoAI for the installation of 360 degree 'rapid detection' cameras around the Pacific northwest, which are mounted on cell towers and are capable of 24/7 monitoring of

11305-572: The last 14 million years. Concentrations of methane are far higher than they were over the last 800,000 years. Global human-caused greenhouse gas emissions in 2019 were equivalent to 59 billion tonnes of CO 2 . Of these emissions, 75% was CO 2 , 18% was methane , 4% was nitrous oxide, and 2% was fluorinated gases . CO 2 emissions primarily come from burning fossil fuels to provide energy for transport , manufacturing, heating , and electricity. Additional CO 2 emissions come from deforestation and industrial processes , which include

11424-436: The last two decades. CO 2 is only removed from the atmosphere for the long term when it is stored in the Earth's crust, which is a process that can take millions of years to complete. Around 30% of Earth's land area is largely unusable for humans ( glaciers , deserts , etc.), 26% is forests , 10% is shrubland and 34% is agricultural land . Deforestation is the main land use change contributor to global warming, as

11543-441: The last: internal climate variability processes can make any year 0.2 °C warmer or colder than the average. From 1998 to 2013, negative phases of two such processes, Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) caused a short slower period of warming called the " global warming hiatus ". After the "hiatus", the opposite occurred, with years like 2023 exhibiting temperatures well above even

11662-608: The lower atmosphere. Carbon dioxide , the primary greenhouse gas driving global warming, has grown by about 50% and is at levels not seen for millions of years. Climate change has an increasingly large impact on the environment . Deserts are expanding , while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost , retreat of glaciers and sea ice decline . Higher temperatures are also causing more intense storms , droughts, and other weather extremes . Rapid environmental change in mountains , coral reefs , and

11781-413: The more popular term after NASA climate scientist James Hansen used it in his 1988 testimony in the U.S. Senate . Since the 2000s, climate change has increased usage. Various scientists, politicians and media may use the terms climate crisis or climate emergency to talk about climate change, and may use the term global heating instead of global warming . Over the last few million years

11900-484: The preemptive methods aimed at reducing the risk of fires as well as lessening its severity and spread. Prevention techniques aim to manage air quality, maintain ecological balances, protect resources, and to affect future fires. Prevention policies must consider the role that humans play in wildfires, since, for example, 95% of forest fires in Europe are related to human involvement. Wildfire prevention programs around

12019-619: The rate at which heat escapes into space, trapping heat near the Earth's surface and warming it over time. While water vapour (≈50%) and clouds (≈25%) are the biggest contributors to the greenhouse effect, they primarily change as a function of temperature and are therefore mostly considered to be feedbacks that change climate sensitivity . On the other hand, concentrations of gases such as CO 2 (≈20%), tropospheric ozone , CFCs and nitrous oxide are added or removed independently from temperature, and are therefore considered to be external forcings that change global temperatures. Before

12138-522: The rate of Arctic shrinkage and underestimated the rate of precipitation increase. Sea level rise since 1990 was underestimated in older models, but more recent models agree well with observations. The 2017 United States-published National Climate Assessment notes that "climate models may still be underestimating or missing relevant feedback processes". Additionally, climate models may be unable to adequately predict short-term regional climatic shifts. A subset of climate models add societal factors to

12257-622: The rate of yield growth . Fisheries have been negatively affected in multiple regions. While agricultural productivity has been positively affected in some high latitude areas, mid- and low-latitude areas have been negatively affected. According to the World Economic Forum, an increase in drought in certain regions could cause 3.2 million deaths from malnutrition by 2050 and stunting in children. With 2 °C warming, global livestock headcounts could decline by 7–10% by 2050, as less animal feed will be available. If

12376-405: The recent average. This is why the temperature change is defined in terms of a 20-year average, which reduces the noise of hot and cold years and decadal climate patterns, and detects the long-term signal. A wide range of other observations reinforce the evidence of warming. The upper atmosphere is cooling, because greenhouse gases are trapping heat near the Earth's surface, and so less heat

12495-411: The release of chemical compounds that influence clouds, and by changing wind patterns. In tropic and temperate areas the net effect is to produce significant warming, and forest restoration can make local temperatures cooler. At latitudes closer to the poles, there is a cooling effect as forest is replaced by snow-covered (and more reflective) plains. Globally, these increases in surface albedo have been

12614-476: The remaining 23%. Some forests have not been fully cleared, but were already degraded by these impacts. Restoring these forests also recovers their potential as a carbon sink. Local vegetation cover impacts how much of the sunlight gets reflected back into space ( albedo ), and how much heat is lost by evaporation . For instance, the change from a dark forest to grassland makes the surface lighter, causing it to reflect more sunlight. Deforestation can also modify

12733-404: The risk and alter the behavior of wildfires dramatically. Years of high precipitation can produce rapid vegetation growth, which when followed by warmer periods can encourage more widespread fires and longer fire seasons. High temperatures dry out the fuel loads and make them more flammable, increasing tree mortality and posing significant risks to global forest health. Since the mid-1980s, in

12852-583: The sea levels by at least 3.3 m (10 ft 10 in) over approximately 2000 years. Recent warming has driven many terrestrial and freshwater species poleward and towards higher altitudes . For instance, the range of hundreds of North American birds has shifted northward at an average rate of 1.5 km/year over the past 55 years. Higher atmospheric CO 2 levels and an extended growing season have resulted in global greening. However, heatwaves and drought have reduced ecosystem productivity in some regions. The future balance of these opposing effects

12971-399: The techniques used can be as simple as throwing sand or beating the fire with sticks or palm fronds. In more advanced nations, the suppression methods vary due to increased technological capacity. Silver iodide can be used to encourage snow fall, while fire retardants and water can be dropped onto fires by unmanned aerial vehicles , planes , and helicopters . Complete fire suppression

13090-540: The uncontrolled use of fire in land-clearing and agriculture such as the slash-and-burn farming in Southeast Asia. In the tropics , farmers often practice the slash-and-burn method of clearing fields during the dry season . In middle latitudes , the most common human causes of wildfires are equipment generating sparks (chainsaws, grinders, mowers, etc.), overhead power lines , and arson . Arson may account for over 20% of human caused fires. However, in

13209-936: The use of planes, helicopter, or UAVs can provide a wider view and may be sufficient to monitor very large, low risk areas. These more sophisticated systems employ GPS and aircraft-mounted infrared or high-resolution visible cameras to identify and target wildfires. Satellite-mounted sensors such as Envisat 's Advanced Along Track Scanning Radiometer and European Remote-Sensing Satellite 's Along-Track Scanning Radiometer can measure infrared radiation emitted by fires, identifying hot spots greater than 39 °C (102 °F). The National Oceanic and Atmospheric Administration 's Hazard Mapping System combines remote-sensing data from satellite sources such as Geostationary Operational Environmental Satellite (GOES), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Advanced Very High Resolution Radiometer (AVHRR) for detection of fire and smoke plume locations. However, satellite detection

13328-411: The wildfires. While direct emissions of harmful pollutants can affect first responders and residents, wildfire smoke can also be transported over long distances and impact air quality across local, regional, and global scales. The health effects of wildfire smoke, such as worsening cardiovascular and respiratory conditions, extend beyond immediate exposure, contributing to nearly 16,000 annual deaths,

13447-519: The world may employ techniques such as wildland fire use (WFU) and prescribed or controlled burns . Wildland fire use refers to any fire of natural causes that is monitored but allowed to burn. Controlled burns are fires ignited by government agencies under less dangerous weather conditions. Other objectives can include maintenance of healthy forests, rangelands, and wetlands, and support of ecosystem diversity. Strategies for wildfire prevention, detection, control and suppression have varied over

13566-552: The world, such as those in Burning Mountain , New South Wales; Centralia , Pennsylvania; and several coal-sustained fires in China . They can also flare up unexpectedly and ignite nearby flammable material. (Fire) Good luck deleting this, Frost! (Fire) The spread of wildfires varies based on the flammable material present, its vertical arrangement and moisture content, and weather conditions. Fuel arrangement and density

13685-438: The world. Impacts can be observed on all continents and ocean regions, with low-latitude, less developed areas facing the greatest risk. Continued warming has potentially "severe, pervasive and irreversible impacts" for people and ecosystems. The risks are unevenly distributed, but are generally greater for disadvantaged people in developing and developed countries. The World Health Organization calls climate change one of

13804-466: The years. One common and inexpensive technique to reduce the risk of uncontrolled wildfires is controlled burning : intentionally igniting smaller less-intense fires to minimize the amount of flammable material available for a potential wildfire. Vegetation may be burned periodically to limit the accumulation of plants and other debris that may serve as fuel, while also maintaining high species diversity. While other people claim that controlled burns and

13923-465: Was being made on the fire through the combined efforts of firefighters and aircraft. Firefighters were able to turn the direction of the fire away from the Paradise Road community. The Zaca Fire neared containment on September 2. On September 4, 2007, the fire had cost $ 117 million to fight, and was 100% contained. Hotspots within the fire perimeter continued to burn for over another month, until

14042-794: Was organized in South Africa's Kruger National Park to validate fire detection products including the new VIIRS active fire data. In advance of that campaign, the Meraka Institute of the Council for Scientific and Industrial Research in Pretoria, South Africa, an early adopter of the VIIRS 375 m fire product, put it to use during several large wildfires in Kruger. Since 2021 NASA has provided active fire locations in near real-time via

14161-524: Was sending more energy to Earth, but instead, it has been cooling. This is consistent with greenhouse gases preventing heat from leaving the Earth's atmosphere. Explosive volcanic eruptions can release gases, dust and ash that partially block sunlight and reduce temperatures, or they can send water vapour into the atmosphere, which adds to greenhouse gases and increases temperatures. These impacts on temperature only last for several years, because both water vapour and volcanic material have low persistence in

#92907