Misplaced Pages

CHARA array

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The CHARA ( Center for High Angular Resolution Astronomy ) array is an optical interferometer , located on Mount Wilson , California. The array consists of six 1-metre (40 in) telescopes operating as an astronomical interferometer . Construction was completed in 2003. CHARA is owned by Georgia State University (GSU).

#502497

133-402: CHARA's six telescopes each have a one-meter diameter mirror to reflect light. They are spread across Mount Wilson to increase the angular resolution of the array. Each of the six telescopes provides a different image, to combine it into one image the light from each telescope is transported through vacuum tubes and fed into a single beam, where they are matched up to within one micron. This process

266-440: A chemical equation . While in a non-nuclear chemical reaction the number and kind of atoms on both sides of the equation are equal, for a nuclear reaction this holds true only for the nuclear particles viz. protons and neutrons. The sequence of steps in which the reorganization of chemical bonds may be taking place in the course of a chemical reaction is called its mechanism . A chemical reaction can be envisioned to take place in

399-504: A waveguide that are externally modulated to vary their relative phase. A slight tilt of one of the beam splitters will result in a path difference and a change in the interference pattern. Mach–Zehnder interferometers are the basis of a wide variety of devices, from RF modulators to sensors to optical switches . The latest proposed extremely large astronomical telescopes , such as the Thirty Meter Telescope and

532-404: A FOG, the observed phase shift is proportional to the angular velocity. In telecommunication networks, heterodyning is used to move frequencies of individual signals to different channels which may share a single physical transmission line. This is called frequency division multiplexing (FDM). For example, a coaxial cable used by a cable television system can carry 500 television channels at

665-408: A Fabry–Pérot system. Compared with Lyot filters, which use birefringent elements, Michelson interferometers have a relatively low temperature sensitivity. On the negative side, Michelson interferometers have a relatively restricted wavelength range and require use of prefilters which restrict transmittance. Fig. 8 illustrates the operation of a Fourier transform spectrometer, which is essentially

798-405: A Michelson interferometer with one mirror movable. (A practical Fourier transform spectrometer would substitute corner cube reflectors for the flat mirrors of the conventional Michelson interferometer, but for simplicity, the illustration does not show this.) An interferogram is generated by making measurements of the signal at many discrete positions of the moving mirror. A Fourier transform converts

931-467: A chemical reaction is said to have occurred. A chemical reaction is therefore a concept related to the "reaction" of a substance when it comes in close contact with another, whether as a mixture or a solution ; exposure to some form of energy, or both. It results in some energy exchange between the constituents of the reaction as well as with the system environment, which may be designed vessels—often laboratory glassware . Chemical reactions can result in

1064-470: A chemical transformation is the rearrangement of electrons in the chemical bonds between atoms. It can be symbolically depicted through a chemical equation , which usually involves atoms as subjects. The number of atoms on the left and the right in the equation for a chemical transformation is equal. (When the number of atoms on either side is unequal, the transformation is referred to as a nuclear reaction or radioactive decay .) The type of chemical reactions

1197-412: A dense core called the atomic nucleus surrounded by a space occupied by an electron cloud . The nucleus is made up of positively charged protons and uncharged neutrons (together called nucleons ), while the electron cloud consists of negatively charged electrons which orbit the nucleus. In a neutral atom, the negatively charged electrons balance out the positive charge of the protons. The nucleus

1330-401: A difference in surface elevation of half a wavelength of the light used, so differences in elevation can be measured by counting the fringes. The flatness of the surfaces can be measured to millionths of an inch by this method. To determine whether the surface being tested is concave or convex with respect to the reference optical flat, any of several procedures may be adopted. One can observe how

1463-535: A directed beam in a vacuum in a mass spectrometer . Charged polyatomic collections residing in solids (for example, common sulfate or nitrate ions) are generally not considered "molecules" in chemistry. Some molecules contain one or more unpaired electrons, creating radicals . Most radicals are comparatively reactive, but some, such as nitric oxide (NO) can be stable. The "inert" or noble gas elements ( helium , neon , argon , krypton , xenon and radon ) are composed of lone atoms as their smallest discrete unit, but

SECTION 10

#1732771956503

1596-431: A distinctive colored fringe pattern, far outweighed the difficulties of aligning the apparatus due to its low coherence length . This was an early example of the use of white light to resolve the "2 pi ambiguity". In physics, one of the most important experiments of the late 19th century was the famous "failed experiment" of Michelson and Morley which provided evidence for special relativity . Recent repetitions of

1729-426: A heavy "scatterer" element (such as molybdenum). Approximately 100 layers of each type were placed on each mirror, with a thickness of around 10 nm each. The layer thicknesses were tightly controlled so that at the desired wavelength, reflected photons from each layer interfered constructively. The Laser Interferometer Gravitational-Wave Observatory (LIGO) uses two 4-km Michelson–Fabry–Pérot interferometers for

1862-488: A high Q factor (i.e., high finesse), monochromatic light produces a set of narrow bright rings against a dark background. In Fig. 6, the low-finesse image corresponds to a reflectivity of 0.04 (i.e., unsilvered surfaces) versus a reflectivity of 0.95 for the high-finesse image. Fig. 6 illustrates the Fizeau, Mach–Zehnder, and Fabry–Pérot interferometers. Other examples of amplitude splitting interferometer include

1995-452: A lens. Light from a monochromatic point source is expanded by a diverging lens (not shown), then is collimated into a parallel beam. A convex spherical mirror is positioned so that its center of curvature coincides with the focus of the lens being tested. The emergent beam is recorded by an imaging system for analysis. Mach–Zehnder interferometers are being used in integrated optical circuits , in which light interferes between two branches of

2128-553: A minus sign in their wave function. In other words, a fermion needs to be rotated 720° before returning to its original state. Atom interferometry techniques are reaching sufficient precision to allow laboratory-scale tests of general relativity . Interferometers are used in atmospheric physics for high-precision measurements of trace gases via remote sounding of the atmosphere. There are several examples of interferometers that utilize either absorption or emission features of trace gases. A typical use would be in continual monitoring of

2261-430: A number of advantages and disadvantages when compared with competing technologies such as Fabry–Pérot interferometers or Lyot filters . Michelson interferometers have the largest field of view for a specified wavelength, and are relatively simple in operation, since tuning is via mechanical rotation of waveplates rather than via high voltage control of piezoelectric crystals or lithium niobate optical modulators as used in

2394-411: A number of steps, each of which may have a different speed. Many reaction intermediates with variable stability can thus be envisaged during the course of a reaction. Reaction mechanisms are proposed to explain the kinetics and the relative product mix of a reaction. Many physical chemists specialize in exploring and proposing the mechanisms of various chemical reactions. Several empirical rules, like

2527-435: A number of technical issues not shared by radio telescope interferometry. The short wavelengths of light necessitate extreme precision and stability of construction. For example, spatial resolution of 1 milliarcsecond requires 0.5 μm stability in a 100 m baseline. Optical interferometric measurements require high sensitivity, low noise detectors that did not become available until the late 1990s. Astronomical "seeing" ,

2660-424: A particular substance per volume of solution , and is commonly reported in mol/ dm . In addition to the specific chemical properties that distinguish different chemical classifications, chemicals can exist in several phases. For the most part, the chemical classifications are independent of these bulk phase classifications; however, some more exotic phases are incompatible with certain chemical properties. A phase

2793-504: A pattern of colored fringes (see Fig. 3). The central fringe representing equal path length may be light or dark depending on the number of phase inversions experienced by the two beams as they traverse the optical system. (See Michelson interferometer for a discussion of this.) The law of interference of light was described by Thomas Young in his 1803 Bakerian Lecture to the Royal Society of London. In preparation for

SECTION 20

#1732771956503

2926-405: A pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. However, this definition only works well for substances that are composed of molecules, which is not true of many substances (see below). Molecules are typically a set of atoms bound together by covalent bonds , such that the structure

3059-456: A reference mirror of equal size to the test mirror, making the Twyman–Green impractical for many purposes. Decades later, the advent of laser light sources answered Michelson's objections. (A Twyman–Green interferometer using a laser light source and unequal path length is known as a Laser Unequal Path Interferometer, or LUPI.) Fig. 14 illustrates a Twyman–Green interferometer set up to test

3192-415: A resolution equivalent to that of a telescope of diameter equal to the largest separation between its individual elements. Interferometry makes use of the principle of superposition to combine waves in a way that will cause the result of their combination to have some meaningful property that is diagnostic of the original state of the waves. This works because when two waves with the same frequency combine,

3325-564: A single point it is also possible to perform this widefield. A double-path interferometer is one in which the reference beam and sample beam travel along divergent paths. Examples include the Michelson interferometer , the Twyman–Green interferometer , and the Mach–Zehnder interferometer . After being perturbed by interaction with the sample under test, the sample beam is recombined with

3458-580: A single spectral line for imaging; for example, the H-alpha line or the Ca-K line of the Sun or stars. Fig. 10 shows an Extreme ultraviolet Imaging Telescope (EIT) image of the Sun at 195 Ångströms (19.5 nm), corresponding to a spectral line of multiply-ionized iron atoms. EIT used multilayer coated reflective mirrors that were coated with alternate layers of a light "spacer" element (such as silicon), and

3591-804: A splitting aperture as the Arago interferometer did) in 1856. In 1881, the American physicist Albert A. Michelson , while visiting Hermann von Helmholtz in Berlin, invented the interferometer that is named after him, the Michelson Interferometer , to search for effects of the motion of the Earth on the speed of light. Michelson's null results performed in the basement of the Potsdam Observatory outside of Berlin (the horse traffic in

3724-609: A substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws . Energy and entropy considerations are invariably important in almost all chemical studies. Chemical substances are classified in terms of their structure , phase, as well as their chemical compositions . They can be analyzed using the tools of chemical analysis , e.g. spectroscopy and chromatography . Scientists engaged in chemical research are known as chemists . Most chemists specialize in one or more sub-disciplines. Several concepts are essential for

3857-407: A symmetrical pattern of colored fringes of diminishing intensity. In addition to continuous electromagnetic radiation, Young's experiment has been performed with individual photons, with electrons, and with buckyball molecules large enough to be seen under an electron microscope . Lloyd's mirror generates interference fringes by combining direct light from a source (blue lines) and light from

3990-464: A uniform fringe pattern. Lacking modern means of environmental temperature control , experimentalists struggled with continual fringe drift even though the interferometer might be set up in a basement. Since the fringes would occasionally disappear due to vibrations by passing horse traffic, distant thunderstorms and the like, it would be easy for an observer to "get lost" when the fringes returned to visibility. The advantages of white light, which produced

4123-497: A value slightly different than that obtained from indirect, more conventional methods. In 2013 CHARA was used to capture images showing the starspots on Zeta Andromedae , a star 181 light years away. This was the first time that images of starspots on stars other than the Sun were taken. CHARA directly observed binary stars , such as Beta Lyrae and Algol . CHARA directly imaged multiple stars, such as Regulus , Rasalhague , Altair , Alderamin and Beta Cassiopeiae to measure

CHARA array - Misplaced Pages Continue

4256-403: A variety of criteria: In homodyne detection , the interference occurs between two beams at the same wavelength (or carrier frequency ). The phase difference between the two beams results in a change in the intensity of the light on the detector. The resulting intensity of the light after mixing of these two beams is measured, or the pattern of interference fringes is viewed or recorded. Most of

4389-414: Is a pure substance which is composed of a single type of atom, characterized by its particular number of protons in the nuclei of its atoms, known as the atomic number and represented by the symbol Z . The mass number is the sum of the number of protons and neutrons in a nucleus. Although all the nuclei of all atoms belonging to one element will have the same atomic number, they may not necessarily have

4522-409: Is a set of states of a chemical system that have similar bulk structural properties, over a range of conditions, such as pressure or temperature . Physical properties, such as density and refractive index tend to fall within values characteristic of the phase. The phase of matter is defined by the phase transition , which is when energy put into or taken out of the system goes into rearranging

4655-586: Is a very useful means for predicting the feasibility of a reaction and determining the state of equilibrium of a chemical reaction, in chemical thermodynamics . A reaction is feasible only if the total change in the Gibbs free energy is negative, Δ G ≤ 0 {\displaystyle \Delta G\leq 0\,} ; if it is equal to zero the chemical reaction is said to be at equilibrium . There exist only limited possible states of energy for electrons, atoms and molecules. These are determined by

4788-422: Is also possible to define analogs in two-dimensional systems, which has received attention for its relevance to systems in biology . Atoms sticking together in molecules or crystals are said to be bonded with one another. A chemical bond may be visualized as the multipole balance between the positive charges in the nuclei and the negative charges oscillating about them. More than simple attraction and repulsion,

4921-439: Is also used to identify the composition of remote objects – like stars and distant galaxies – by analyzing their radiation spectra. The term chemical energy is often used to indicate the potential of a chemical substance to undergo a transformation through a chemical reaction or to transform other chemical substances. When a chemical substance is transformed as a result of its interaction with another substance or with energy,

5054-423: Is an imaging technique that photographically records the electron interference pattern of an object, which is then reconstructed to yield a greatly magnified image of the original object. This technique was developed to enable greater resolution in electron microscopy than is possible using conventional imaging techniques. The resolution of conventional electron microscopy is not limited by electron wavelength, but by

5187-570: Is an important investigative technique in the fields of astronomy , fiber optics , engineering metrology , optical metrology, oceanography , seismology , spectroscopy (and its applications to chemistry ), quantum mechanics , nuclear and particle physics , plasma physics , biomolecular interactions , surface profiling, microfluidics , mechanical stress/strain measurement, velocimetry , optometry , and making holograms . Interferometers are devices that extract information from interference. They are widely used in science and industry for

5320-485: Is called interferometry , and allows the array to have the same resolving power as a telescope with a 330-meter mirror, and an angular resolution of 200 micro-arcseconds. In 1984 CHARA was founded, and with financial support from the National Science Foundation (NSF), in 1985 planning for the array began. Construction for the array started on July 13, 1996, and with $ 6.3 million awarded to GSU by

5453-464: Is called a mixture. Examples of mixtures are air and alloys . The mole is a unit of measurement that denotes an amount of substance (also called chemical amount). One mole is defined to contain exactly 6.022 140 76 × 10 particles ( atoms , molecules , ions , or electrons ), where the number of particles per mole is known as the Avogadro constant . Molar concentration is the amount of

CHARA array - Misplaced Pages Continue

5586-523: Is composed of gaseous matter that has been completely ionized, usually through high temperature. A substance can often be classified as an acid or a base . There are several different theories which explain acid–base behavior. The simplest is Arrhenius theory , which states that acid is a substance that produces hydronium ions when it is dissolved in water, and a base is one that produces hydroxide ions when dissolved in water. According to Brønsted–Lowry acid–base theory , acids are substances that donate

5719-472: Is dense; the mass of a nucleon is approximately 1,836 times that of an electron, yet the radius of an atom is about 10,000 times that of its nucleus. The atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity , ionization potential , preferred oxidation state (s), coordination number , and preferred types of bonds to form (e.g., metallic , ionic , covalent ). A chemical element

5852-513: Is directed towards the spherical reference surface, and the first-order diffracted beam is directed towards the test surface in such a way that the two reflected beams combine to form interference fringes. The same test setup can be used for the innermost mirrors as for the outermost, with only the CGH needing to be exchanged. Ring laser gyroscopes (RLGs) and fibre optic gyroscopes (FOGs) are interferometers used in navigation systems. They operate on

5985-407: Is done. Unlike the figure, actual CGHs have line spacing on the order of 1 to 10 μm. When laser light is passed through the CGH, the zero-order diffracted beam experiences no wavefront modification. The wavefront of the first-order diffracted beam, however, is modified to match the desired shape of the test surface. In the illustrated Fizeau interferometer test setup, the zero-order diffracted beam

6118-464: Is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs . Thus, molecules exist as electrically neutral units, unlike ions. When this rule is broken, giving the "molecule" a charge, the result is sometimes named a molecular ion or a polyatomic ion. However, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well-separated form, such as

6251-537: Is more easily transferred between substances relative to light or other forms of electronic energy. For example, ultraviolet electromagnetic radiation is not transferred with as much efficacy from one substance to another as thermal or electrical energy. The existence of characteristic energy levels for different chemical substances is useful for their identification by the analysis of spectral lines . Different kinds of spectra are often used in chemical spectroscopy , e.g. IR , microwave , NMR , ESR , etc. Spectroscopy

6384-400: Is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. For example, chemistry explains aspects of plant growth ( botany ), the formation of igneous rocks ( geology ), how atmospheric ozone is formed and how environmental pollutants are degraded ( ecology ), the properties of the soil on

6517-507: Is that light traveling an equal optical path length in the test and reference beams produces a white light fringe of constructive interference. The heart of the Fabry–Pérot interferometer is a pair of partially silvered glass optical flats spaced several millimeters to centimeters apart with the silvered surfaces facing each other. (Alternatively, a Fabry–Pérot etalon uses a transparent plate with two parallel reflecting surfaces.) As with

6650-468: Is the crystal structure , or arrangement, of the atoms. Another phase commonly encountered in the study of chemistry is the aqueous phase, which is the state of substances dissolved in aqueous solution (that is, in water). Less familiar phases include plasmas , Bose–Einstein condensates and fermionic condensates and the paramagnetic and ferromagnetic phases of magnetic materials. While most familiar phases deal with three-dimensional systems, it

6783-458: Is the quantum mechanical model . Traditional chemistry starts with the study of elementary particles , atoms , molecules , substances , metals , crystals and other aggregates of matter . Matter can be studied in solid, liquid, gas and plasma states , in isolation or in combination. The interactions, reactions and transformations that are studied in chemistry are usually the result of interactions between atoms, leading to rearrangements of

SECTION 50

#1732771956503

6916-507: Is the probability of a molecule to have energy greater than or equal to E at the given temperature T. This exponential dependence of a reaction rate on temperature is known as the Arrhenius equation . The activation energy necessary for a chemical reaction to occur can be in the form of heat, light, electricity or mechanical force in the form of ultrasound . A related concept free energy , which also incorporates entropy considerations,

7049-449: Is this introduced phase difference that creates the interference pattern between the initially identical waves. If a single beam has been split along two paths, then the phase difference is diagnostic of anything that changes the phase along the paths. This could be a physical change in the path length itself or a change in the refractive index along the path. As seen in Fig. 2a and 2b,

7182-526: Is useful in identifying periodic trends . A compound is a pure chemical substance composed of more than one element. The properties of a compound bear little similarity to those of its elements. The standard nomenclature of compounds is set by the International Union of Pure and Applied Chemistry (IUPAC). Organic compounds are named according to the organic nomenclature system. The names for inorganic compounds are created according to

7315-576: The Beta Lyrae system, a binary star system approximately 960 light-years (290 parsecs) away in the constellation Lyra, as observed by the CHARA array with the MIRC instrument. The brighter component is the primary star, or the mass donor. The fainter component is the thick disk surrounding the secondary star, or the mass gainer. The two components are separated by 1 milli-arcsecond. Tidal distortions of

7448-637: The Extremely Large Telescope , will be of segmented design. Their primary mirrors will be built from hundreds of hexagonal mirror segments. Polishing and figuring these highly aspheric and non-rotationally symmetric mirror segments presents a major challenge. Traditional means of optical testing compares a surface against a spherical reference with the aid of a null corrector . In recent years, computer-generated holograms (CGHs) have begun to supplement null correctors in test setups for complex aspheric surfaces. Fig. 15 illustrates how this

7581-474: The Michelson , Twyman–Green , Laser Unequal Path, and Linnik interferometer . Michelson and Morley (1887) and other early experimentalists using interferometric techniques in an attempt to measure the properties of the luminiferous aether , used monochromatic light only for initially setting up their equipment, always switching to white light for the actual measurements. The reason is that measurements were recorded visually. Monochromatic light would result in

7714-711: The Very Large Array illustrated in Fig ;11, used arrays of telescopes arranged in a pattern on the ground. A limited number of baselines will result in insufficient coverage. This was alleviated by using the rotation of the Earth to rotate the array relative to the sky. Thus, a single baseline could measure information in multiple orientations by taking repeated measurements, a technique called Earth-rotation synthesis . Baselines thousands of kilometers long were achieved using very long baseline interferometry . Astronomical optical interferometry has had to overcome

7847-509: The Woodward–Hoffmann rules often come in handy while proposing a mechanism for a chemical reaction. According to the IUPAC gold book, a chemical reaction is "a process that results in the interconversion of chemical species." Accordingly, a chemical reaction may be an elementary reaction or a stepwise reaction . An additional caveat is made, in that this definition includes cases where

7980-571: The Zernike phase-contrast microscope , Fresnel's biprism , the zero-area Sagnac , and the scatterplate interferometer . A wavefront splitting interferometer divides a light wavefront emerging from a point or a narrow slit ( i.e. spatially coherent light) and, after allowing the two parts of the wavefront to travel through different paths, allows them to recombine. Fig. 5 illustrates Young's interference experiment and Lloyd's mirror . Other examples of wavefront splitting interferometer include

8113-455: The chemical bonds which hold atoms together. Such behaviors are studied in a chemistry laboratory . The chemistry laboratory stereotypically uses various forms of laboratory glassware . However glassware is not central to chemistry, and a great deal of experimental (as well as applied/industrial) chemistry is done without it. A chemical reaction is a transformation of some substances into one or more different substances. The basis of such

SECTION 60

#1732771956503

8246-421: The chemical elements that make up matter and compounds made of atoms , molecules and ions : their composition, structure, properties, behavior and the changes they undergo during reactions with other substances . Chemistry also addresses the nature of chemical bonds in chemical compounds . In the scope of its subject, chemistry occupies an intermediate position between physics and biology . It

8379-493: The chemical industry . The word chemistry comes from a modification during the Renaissance of the word alchemy , which referred to an earlier set of practices that encompassed elements of chemistry, metallurgy , philosophy , astrology , astronomy , mysticism , and medicine . Alchemy is often associated with the quest to turn lead or other base metals into gold, though alchemists were also interested in many of

8512-469: The duet rule , and in this way they are reaching the electron configuration of the noble gas helium , which has two electrons in its outer shell. Similarly, theories from classical physics can be used to predict many ionic structures. With more complicated compounds, such as metal complexes , valence bond theory is less applicable and alternative approaches, such as the molecular orbital theory, are generally used. See diagram on electronic orbitals. In

8645-510: The inorganic nomenclature system. When a compound has more than one component, then they are divided into two classes, the electropositive and the electronegative components. In addition the Chemical Abstracts Service has devised a method to index chemical substances. In this scheme each chemical substance is identifiable by a number known as its CAS registry number . A molecule is the smallest indivisible portion of

8778-500: The interconversion of conformers is experimentally observable. Such detectable chemical reactions normally involve sets of molecular entities as indicated by this definition, but it is often conceptually convenient to use the term also for changes involving single molecular entities (i.e. 'microscopic chemical events'). An ion is a charged species, an atom or a molecule, that has lost or gained one or more electrons. When an atom loses an electron and thus has more protons than electrons,

8911-529: The intermolecular forces of a substance are such that the energy of the surroundings is not sufficient to overcome them, it occurs in a more ordered phase like liquid or solid as is the case with water (H 2 O); a liquid at room temperature because its molecules are bound by hydrogen bonds . Whereas hydrogen sulfide (H 2 S) is a gas at room temperature and standard pressure, as its molecules are bound by weaker dipole–dipole interactions . The transfer of energy from one chemical substance to another depends on

9044-438: The size of energy quanta emitted from one substance. However, heat energy is often transferred more easily from almost any substance to another because the phonons responsible for vibrational and rotational energy levels in a substance have much less energy than photons invoked for the electronic energy transfer. Thus, because vibrational and rotational energy levels are more closely spaced than electronic energy levels, heat

9177-511: The CHARA array was completed in 2003. In April of the same year, CHARA was awarded a 3-year grant to support scientific programs at the center, which was renewed in 2006. In 2013 another grant from the NSF worth 3.6 million was given to the center. Observatories throughout the world have come to CHARA to test beam combining technology. On January 15, 2007, the diameter of an exoplanet , HD 189733 b ,

9310-472: The Fizeau interferometer, the flats are slightly beveled. In a typical system, illumination is provided by a diffuse source set at the focal plane of a collimating lens. A focusing lens produces what would be an inverted image of the source if the paired flats were not present, i.e., in the absence of the paired flats, all light emitted from point A passing through the optical system would be focused at point A'. In Fig. 6, only one ray emitted from point A on

9443-650: The Fresnel biprism, the Billet Bi-Lens, diffraction-grating Michelson interferometer, and the Rayleigh interferometer . In 1803, Young's interference experiment played a major role in the general acceptance of the wave theory of light. If white light is used in Young's experiment, the result is a white central band of constructive interference corresponding to equal path length from the two slits, surrounded by

9576-460: The Michelson configuration are the use of a monochromatic point light source and a collimator. Michelson (1918) criticized the Twyman–Green configuration as being unsuitable for the testing of large optical components, since the light sources available at the time had limited coherence length . Michelson pointed out that constraints on geometry forced by limited coherence length required the use of

9709-478: The Michelson–Morley experiment perform heterodyne measurements of beat frequencies of crossed cryogenic optical resonators . Fig 7 illustrates a resonator experiment performed by Müller et al. in 2003. Two optical resonators constructed from crystalline sapphire, controlling the frequencies of two lasers, were set at right angles within a helium cryostat. A frequency comparator measured the beat frequency of

9842-546: The Moon ( cosmochemistry ), how medications work ( pharmacology ), and how to collect DNA evidence at a crime scene ( forensics ). Chemistry has existed under various names since ancient times. It has evolved, and now chemistry encompasses various areas of specialisation, or subdisciplines, that continue to increase in number and interrelate to create further interdisciplinary fields of study. The applications of various fields of chemistry are used frequently for economic purposes in

9975-456: The NSF, and the same amount matched by GSU, going towards the effort. In July 1998, GSU was awarded another $ 1.5 million by W.M. Keck Foundation, which allowed for a sixth telescope to be added to the previously planned five. With a final gift of $ 574,000 from David and Lucile Packard Foundation , the funding for the array was completed in October 1998. After another five years of construction,

10108-515: The Valence Shell Electron Pair Repulsion model ( VSEPR ), and the concept of oxidation number can be used to explain molecular structure and composition. An ionic bond is formed when a metal loses one or more of its electrons, becoming a positively charged cation, and the electrons are then gained by the non-metal atom, becoming a negatively charged anion. The two oppositely charged ions attract one another, and

10241-411: The amplitude of the incident wave into separate beams which are separated and recombined. The Fizeau interferometer is shown as it might be set up to test an optical flat . A precisely figured reference flat is placed on top of the flat being tested, separated by narrow spacers. The reference flat is slightly beveled (only a fraction of a degree of beveling is necessary) to prevent the rear surface of

10374-468: The amplitudes of the input signals. The most important and widely used application of the heterodyne technique is in the superheterodyne receiver (superhet), invented in 1917-18 by U.S. engineer Edwin Howard Armstrong and French engineer Lucien Lévy . In this circuit, the incoming radio frequency signal from the antenna is mixed with a signal from a local oscillator (LO) and converted by

10507-539: The array are discussed. The center also gives access to the array to the astronomical community using the National Optical Astronomy Observatory peer review system for around 50 nights per year. They also have periodic community workshops. Interferometry Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and

10640-494: The atom is a positively charged ion or cation . When an atom gains an electron and thus has more electrons than protons, the atom is a negatively charged ion or anion . Cations and anions can form a crystalline lattice of neutral salts , such as the Na and Cl ions forming sodium chloride , or NaCl. Examples of polyatomic ions that do not split up during acid–base reactions are hydroxide (OH ) and phosphate (PO 4 ). Plasma

10773-540: The center of Berlin created too many vibrations), and his later more-accurate null results observed with Edward W. Morley at Case College in Cleveland, Ohio, contributed to the growing crisis of the luminiferous ether. Einstein stated that it was Fizeau's measurement of the speed of light in moving water using the Arago interferometer that inspired his theory of the relativistic addition of velocities. Interferometers and interferometric techniques may be categorized by

10906-496: The column concentration of trace gases such as ozone and carbon monoxide above the instrument. Newton (test plate) interferometry is frequently used in the optical industry for testing the quality of surfaces as they are being shaped and figured. Fig. 13 shows photos of reference flats being used to check two test flats at different stages of completion, showing the different patterns of interference fringes. The reference flats are resting with their bottom surfaces in contact with

11039-406: The combined outputs of the two resonators. As of 2009 , the precision by which anisotropy of the speed of light can be excluded in resonator experiments is at the 10 level. Michelson interferometers are used in tunable narrow band optical filters and as the core hardware component of Fourier transform spectrometers . When used as a tunable narrow band filter, Michelson interferometers exhibit

11172-412: The context of chemistry, energy is an attribute of a substance as a consequence of its atomic , molecular or aggregate structure . Since a chemical transformation is accompanied by a change in one or more of these kinds of structures, it is invariably accompanied by an increase or decrease of energy of the substances involved. Some energy is transferred between the surroundings and the reactants of

11305-481: The detection of gravitational waves . In this application, the Fabry–Pérot cavity is used to store photons for almost a millisecond while they bounce up and down between the mirrors. This increases the time a gravitational wave can interact with the light, which results in a better sensitivity at low frequencies. Smaller cavities, usually called mode cleaners, are used for spatial filtering and frequency stabilization of

11438-512: The difference in optical path lengths . In analytical science, interferometers are used to measure lengths and the shape of optical components with nanometer precision; they are the highest-precision length measuring instruments in existence. In Fourier transform spectroscopy they are used to analyze light containing features of absorption or emission associated with a substance or mixture. An astronomical interferometer consists of two or more separate telescopes that combine their signals, offering

11571-429: The energies and distributions characterize the availability of an electron to bond to another atom. The chemical bond can be a covalent bond , an ionic bond , a hydrogen bond or just because of Van der Waals force . Each of these kinds of bonds is ascribed to some potential. These potentials create the interactions which hold atoms together in molecules or crystals . In many simple compounds, valence bond theory ,

11704-426: The flat from producing interference fringes. Separating the test and reference flats allows the two flats to be tilted with respect to each other. By adjusting the tilt, which adds a controlled phase gradient to the fringe pattern, one can control the spacing and direction of the fringes, so that one may obtain an easily interpreted series of nearly parallel fringes rather than a complex swirl of contour lines. Separating

11837-411: The flats are ready for sale, they will typically be mounted in a Fizeau interferometer for formal testing and certification. Fabry-Pérot etalons are widely used in telecommunications , lasers and spectroscopy to control and measure the wavelengths of light. Dichroic filters are multiple layer thin-film etalons. In telecommunications, wavelength-division multiplexing , the technology that enables

11970-538: The flattened shape of these rapidly rotating stars. Because the equator is further from the center of the star, it will appear cooler than the poles, an effect called gravity darkening . The CHARA array can also resolve the circumstellar disks around Be-stars and measure the disk precession variations. In 2022, the array was used to observe the disc of the hypergiant star RW Cephei during its ongoing dimming event. CHARA holds annual science meetings where recent advancements in science and technologies relevant to

12103-444: The formation or dissociation of molecules, that is, molecules breaking apart to form two or more molecules or rearrangement of atoms within or across molecules. Chemical reactions usually involve the making or breaking of chemical bonds. Oxidation, reduction , dissociation , acid–base neutralization and molecular rearrangement are some examples of common chemical reactions. A chemical reaction can be symbolically depicted through

12236-433: The fringes are displaced when one presses gently on the top flat. If one observes the fringes in white light, the sequence of colors becomes familiar with experience and aids in interpretation. Finally one may compare the appearance of the fringes as one moves ones head from a normal to an oblique viewing position. These sorts of maneuvers, while common in the optical shop, are not suitable in a formal testing environment. When

12369-434: The fringes would be adjusted to lie in the same plane as the test object, so that fringes and test object can be photographed together. If it is decided to produce fringes in white light, then, since white light has a limited coherence length , on the order of micrometers , great care must be taken to equalize the optical paths or no fringes will be visible. As illustrated in Fig. 6, a compensating cell would be placed in

12502-411: The heterodyne technique to a lower fixed frequency signal called the intermediate frequency (IF). This IF is amplified and filtered, before being applied to a detector which extracts the audio signal, which is sent to the loudspeaker. Optical heterodyne detection is an extension of the heterodyne technique to higher (visible) frequencies. While optical heterodyne interferometry is usually done at

12635-405: The input signals creates two new signals, one at the sum f 1  + f 2 of the two frequencies, and the other at the difference f 1  − f 2 . These new frequencies are called heterodynes . Typically only one of the new frequencies is desired, and the other signal is filtered out of the output of the mixer. The output signal will have an intensity proportional to the product of

12768-548: The interferogram into an actual spectrum. Fig. 9 shows a doppler image of the solar corona made using a tunable Fabry-Pérot interferometer to recover scans of the solar corona at a number of wavelengths near the FeXIV green line. The picture is a color-coded image of the doppler shift of the line, which may be associated with the coronal plasma velocity towards or away from the satellite camera. Fabry–Pérot thin-film etalons are used in narrow bandpass filters capable of selecting

12901-403: The interferometers discussed in this article fall into this category. The heterodyne technique is used for (1) shifting an input signal into a new frequency range as well as (2) amplifying a weak input signal (assuming use of an active mixer ). A weak input signal of frequency f 1 is mixed with a strong reference frequency f 2 from a local oscillator (LO). The nonlinear combination of

13034-445: The ionic bond is the electrostatic force of attraction between them. For example, sodium (Na), a metal, loses one electron to become an Na cation while chlorine (Cl), a non-metal, gains this electron to become Cl . The ions are held together due to electrostatic attraction, and that compound sodium chloride (NaCl), or common table salt, is formed. In a covalent bond, one or more pairs of valence electrons are shared by two atoms:

13167-541: The large aberrations of electron lenses. Neutron interferometry has been used to investigate the Aharonov–Bohm effect , to examine the effects of gravity acting on an elementary particle, and to demonstrate a strange behavior of fermions that is at the basis of the Pauli exclusion principle : Unlike macroscopic objects, when fermions are rotated by 360° about any axis, they do not return to their original state, but develop

13300-434: The lecture, Young performed a double-aperture experiment that demonstrated interference fringes. His interpretation in terms of the interference of waves was rejected by most scientists at the time because of the dominance of Isaac Newton's corpuscular theory of light proposed a century before. The French engineer Augustin-Jean Fresnel , unaware of Young's results, began working on a wave theory of light and interference and

13433-473: The main characteristics of a molecule is its geometry often called its structure . While the structure of diatomic, triatomic or tetra-atomic molecules may be trivial, (linear, angular pyramidal etc.) the structure of polyatomic molecules, that are constituted of more than six atoms (of several elements) can be crucial for its chemical nature. A chemical substance is a kind of matter with a definite composition and set of properties . A collection of substances

13566-572: The main laser. The first observation of gravitational waves occurred on September 14, 2015. The Mach–Zehnder interferometer's relatively large and freely accessible working space, and its flexibility in locating the fringes has made it the interferometer of choice for visualizing flow in wind tunnels, and for flow visualization studies in general. It is frequently used in the fields of aerodynamics, plasma physics and heat transfer to measure pressure, density, and temperature changes in gases. Mach–Zehnder interferometers are also used to study one of

13699-405: The mass donor and the mass gainer are both clearly visible. The wave character of matter can be exploited to build interferometers. The first examples of matter interferometers were electron interferometers , later followed by neutron interferometers . Around 1990 the first atom interferometers were demonstrated, later followed by interferometers employing molecules. Electron holography

13832-429: The measurement of microscopic displacements, refractive index changes and surface irregularities. In the case with most interferometers, light from a single source is split into two beams that travel in different optical paths , which are then combined again to produce interference; two incoherent sources can also be made to interfere under some circumstances. The resulting interference fringes give information about

13965-474: The most counterintuitive predictions of quantum mechanics, the phenomenon known as quantum entanglement . An astronomical interferometer achieves high-resolution observations using the technique of aperture synthesis , mixing signals from a cluster of comparatively small telescopes rather than a single very expensive monolithic telescope. Early radio telescope interferometers used a single baseline for measurement. Later astronomical interferometers, such as

14098-399: The observer has a direct view of mirror M 1 seen through the beam splitter, and sees a reflected image M ′ 2 of mirror M 2 . The fringes can be interpreted as the result of interference between light coming from the two virtual images S ′ 1 and S ′ 2 of the original source S . The characteristics of the interference pattern depend on the nature of the light source and

14231-419: The other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. Identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals . However, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that make up

14364-409: The path of the reference beam to match the test cell. Note also the precise orientation of the beam splitters. The reflecting surfaces of the beam splitters would be oriented so that the test and reference beams pass through an equal amount of glass. In this orientation, the test and reference beams each experience two front-surface reflections, resulting in the same number of phase inversions. The result

14497-485: The plates, however, necessitates that the illuminating light be collimated. Fig 6 shows a collimated beam of monochromatic light illuminating the two flats and a beam splitter allowing the fringes to be viewed on-axis. The Mach–Zehnder interferometer is a more versatile instrument than the Michelson interferometer. Each of the well separated light paths is traversed only once, and the fringes can be adjusted so that they are localized in any desired plane. Typically,

14630-417: The precise orientation of the mirrors and beam splitter. In Fig. 2a, the optical elements are oriented so that S ′ 1 and S ′ 2 are in line with the observer, and the resulting interference pattern consists of circles centered on the normal to M 1 and M' 2 . If, as in Fig. 2b, M 1 and M ′ 2 are tilted with respect to each other, the interference fringes will generally take

14763-452: The principle of the Sagnac effect . The distinction between RLGs and FOGs is that in a RLG, the entire ring is part of the laser while in a FOG, an external laser injects counter-propagating beams into an optical fiber ring, and rotation of the system then causes a relative phase shift between those beams. In a RLG, the observed phase shift is proportional to the accumulated rotation, while in

14896-631: The questions of modern chemistry. The modern word alchemy in turn is derived from the Arabic word al-kīmīā ( الكیمیاء ). This may have Egyptian origins since al-kīmīā is derived from the Ancient Greek χημία , which is in turn derived from the word Kemet , which is the ancient name of Egypt in the Egyptian language. Alternately, al-kīmīā may derive from χημεία 'cast together'. The current model of atomic structure

15029-478: The reaction absorbs heat from the surroundings. Chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy . The speed of a chemical reaction (at given temperature T) is related to the activation energy E, by the Boltzmann's population factor e − E / k T {\displaystyle e^{-E/kT}} – that

15162-433: The reaction in the form of heat or light ; thus the products of a reaction may have more or less energy than the reactants. A reaction is said to be exergonic if the final state is lower on the energy scale than the initial state; in the case of endergonic reactions the situation is the reverse. A reaction is said to be exothermic if the reaction releases heat to the surroundings; in the case of endothermic reactions ,

15295-439: The reference beam to create an interference pattern which can then be interpreted. A common-path interferometer is a class of interferometer in which the reference beam and sample beam travel along the same path. Fig. 4 illustrates the Sagnac interferometer , the fibre optic gyroscope , the point diffraction interferometer , and the lateral shearing interferometer . Other examples of common path interferometer include

15428-544: The resulting electrically neutral group of bonded atoms is termed a molecule . Atoms will share valence electrons in such a way as to create a noble gas electron configuration (eight electrons in their outermost shell) for each atom. Atoms that tend to combine in such a way that they each have eight electrons in their valence shell are said to follow the octet rule . However, some elements like hydrogen and lithium need only two electrons in their outermost shell to attain this stable configuration; these atoms are said to follow

15561-517: The resulting intensity pattern is determined by the phase difference between the two waves—waves that are in phase will undergo constructive interference while waves that are out of phase will undergo destructive interference. Waves which are not completely in phase nor completely out of phase will have an intermediate intensity pattern, which can be used to determine their relative phase difference. Most interferometers use light or some other form of electromagnetic wave . Typically (see Fig. 1,

15694-403: The rules of quantum mechanics , which require quantization of energy of a bound system. The atoms/molecules in a higher energy state are said to be excited. The molecules/atoms of substance in an excited energy state are often much more reactive; that is, more amenable to chemical reactions. The phase of a substance is invariably determined by its energy and the energy of its surroundings. When

15827-474: The same mass number; atoms of an element which have different mass numbers are known as isotopes . For example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon , but atoms of carbon may have mass numbers of 12 or 13. The standard presentation of the chemical elements is in the periodic table , which orders elements by atomic number. The periodic table is arranged in groups , or columns, and periods , or rows. The periodic table

15960-416: The same time because each one is given a different frequency, so they don't interfere with one another. Continuous wave (CW) doppler radar detectors are basically heterodyne detection devices that compare transmitted and reflected beams. Chemistry Chemistry is the scientific study of the properties and behavior of matter . It is a physical science within the natural sciences that studies

16093-415: The shape of conic sections (hyperbolas), but if M ′ 1 and M ′ 2 overlap, the fringes near the axis will be straight, parallel, and equally spaced. If S is an extended source rather than a point source as illustrated, the fringes of Fig. 2a must be observed with a telescope set at infinity, while the fringes of Fig. 2b will be localized on the mirrors. Use of white light will result in

16226-593: The solid crust, mantle, and core of the Earth are chemical compounds without molecules. These other types of substances, such as ionic compounds and network solids , are organized in such a way as to lack the existence of identifiable molecules per se . Instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. Examples of such substances are mineral salts (such as table salt ), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite. One of

16359-403: The source is traced. As the ray passes through the paired flats, it is multiply reflected to produce multiple transmitted rays which are collected by the focusing lens and brought to point A' on the screen. The complete interference pattern takes the appearance of a set of concentric rings. The sharpness of the rings depends on the reflectivity of the flats. If the reflectivity is high, resulting in

16492-406: The source's reflected image (red lines) from a mirror held at grazing incidence. The result is an asymmetrical pattern of fringes. The band of equal path length, nearest the mirror, is dark rather than bright. In 1834, Humphrey Lloyd interpreted this effect as proof that the phase of a front-surface reflected beam is inverted. An amplitude splitting interferometer uses a partial reflector to divide

16625-695: The structure of the system, instead of changing the bulk conditions. Sometimes the distinction between phases can be continuous instead of having a discrete boundary' in this case the matter is considered to be in a supercritical state. When three states meet based on the conditions, it is known as a triple point and since this is invariant, it is a convenient way to define a set of conditions. The most familiar examples of phases are solids , liquids , and gases . Many substances exhibit multiple solid phases. For example, there are three phases of solid iron (alpha, gamma, and delta) that vary based on temperature and pressure. A principal difference between solid phases

16758-421: The study of chemistry; some of them are: In chemistry, matter is defined as anything that has rest mass and volume (it takes up space) and is made up of particles . The particles that make up matter have rest mass as well – not all particles have rest mass, such as the photon . Matter can be a pure chemical substance or a mixture of substances. The atom is the basic unit of chemistry. It consists of

16891-434: The test flats, and they are illuminated by a monochromatic light source. The light waves reflected from both surfaces interfere, resulting in a pattern of bright and dark bands. The surface in the left photo is nearly flat, indicated by a pattern of straight parallel interference fringes at equal intervals. The surface in the right photo is uneven, resulting in a pattern of curved fringes. Each pair of adjacent fringes represents

17024-410: The turbulence that causes stars to twinkle, introduces rapid, random phase changes in the incoming light, requiring data collection rates to be faster than the rate of turbulence. Despite these technical difficulties, three major facilities are now in operation offering resolutions down to the fractional milliarcsecond range. This linked video shows a movie assembled from aperture synthesis images of

17157-447: The use of multiple wavelengths of light through a single optical fiber, depends on filtering devices that are thin-film etalons. Single-mode lasers employ etalons to suppress all optical cavity modes except the single one of interest. The Twyman–Green interferometer, invented by Twyman and Green in 1916, is a variant of the Michelson interferometer widely used to test optical components. The basic characteristics distinguishing it from

17290-412: The well-known Michelson configuration) a single incoming beam of coherent light will be split into two identical beams by a beam splitter (a partially reflecting mirror). Each of these beams travels a different route, called a path, and they are recombined before arriving at a detector. The path difference, the difference in the distance traveled by each beam, creates a phase difference between them. It

17423-438: Was established in his prize-winning memoire of 1819 that predicted and measured diffraction patterns. The Arago interferometer was later employed in 1850 by Leon Foucault to measure the speed of light in air relative to water, and it was used again in 1851 by Hippolyte Fizeau to measure the effect of Fresnel drag on the speed of light in moving water. Jules Jamin developed the first single-beam interferometer (not requiring

17556-480: Was introduced to François Arago . Between 1816 and 1818, Fresnel and Arago performed interference experiments at the Paris Observatory. During this time, Arago designed and built the first interferometer, using it to measure the refractive index of moist air relative to dry air, which posed a potential problem for astronomical observations of star positions. The success of Fresnel's wave theory of light

17689-434: Was measured directly, using CHARA. This was achieved by using the observed angular diameter of the star that the planet orbited, and the already known distance of the star from Earth, to get the diameter of the star. With this they could calculate the diameter of the exoplanet when comparing its size to the star when it passed in front of it. This was the first time the diameter of an exoplanet was directly measured, and returned

#502497