Misplaced Pages

Calcium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#214785

186-516: Calcium is a chemical element ; it has symbol Ca and atomic number 20. As an alkaline earth metal , calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to its heavier homologues strontium and barium . It is the fifth most abundant element in Earth's crust, and the third most abundant metal, after iron and aluminium . The most common calcium compound on Earth

372-409: A platinum plate which was used as the anode, the cathode being a platinum wire partially submerged into mercury. Electrolysis then gave calcium–mercury and magnesium–mercury amalgams, and distilling off the mercury gave the metal. However, pure calcium cannot be prepared in bulk by this method and a workable commercial process for its production was not found until over a century later. At 3%, calcium

558-491: A precipitate of aluminium hydroxide , Al(OH) 3 , forms. This is useful for clarification of water, as the precipitate nucleates on suspended particles in the water, hence removing them. Increasing the pH even further leads to the hydroxide dissolving again as aluminate , [Al(H 2 O) 2 (OH) 4 ] , is formed. Aluminium hydroxide forms both salts and aluminates and dissolves in acid and alkali, as well as on fusion with acidic and basic oxides. This behavior of Al(OH) 3

744-738: A pure element . In chemistry, a pure element means a substance whose atoms all (or in practice almost all) have the same atomic number, or number of protons . Nuclear scientists, however, define a pure element as one that consists of only one isotope. For example, a copper wire is 99.99% chemically pure if 99.99% of its atoms are copper, with 29 protons each. However it is not isotopically pure since ordinary copper consists of two stable isotopes, 69% Cu and 31% Cu, with different numbers of neutrons. However, pure gold would be both chemically and isotopically pure, since ordinary gold consists only of one isotope, Au. Atoms of chemically pure elements may bond to each other chemically in more than one way, allowing

930-525: A "less classical sound". This name persisted: although the -um spelling was occasionally used in Britain, the American scientific language used -ium from the start. Most scientists throughout the world used -ium in the 19th century; and it was entrenched in several other European languages, such as French , German , and Dutch . In 1828, an American lexicographer, Noah Webster , entered only

1116-432: A "steady state" with respect to calcium input and output. This has important climatological implications, as the marine calcium cycle is closely tied to the carbon cycle . Many calcium compounds are used in food, as pharmaceuticals, and in medicine, among others. For example, calcium and phosphorus are supplemented in foods through the addition of calcium lactate , calcium diphosphate , and tricalcium phosphate . The last

1302-499: A Swedish chemist, Jöns Jacob Berzelius , in which the name aluminium is given to the element that would be synthesized from alum. (Another article in the same journal issue also refers to the metal whose oxide is the basis of sapphire , i.e. the same metal, as to aluminium .) A January 1811 summary of one of Davy's lectures at the Royal Society mentioned the name aluminium as a possibility. The next year, Davy published

1488-559: A calcium–lead alloy, in making automotive batteries. Calcium is the most abundant metal and the fifth-most abundant element in the human body . As electrolytes , calcium ions (Ca) play a vital role in the physiological and biochemical processes of organisms and cells : in signal transduction pathways where they act as a second messenger ; in neurotransmitter release from neurons ; in contraction of all muscle cell types; as cofactors in many enzymes ; and in fertilization . Calcium ions outside cells are important for maintaining

1674-561: A chemistry textbook in which he used the spelling aluminum . Both spellings have coexisted since. Their usage is currently regional: aluminum dominates in the United States and Canada; aluminium is prevalent in the rest of the English-speaking world. In 1812, British scientist Thomas Young wrote an anonymous review of Davy's book, in which he proposed the name aluminium instead of aluminum , which he thought had

1860-549: A considerable amount of time. (See element naming controversy ). Precursors of such controversies involved the nationalistic namings of elements in the late 19th century. For example, lutetium was named in reference to Paris, France. The Germans were reluctant to relinquish naming rights to the French, often calling it cassiopeium . Similarly, the British discoverer of niobium originally named it columbium , in reference to

2046-477: A different element in nuclear reactions , which change an atom's atomic number. Historically, the term "chemical element" meant a substance that cannot be broken down into constituent substances by chemical reactions, and for most practical purposes this definition still has validity. There was some controversy in the 1920s over whether isotopes deserved to be recognized as separate elements if they could be separated by chemical means. The term "(chemical) element"

SECTION 10

#1732772485215

2232-652: A few decay products, to have been differentiated from other elements. Most recently, the synthesis of element 118 (since named oganesson ) was reported in October 2006, and the synthesis of element 117 ( tennessine ) was reported in April 2010. Of these 118 elements, 94 occur naturally on Earth. Six of these occur in extreme trace quantities: technetium , atomic number 43; promethium , number 61; astatine , number 85; francium , number 87; neptunium , number 93; and plutonium , number 94. These 94 elements have been detected in

2418-529: A few elements, such as silver and gold , are found uncombined as relatively pure native element minerals . Nearly all other naturally occurring elements occur in the Earth as compounds or mixtures. Air is mostly a mixture of molecular nitrogen and oxygen , though it does contain compounds including carbon dioxide and water , as well as atomic argon , a noble gas which is chemically inert and therefore does not undergo chemical reactions. The history of

2604-641: A gas had not been recognised by the ancient Romans. In 1789, Antoine Lavoisier suspected that lime might be an oxide of a fundamental chemical element . In his table of the elements, Lavoisier listed five "salifiable earths" (i.e., ores that could be made to react with acids to produce salts ( salis = salt, in Latin): chaux (calcium oxide), magnésie (magnesia, magnesium oxide), baryte (barium sulfate), alumine (alumina, aluminium oxide), and silice (silica, silicon dioxide)). About these "elements", Lavoisier reasoned: We are probably only acquainted as yet with

2790-408: A high pressure of oxygen, and there is some evidence for a yellow superoxide Ca(O 2 ) 2 .Calcium hydroxide, Ca(OH) 2 , is a strong base, though not as strong as the hydroxides of strontium, barium or the alkali metals. All four dihalides of calcium are known. Calcium carbonate (CaCO 3 ) and calcium sulfate (CaSO 4 ) are particularly abundant minerals. Like strontium and barium, as well as

2976-508: A part of the metallic substances existing in nature, as all those which have a stronger affinity to oxygen than carbon possesses, are incapable, hitherto, of being reduced to a metallic state, and consequently, being only presented to our observation under the form of oxyds, are confounded with earths. It is extremely probable that barytes, which we have just now arranged with earths, is in this situation; for in many experiments it exhibits properties nearly approaching to those of metallic bodies. It

3162-500: A pressure of 1 bar and a given temperature (typically at 298.15K). However, for phosphorus, the reference state is white phosphorus even though it is not the most stable allotrope, and the reference state for carbon is graphite, because the structure of graphite is more stable than that of the other allotropes. In thermochemistry , an element is defined to have an enthalpy of formation of zero in its reference state. Several kinds of descriptive categorizations can be applied broadly to

3348-483: A pressure of one atmosphere, are commonly used in characterizing the various elements. While known for most elements, either or both of these measurements is still undetermined for some of the radioactive elements available in only tiny quantities. Since helium remains a liquid even at absolute zero at atmospheric pressure, it has only a boiling point, and not a melting point, in conventional presentations. The density at selected standard temperature and pressure (STP)

3534-441: A probable cause for it being soft with a low melting point and low electrical resistivity . Aluminium metal has an appearance ranging from silvery white to dull gray depending on its surface roughness . Aluminium mirrors are the most reflective of all metal mirrors for near ultraviolet and far infrared light. It is also one of the most reflective for light in the visible spectrum, nearly on par with silver in this respect, and

3720-683: A process termed passivation . Because of its general resistance to corrosion, aluminium is one of the few metals that retains silvery reflectance in finely powdered form, making it an important component of silver-colored paints. Aluminium is not attacked by oxidizing acids because of its passivation. This allows aluminium to be used to store reagents such as nitric acid , concentrated sulfuric acid , and some organic acids. In hot concentrated hydrochloric acid , aluminium reacts with water with evolution of hydrogen, and in aqueous sodium hydroxide or potassium hydroxide at room temperature to form aluminates —protective passivation under these conditions

3906-416: A rather high neutron flux to allow short-lived Ca to capture a neutron. Ca is produced by electron capture in the r-process in type Ia supernovae , where high neutron excess and low enough entropy ensures its survival. Ca and Ca are the first "classically stable" nuclides with a 6-neutron or 8-neutron excess respectively. Although extremely neutron-rich for such a light element, Ca is very stable because it

SECTION 20

#1732772485215

4092-525: A refractory material, and in ceramics , as well as being the starting material for the electrolytic production of aluminium. Sapphire and ruby are impure corundum contaminated with trace amounts of other metals. The two main oxide-hydroxides, AlO(OH), are boehmite and diaspore . There are three main trihydroxides: bayerite , gibbsite , and nordstrandite , which differ in their crystalline structure ( polymorphs ). Many other intermediate and related structures are also known. Most are produced from ores by

4278-487: A result, when Ca does decay, it does so by double beta decay to Ti instead, being the lightest nuclide known to undergo double beta decay. Ca can also theoretically undergo double beta decay to Ti, but this has never been observed. The most common isotope Ca is also doubly magic and could undergo double electron capture to Ar , but this has likewise never been observed. Calcium is the only element with two primordial doubly magic isotopes. The experimental lower limits for

4464-456: A small group, (the metalloids ), having intermediate properties and often behaving as semiconductors . A more refined classification is often shown in colored presentations of the periodic table. This system restricts the terms "metal" and "nonmetal" to only certain of the more broadly defined metals and nonmetals, adding additional terms for certain sets of the more broadly viewed metals and nonmetals. The version of this classification used in

4650-474: A stable noble gas configuration. Accordingly, the combined first three ionization energies of aluminium are far lower than the fourth ionization energy alone. Such an electron configuration is shared with the other well-characterized members of its group, boron , gallium , indium , and thallium ; it is also expected for nihonium . Aluminium can surrender its three outermost electrons in many chemical reactions (see below ). The electronegativity of aluminium

4836-820: A variety of wet processes using acid and base. Heating the hydroxides leads to formation of corundum. These materials are of central importance to the production of aluminium and are themselves extremely useful. Some mixed oxide phases are also very useful, such as spinel (MgAl 2 O 4 ), Na-β-alumina (NaAl 11 O 17 ), and tricalcium aluminate (Ca 3 Al 2 O 6 , an important mineral phase in Portland cement ). The only stable chalcogenides under normal conditions are aluminium sulfide (Al 2 S 3 ), selenide (Al 2 Se 3 ), and telluride (Al 2 Te 3 ). All three are prepared by direct reaction of their elements at about 1,000 °C (1,800 °F) and quickly hydrolyze completely in water to yield aluminium hydroxide and

5022-575: A way of purifying bauxite to yield alumina, now known as the Bayer process , in 1889. Modern production of aluminium is based on the Bayer and Hall–Héroult processes. As large-scale production caused aluminium prices to drop, the metal became widely used in jewelry, eyeglass frames, optical instruments, tableware, and foil , and other everyday items in the 1890s and early 20th century. Aluminium's ability to form hard yet light alloys with other metals provided

5208-474: A whole number. For example, the relative atomic mass of chlorine is 35.453 u, which differs greatly from a whole number as it is an average of about 76% chlorine-35 and 24% chlorine-37. Whenever a relative atomic mass value differs by more than ~1% from a whole number, it is due to this averaging effect, as significant amounts of more than one isotope are naturally present in a sample of that element. Chemists and nuclear scientists have different definitions of

5394-434: Is Al. Al was present in the early Solar System with abundance of 0.005% relative to Al but its half-life of 728,000 years is too short for any original nuclei to survive; Al is therefore extinct . Unlike for Al, hydrogen burning is the primary source of Al, with the nuclide emerging after a nucleus of Mg catches a free proton. However, the trace quantities of Al that do exist are the most common gamma ray emitter in

5580-473: Is calcium carbonate , found in limestone and the fossilised remnants of early sea life; gypsum , anhydrite , fluorite , and apatite are also sources of calcium. The name derives from Latin calx " lime ", which was obtained from heating limestone. Some calcium compounds were known to the ancients, though their chemistry was unknown until the seventeenth century. Pure calcium was isolated in 1808 via electrolysis of its oxide by Humphry Davy , who named

5766-407: Is paramagnetic and thus essentially unaffected by static magnetic fields. The high electrical conductivity, however, means that it is strongly affected by alternating magnetic fields through the induction of eddy currents . Aluminium combines characteristics of pre- and post-transition metals. Since it has few available electrons for metallic bonding, like its heavier group 13 congeners, it has

Calcium - Misplaced Pages Continue

5952-429: Is small and highly charged ; as such, it has more polarizing power , and bonds formed by aluminium have a more covalent character. The strong affinity of aluminium for oxygen leads to the common occurrence of its oxides in nature. Aluminium is found on Earth primarily in rocks in the crust , where it is the third-most abundant element , after oxygen and silicon , rather than in the mantle , and virtually never as

6138-483: Is 1.61 (Pauling scale). A free aluminium atom has a radius of 143  pm . With the three outermost electrons removed, the radius shrinks to 39 pm for a 4-coordinated atom or 53.5 pm for a 6-coordinated atom. At standard temperature and pressure , aluminium atoms (when not affected by atoms of other elements) form a face-centered cubic crystal system bound by metallic bonding provided by atoms' outermost electrons; hence aluminium (at these conditions)

6324-404: Is 10 (for tin , element 50). The mass number of an element, A , is the number of nucleons (protons and neutrons) in the atomic nucleus. Different isotopes of a given element are distinguished by their mass number, which is written as a superscript on the left hand side of the chemical symbol (e.g., U). The mass number is always an integer and has units of "nucleons". Thus, magnesium-24 (24

6510-399: Is a chemical element ; it has symbol   Al and atomic number  13. Aluminium has a density lower than that of other common metals , about one-third that of steel . It has a great affinity towards oxygen , forming a protective layer of oxide on the surface when exposed to air. Aluminium visually resembles silver , both in its color and in its great ability to reflect light. It

6696-463: Is a cosmogenic nuclide , continuously produced through neutron activation of natural Ca. Many other calcium radioisotopes are known, ranging from Ca to Ca. They are all much shorter-lived than Ca, the most stable being Ca (half-life 163 days) and Ca (half-life 4.54 days). Isotopes lighter than Ca usually undergo beta plus decay to isotopes of potassium, and those heavier than Ca usually undergo beta minus decay to isotopes of scandium , though near

6882-434: Is a doubly magic nucleus , having 20 protons and 28 neutrons arranged in closed shells. Its beta decay to Sc is very hindered because of the gross mismatch of nuclear spin : Ca has zero nuclear spin, being even–even , while Sc has spin 6+, so the decay is forbidden by the conservation of angular momentum . While two excited states of Sc are available for decay as well, they are also forbidden due to their high spins. As

7068-606: Is a mixture of C (about 98.9%), C (about 1.1%) and about 1 atom per trillion of C. Most (54 of 94) naturally occurring elements have more than one stable isotope. Except for the isotopes of hydrogen (which differ greatly from each other in relative mass—enough to cause chemical effects), the isotopes of a given element are chemically nearly indistinguishable. All elements have radioactive isotopes (radioisotopes); most of these radioisotopes do not occur naturally. Radioisotopes typically decay into other elements via alpha decay , beta decay , or inverse beta decay ; some isotopes of

7254-495: Is a better conductor by mass than both due to its very low density. While calcium is infeasible as a conductor for most terrestrial applications as it reacts quickly with atmospheric oxygen, its use as such in space has been considered. The chemistry of calcium is that of a typical heavy alkaline earth metal. For example, calcium spontaneously reacts with water more quickly than magnesium and less quickly than strontium to produce calcium hydroxide and hydrogen gas. It also reacts with

7440-406: Is a dimensionless number equal to the atomic mass divided by the atomic mass constant , which equals 1 Da. In general, the mass number of a given nuclide differs in value slightly from its relative atomic mass, since the mass of each proton and neutron is not exactly 1 Da; since the electrons contribute a lesser share to the atomic mass as neutron number exceeds proton number; and because of

7626-548: Is a metal. This crystal system is shared by many other metals, such as lead and copper ; the size of a unit cell of aluminium is comparable to that of those other metals. The system, however, is not shared by the other members of its group: boron has ionization energies too high to allow metallization, thallium has a hexagonal close-packed structure, and gallium and indium have unusual structures that are not close-packed like those of aluminium and thallium. The few electrons that are available for metallic bonding in aluminium are

Calcium - Misplaced Pages Continue

7812-470: Is almost never found in the elemental state; instead it is found in oxides or silicates. Feldspars , the most common group of minerals in the Earth's crust, are aluminosilicates. Aluminium also occurs in the minerals beryl , cryolite , garnet , spinel , and turquoise . Impurities in Al 2 O 3 , such as chromium and iron , yield the gemstones ruby and sapphire , respectively. Native aluminium metal

7998-405: Is also easily machined and cast . Aluminium is an excellent thermal and electrical conductor , having around 60% the conductivity of copper , both thermal and electrical, while having only 30% of copper's density. Aluminium is capable of superconductivity , with a superconducting critical temperature of 1.2 kelvin and a critical magnetic field of about 100 gauss (10 milliteslas ). It

8184-424: Is also used as a polishing agent in toothpaste and in antacids . Calcium lactobionate is a white powder that is used as a suspending agent for pharmaceuticals. In baking, calcium phosphate is used as a leavening agent . Calcium sulfite is used as a bleach in papermaking and as a disinfectant, calcium silicate is used as a reinforcing agent in rubber, and calcium acetate is a component of liming rosin and

8370-419: Is also used to strengthen aluminium alloys used for bearings, for the control of graphitic carbon in cast iron , and to remove bismuth impurities from lead. Calcium metal is found in some drain cleaners, where it functions to generate heat and calcium hydroxide that saponifies the fats and liquefies the proteins (for example, those in hair) that block drains. Besides metallurgy, the reactivity of calcium

8556-812: Is an ongoing area of scientific study. The lightest elements are hydrogen and helium , both created by Big Bang nucleosynthesis in the first 20 minutes of the universe in a ratio of around 3:1 by mass (or 12:1 by number of atoms), along with tiny traces of the next two elements, lithium and beryllium . Almost all other elements found in nature were made by various natural methods of nucleosynthesis . On Earth, small amounts of new atoms are naturally produced in nucleogenic reactions, or in cosmogenic processes, such as cosmic ray spallation . New atoms are also naturally produced on Earth as radiogenic daughter isotopes of ongoing radioactive decay processes such as alpha decay , beta decay , spontaneous fission , cluster decay , and other rarer modes of decay. Of

8742-460: Is based on a Latin or other traditional word, for example adopting "gold" rather than "aurum" as the name for the 79th element (Au). IUPAC prefers the British spellings " aluminium " and "caesium" over the U.S. spellings "aluminum" and "cesium", and the U.S. "sulfur" over British "sulphur". However, elements that are practical to sell in bulk in many countries often still have locally used national names, and countries whose national language does not use

8928-451: Is even possible that all the substances we call earths may be only metallic oxyds, irreducible by any hitherto known process. Calcium, along with its congeners magnesium, strontium, and barium, was first isolated by Humphry Davy in 1808. Following the work of Jöns Jakob Berzelius and Magnus Martin af Pontin on electrolysis , Davy isolated calcium and magnesium by putting a mixture of the respective metal oxides with mercury(II) oxide on

9114-504: Is exploited to remove nitrogen from high-purity argon gas and as a getter for oxygen and nitrogen. It is also used as a reducing agent in the production of chromium , zirconium , thorium , vanadium and uranium . It can also be used to store hydrogen gas, as it reacts with hydrogen to form solid calcium hydride , from which the hydrogen can easily be re-extracted. Calcium isotope fractionation during mineral formation has led to several applications of calcium isotopes. In particular,

9300-553: Is extremely rare and can only be found as a minor phase in low oxygen fugacity environments, such as the interiors of certain volcanoes. Native aluminium has been reported in cold seeps in the northeastern continental slope of the South China Sea . It is possible that these deposits resulted from bacterial reduction of tetrahydroxoaluminate Al(OH) 4 . Although aluminium is a common and widespread element, not all aluminium minerals are economically viable sources of

9486-536: Is greatly reduced by aqueous salts, particularly in the presence of dissimilar metals. Aluminium reacts with most nonmetals upon heating, forming compounds such as aluminium nitride (AlN), aluminium sulfide (Al 2 S 3 ), and the aluminium halides (AlX 3 ). It also forms a wide range of intermetallic compounds involving metals from every group on the periodic table. The vast majority of compounds, including all aluminium-containing minerals and all commercially significant aluminium compounds, feature aluminium in

SECTION 50

#1732772485215

9672-492: Is in fact more basic than that of gallium. Aluminium also bears minor similarities to the metalloid boron in the same group: AlX 3 compounds are valence isoelectronic to BX 3 compounds (they have the same valence electronic structure), and both behave as Lewis acids and readily form adducts . Additionally, one of the main motifs of boron chemistry is regular icosahedral structures, and aluminium forms an important part of many icosahedral quasicrystal alloys, including

9858-400: Is less reactive than strontium or barium, the oxide–nitride coating that results in air is stable and lathe machining and other standard metallurgical techniques are suitable for calcium. In the United States and Canada, calcium is instead produced by reducing lime with aluminium at high temperatures. Calcium cycling provides a link between tectonics , climate , and the carbon cycle . In

10044-476: Is low in comparison with many other metals. All other isotopes of aluminium are radioactive . The most stable of these is Al : while it was present along with stable Al in the interstellar medium from which the Solar System formed, having been produced by stellar nucleosynthesis as well, its half-life is only 717,000 years and therefore a detectable amount has not survived since the formation of

10230-451: Is more complicated and involves the bicarbonate ion (HCO 3 ) that forms when CO 2 reacts with water at seawater pH : At seawater pH, most of the dissolved CO 2 is immediately converted back into HCO 3 . The reaction results in a net transport of one molecule of CO 2 from the ocean/atmosphere into the lithosphere . The result is that each Ca ion released by chemical weathering ultimately removes one CO 2 molecule from

10416-500: Is negligible. Aqua regia also dissolves aluminium. Aluminium is corroded by dissolved chlorides , such as common sodium chloride , which is why household plumbing is never made from aluminium. The oxide layer on aluminium is also destroyed by contact with mercury due to amalgamation or with salts of some electropositive metals. As such, the strongest aluminium alloys are less corrosion-resistant due to galvanic reactions with alloyed copper , and aluminium's corrosion resistance

10602-521: Is not as important. It is a polymer with the formula (AlH 3 ) n , in contrast to the corresponding boron hydride that is a dimer with the formula (BH 3 ) 2 . Aluminium's per-particle abundance in the Solar System is 3.15 ppm (parts per million). It is the twelfth most abundant of all elements and third most abundant among the elements that have odd atomic numbers, after hydrogen and nitrogen. The only stable isotope of aluminium, Al,

10788-436: Is often used in characterizing the elements. Density is often expressed in grams per cubic centimetre (g/cm ). Since several elements are gases at commonly encountered temperatures, their densities are usually stated for their gaseous forms; when liquefied or solidified, the gaseous elements have densities similar to those of the other elements. When an element has allotropes with different densities, one representative allotrope

10974-416: Is quite soft and lacking in strength. In most applications various aluminium alloys are used instead because of their higher strength and hardness. The yield strength of pure aluminium is 7–11 MPa , while aluminium alloys have yield strengths ranging from 200 MPa to 600 MPa. Aluminium is ductile , with a percent elongation of 50-70%, and malleable allowing it to be easily drawn and extruded . It

11160-435: Is soft, nonmagnetic , and ductile . It has one stable isotope, Al, which is highly abundant, making aluminium the twelfth-most common element in the universe. The radioactivity of Al leads to it being used in radiometric dating . Chemically, aluminium is a post-transition metal in the boron group ; as is common for the group, aluminium forms compounds primarily in the +3 oxidation state . The aluminium cation Al

11346-422: Is surrounded by six fluorine atoms in a distorted octahedral arrangement, with each fluorine atom being shared between the corners of two octahedra. Such {AlF 6 } units also exist in complex fluorides such as cryolite , Na 3 AlF 6 . AlF 3 melts at 1,290 °C (2,354 °F) and is made by reaction of aluminium oxide with hydrogen fluoride gas at 700 °C (1,300 °F). With heavier halides,

SECTION 60

#1732772485215

11532-547: Is termed amphoterism and is characteristic of weakly basic cations that form insoluble hydroxides and whose hydrated species can also donate their protons. One effect of this is that aluminium salts with weak acids are hydrolyzed in water to the aquated hydroxide and the corresponding nonmetal hydride: for example, aluminium sulfide yields hydrogen sulfide . However, some salts like aluminium carbonate exist in aqueous solution but are unstable as such; and only incomplete hydrolysis takes place for salts with strong acids, such as

11718-416: Is that of the preceding noble gas , whereas those of its heavier congeners gallium , indium , thallium , and nihonium also include a filled d-subshell and in some cases a filled f-subshell. Hence, the inner electrons of aluminium shield the valence electrons almost completely, unlike those of aluminium's heavier congeners. As such, aluminium is the most electropositive metal in its group, and its hydroxide

11904-433: Is the eighteenth most abundant nucleus in the universe. It is created almost entirely after fusion of carbon in massive stars that will later become Type II supernovas : this fusion creates Mg, which upon capturing free protons and neutrons, becomes aluminium. Some smaller quantities of Al are created in hydrogen burning shells of evolved stars, where Mg can capture free protons. Essentially all aluminium now in existence

12090-456: Is the fifth most abundant element in the Earth's crust , and the third most abundant metal behind aluminium and iron . It is also the fourth most abundant element in the lunar highlands . Sedimentary calcium carbonate deposits pervade the Earth's surface as fossilized remains of past marine life; they occur in two forms, the rhombohedral calcite (more common) and the orthorhombic aragonite (forming in more temperate seas). Minerals of

12276-426: Is the mass number) is an atom with 24 nucleons (12 protons and 12 neutrons). Whereas the mass number simply counts the total number of neutrons and protons and is thus an integer, the atomic mass of a particular isotope (or "nuclide") of the element is the mass of a single atom of that isotope, and is typically expressed in daltons (symbol: Da), or universal atomic mass units (symbol: u). Its relative atomic mass

12462-418: Is the second-most common isotope. The other four natural isotopes, Ca, Ca, Ca, and Ca, are significantly rarer, each comprising less than 1% of all natural calcium. The four lighter isotopes are mainly products of the oxygen-burning and silicon-burning processes, leaving the two heavier ones to be produced via neutron capture processes. Ca is mostly produced in a "hot" s-process , as its formation requires

12648-532: Is typically selected in summary presentations, while densities for each allotrope can be stated where more detail is provided. For example, the three familiar allotropes of carbon ( amorphous carbon , graphite , and diamond ) have densities of 1.8–2.1, 2.267, and 3.515 g/cm , respectively. The elements studied to date as solid samples have eight kinds of crystal structures : cubic , body-centered cubic , face-centered cubic, hexagonal , monoclinic , orthorhombic , rhombohedral , and tetragonal . For some of

12834-417: Is used in two different but closely related meanings: it can mean a chemical substance consisting of a single kind of atoms, or it can mean that kind of atoms as a component of various chemical substances. For example, molecules of water (H 2 O) contain atoms of hydrogen (H) and oxygen (O), so water can be said as a compound consisting of the elements hydrogen (H) and oxygen (O) even though it does not contain

13020-500: Is used to make metallic soaps and synthetic resins. Calcium is on the World Health Organization's List of Essential Medicines . Foods rich in calcium include dairy products such as milk and yogurt , cheese , sardines , salmon , soy products, kale , and fortified breakfast cereals . Because of concerns for long-term adverse side effects, including calcification of arteries and kidney stones , both

13206-429: Is very soluble in water, 85% of extracellular calcium is as dicalcium phosphate with a solubility of 2.00  mM , and the hydroxyapatite of bones in an organic matrix is tricalcium phosphate with a solubility of 1000 μM. Calcium is a common constituent of multivitamin dietary supplements , but the composition of calcium complexes in supplements may affect its bioavailability which varies by solubility of

13392-429: Is very strong; fullerenes , which have nearly spherical shapes; and carbon nanotubes , which are tubes with a hexagonal structure (even these may differ from each other in electrical properties). The ability of an element to exist in one of many structural forms is known as 'allotropy'. The reference state of an element is defined by convention, usually as the thermodynamically most stable allotrope and physical state at

13578-590: Is widely used. For example, the French chemical terminology distinguishes élément chimique (kind of atoms) and corps simple (chemical substance consisting of a single kind of atoms); the Russian chemical terminology distinguishes химический элемент and простое вещество . Almost all baryonic matter in the universe is composed of elements (among rare exceptions are neutron stars ). When different elements undergo chemical reactions, atoms are rearranged into new compounds held together by chemical bonds . Only

13764-455: The Friedel–Crafts reactions . Aluminium trichloride has major industrial uses involving this reaction, such as in the manufacture of anthraquinones and styrene ; it is also often used as the precursor for many other aluminium compounds and as a reagent for converting nonmetal fluorides into the corresponding chlorides (a transhalogenation reaction ). Aluminium forms one stable oxide with

13950-489: The International Union of Pure and Applied Chemistry (IUPAC) had recognized a total of 118 elements. The first 94 occur naturally on Earth , and the remaining 24 are synthetic elements produced in nuclear reactions. Save for unstable radioactive elements (radioelements) which decay quickly, nearly all elements are available industrially in varying amounts. The discovery and synthesis of further new elements

14136-638: The Latin alphabet are likely to use the IUPAC element names. According to IUPAC, element names are not proper nouns; therefore, the full name of an element is not capitalized in English, even if derived from a proper noun , as in californium and einsteinium . Isotope names are also uncapitalized if written out, e.g., carbon-12 or uranium-235 . Chemical element symbols (such as Cf for californium and Es for einsteinium), are always capitalized (see below). In

14322-475: The London Metal Exchange , the oldest industrial metal exchange in the world, in 1978. The output continued to grow: the annual production of aluminium exceeded 50,000,000 metric tons in 2013. The real price for aluminium declined from $ 14,000 per metric ton in 1900 to $ 2,340 in 1948 (in 1998 United States dollars). Extraction and processing costs were lowered over technological progress and

14508-711: The New World . It was used extensively as such by American publications before the international standardization (in 1950). Before chemistry became a science , alchemists designed arcane symbols for both metals and common compounds. These were however used as abbreviations in diagrams or procedures; there was no concept of atoms combining to form molecules . With his advances in the atomic theory of matter, John Dalton devised his own simpler symbols, based on circles, to depict molecules. Aluminium Aluminium (or aluminum in North American English )

14694-485: The United States (about 2000 to 4000 tonnes per year). Canada and France are also among the minor producers. In 2005, about 24000 tonnes of calcium were produced; about half of the world's extracted calcium is used by the United States, with about 80% of the output used each year. In Russia and China, Davy's method of electrolysis is still used, but is instead applied to molten calcium chloride . Since calcium

14880-475: The aluminum spelling in his American Dictionary of the English Language . In the 1830s, the -um spelling gained usage in the United States; by the 1860s, it had become the more common spelling there outside science. In 1892, Hall used the -um spelling in his advertising handbill for his new electrolytic method of producing the metal, despite his constant use of the -ium spelling in all

15066-417: The carboxyl groups of glutamic acid or aspartic acid residues; through interacting with phosphorylated serine , tyrosine , or threonine residues; or by being chelated by γ-carboxylated amino acid residues. Trypsin , a digestive enzyme, uses the first method; osteocalcin , a bone matrix protein, uses the third. Some other bone matrix proteins such as osteopontin and bone sialoprotein use both

15252-423: The chemical formula Al 2 O 3 , commonly called alumina . It can be found in nature in the mineral corundum , α-alumina; there is also a γ-alumina phase. Its crystalline form, corundum, is very hard ( Mohs hardness 9), has a high melting point of 2,045 °C (3,713 °F), has very low volatility, is chemically inert, and a good electrical insulator, it is often used in abrasives (such as toothpaste), as

15438-507: The contraction of muscles , nerve conduction, and the clotting of blood. As a result, intra- and extracellular calcium levels are tightly regulated by the body. Calcium can play this role because the Ca ion forms stable coordination complexes with many organic compounds, especially proteins ; it also forms compounds with a wide range of solubilities, enabling the formation of the skeleton . Calcium ions may be complexed by proteins through binding

15624-638: The free metal . It is obtained industrially by mining bauxite , a sedimentary rock rich in aluminium minerals. The discovery of aluminium was announced in 1825 by Danish physicist Hans Christian Ørsted . The first industrial production of aluminium was initiated by French chemist Henri Étienne Sainte-Claire Deville in 1856. Aluminium became much more available to the public with the Hall–Héroult process developed independently by French engineer Paul Héroult and American engineer Charles Martin Hall in 1886, and

15810-500: The interstellar gas ; if the original Al were still present, gamma ray maps of the Milky Way would be brighter. Overall, the Earth is about 1.59% aluminium by mass (seventh in abundance by mass). Aluminium occurs in greater proportion in the Earth's crust than in the universe at large. This is because aluminium easily forms the oxide and becomes bound into rocks and stays in the Earth's crust , while less reactive metals sink to

15996-423: The kinetic isotope effect is significant). Thus, all carbon isotopes have nearly identical chemical properties because they all have six electrons, even though they may have 6 to 8 neutrons. That is why atomic number, rather than mass number or atomic weight , is considered the identifying characteristic of an element. The symbol for atomic number is Z . Isotopes are atoms of the same element (that is, with

16182-405: The nuclear binding energy and electron binding energy. For example, the atomic mass of chlorine-35 to five significant digits is 34.969 Da and that of chlorine-37 is 36.966 Da. However, the relative atomic mass of each isotope is quite close to its mass number (always within 1%). The only isotope whose atomic mass is exactly a natural number is C, which has a mass of 12 Da; because

16368-494: The nuclear drip lines , proton emission and neutron emission begin to be significant decay modes as well. Like other elements, a variety of processes alter the relative abundance of calcium isotopes. The best studied of these processes is the mass-dependent fractionation of calcium isotopes that accompanies the precipitation of calcium minerals such as calcite , aragonite and apatite from solution. Lighter isotopes are preferentially incorporated into these minerals, leaving

16554-453: The oxygen and nitrogen in air to form a mixture of calcium oxide and calcium nitride . When finely divided, it spontaneously burns in air to produce the nitride. Bulk calcium is less reactive: it quickly forms a hydration coating in moist air, but below 30% relative humidity it may be stored indefinitely at room temperature. Besides the simple oxide CaO, calcium peroxide , CaO 2 , can be made by direct oxidation of calcium metal under

16740-410: The potential difference across excitable cell membranes , protein synthesis, and bone formation. Calcium is a very ductile silvery metal (sometimes described as pale yellow) whose properties are very similar to the heavier elements in its group, strontium , barium , and radium . A calcium atom has twenty electrons, with electron configuration [Ar]4s. Like the other elements placed in group 2 of

16926-422: The 1997 observation by Skulan and DePaolo that calcium minerals are isotopically lighter than the solutions from which the minerals precipitate is the basis of analogous applications in medicine and in paleoceanography. In animals with skeletons mineralized with calcium, the calcium isotopic composition of soft tissues reflects the relative rate of formation and dissolution of skeletal mineral. In humans, changes in

17112-526: The 5th century BCE. The ancients are known to have used alum as a dyeing mordant and for city defense. After the Crusades , alum, an indispensable good in the European fabric industry, was a subject of international commerce; it was imported to Europe from the eastern Mediterranean until the mid-15th century. The nature of alum remained unknown. Around 1530, Swiss physician Paracelsus suggested alum

17298-638: The 94 naturally occurring elements, those with atomic numbers 1 through 82 each have at least one stable isotope (except for technetium , element 43 and promethium , element 61, which have no stable isotopes). Isotopes considered stable are those for which no radioactive decay has yet been observed. Elements with atomic numbers 83 through 94 are unstable to the point that radioactive decay of all isotopes can be detected. Some of these elements, notably bismuth (atomic number 83), thorium (atomic number 90), and uranium (atomic number 92), have one or more isotopes with half-lives long enough to survive as remnants of

17484-472: The Al–Zn–Mg class. Aluminium has a high chemical affinity to oxygen, which renders it suitable for use as a reducing agent in the thermite reaction. A fine powder of aluminium reacts explosively on contact with liquid oxygen ; under normal conditions, however, aluminium forms a thin oxide layer (~5 nm at room temperature) that protects the metal from further corrosion by oxygen, water, or dilute acid,

17670-487: The French, Italians, Greeks, Portuguese and Poles prefer "azote/azot/azoto" (from roots meaning "no life") for "nitrogen". For purposes of international communication and trade, the official names of the chemical elements both ancient and more recently recognized are decided by the International Union of Pure and Applied Chemistry (IUPAC), which has decided on a sort of international English language, drawing on traditional English names even when an element's chemical symbol

17856-603: The U.S. Institute of Medicine (IOM) and the European Food Safety Authority (EFSA) set Tolerable Upper Intake Levels (ULs) for combined dietary and supplemental calcium. From the IOM, people of ages 9–18 years are not to exceed 3 g/day combined intake; for ages 19–50, not to exceed 2.5 g/day; for ages 51 and older, not to exceed 2 g/day. EFSA set the UL for all adults at 2.5 g/day, but decided

18042-418: The United States dollar, and alumina prices. The BRIC countries' combined share in primary production and primary consumption grew substantially in the first decade of the 21st century. China is accumulating an especially large share of the world's production thanks to an abundance of resources, cheap energy, and governmental stimuli; it also increased its consumption share from 2% in 1972 to 40% in 2010. In

18228-514: The United States, Western Europe, and Japan, most aluminium was consumed in transportation, engineering, construction, and packaging. In 2021, prices for industrial metals such as aluminium have soared to near-record levels as energy shortages in China drive up costs for electricity. The names aluminium and aluminum are derived from the word alumine , an obsolete term for alumina , the primary naturally occurring oxide of aluminium . Alumine

18414-561: The absence of steric hindrance , smaller group 2 cations tend to form stronger complexes, but when large polydentate macrocycles are involved the trend is reversed. Though calcium is in the same group as magnesium and organomagnesium compounds are very widely used throughout chemistry, organocalcium compounds are not similarly widespread because they are more difficult to make and more reactive, though they have recently been investigated as possible catalysts . Organocalcium compounds tend to be more similar to organoytterbium compounds due to

18600-485: The alkali metals and the divalent lanthanides europium and ytterbium , calcium metal dissolves directly in liquid ammonia to give a dark blue solution. Due to the large size of the calcium ion (Ca), high coordination numbers are common, up to 24 in some intermetallic compounds such as CaZn 13 . Calcium is readily complexed by oxygen chelates such as EDTA and polyphosphates , which are useful in analytic chemistry and removing calcium ions from hard water . In

18786-578: The aluminium atoms have tetrahedral four-coordination and the other half have trigonal bipyramidal five-coordination. Four pnictides – aluminium nitride (AlN), aluminium phosphide (AlP), aluminium arsenide (AlAs), and aluminium antimonide (AlSb) – are known. They are all III-V semiconductors isoelectronic to silicon and germanium , all of which but AlN have the zinc blende structure. All four can be made by high-temperature (and possibly high-pressure) direct reaction of their component elements. Aluminium alloys well with most other metals (with

18972-487: The atomic masses of the elements (their atomic weights or atomic masses) do not always increase monotonically with their atomic numbers. The naming of various substances now known as elements precedes the atomic theory of matter, as names were given locally by various cultures to various minerals, metals, compounds, alloys, mixtures, and other materials, though at the time it was not known which chemicals were elements and which compounds. As they were identified as elements,

19158-455: The bone-forming action of parathyroid hormone being antagonised by calcitonin , whose secretion increases with increasing plasma calcium levels. Chemical element A chemical element is a chemical substance whose atoms all have the same number of protons . The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8, meaning each oxygen atom has 8 protons in its nucleus. Atoms of

19344-514: The calcium isotopic composition of urine have been shown to be related to changes in bone mineral balance. When the rate of bone formation exceeds the rate of bone resorption, the Ca/Ca ratio in soft tissue rises and vice versa. Because of this relationship, calcium isotopic measurements of urine or blood may be useful in the early detection of metabolic bone diseases like osteoporosis . A similar system exists in seawater, where Ca/Ca tends to rise when

19530-436: The characteristic physical properties of a post-transition metal, with longer-than-expected interatomic distances. Furthermore, as Al is a small and highly charged cation, it is strongly polarizing and bonding in aluminium compounds tends towards covalency ; this behavior is similar to that of beryllium (Be ), and the two display an example of a diagonal relationship . The underlying core under aluminium's valence shell

19716-413: The chemical substances (di)hydrogen (H 2 ) and (di)oxygen (O 2 ), as H 2 O molecules are different from H 2 and O 2 molecules. For the meaning "chemical substance consisting of a single kind of atoms", the terms "elementary substance" and "simple substance" have been suggested, but they have not gained much acceptance in English chemical literature, whereas in some other languages their equivalent

19902-419: The coordination numbers are lower. The other trihalides are dimeric or polymeric with tetrahedral four-coordinate aluminium centers. Aluminium trichloride (AlCl 3 ) has a layered polymeric structure below its melting point of 192.4 °C (378 °F) but transforms on melting to Al 2 Cl 6 dimers. At higher temperatures those increasingly dissociate into trigonal planar AlCl 3 monomers similar to

20088-428: The core. In the Earth's crust, aluminium is the most abundant metallic element (8.23% by mass ) and the third most abundant of all elements (after oxygen and silicon). A large number of silicates in the Earth's crust contain aluminium. In contrast, the Earth's mantle is only 2.38% aluminium by mass. Aluminium also occurs in seawater at a concentration of 2 μg/kg. Because of its strong affinity for oxygen, aluminium

20274-408: The dalton is defined as 1/12 of the mass of a free neutral carbon-12 atom in the ground state. The standard atomic weight (commonly called "atomic weight") of an element is the average of the atomic masses of all the chemical element's isotopes as found in a particular environment, weighted by isotopic abundance, relative to the atomic mass unit. This number may be a fraction that is not close to

20460-474: The decay of Al was responsible for the melting and differentiation of some asteroids after their formation 4.55 billion years ago. The remaining isotopes of aluminium, with mass numbers ranging from 21 to 43, all have half-lives well under an hour. Three metastable states are known, all with half-lives under a minute. An aluminium atom has 13 electrons, arranged in an electron configuration of [ Ne ] 3s 3p , with three electrons beyond

20646-416: The discovery and use of elements began with early human societies that discovered native minerals like carbon , sulfur , copper and gold (though the modern concept of an element was not yet understood). Attempts to classify materials such as these resulted in the concepts of classical elements , alchemy , and similar theories throughout history. Much of the modern understanding of elements developed from

20832-431: The divalent salts and calcium metal, because the enthalpy of formation of MX 2 is much higher than those of the hypothetical MX. This occurs because of the much greater lattice energy afforded by the more highly charged Ca cation compared to the hypothetical Ca cation. Calcium, strontium, barium, and radium are always considered to be alkaline earth metals ; the lighter beryllium and magnesium , also in group 2 of

21018-439: The element. Calcium compounds are widely used in many industries: in foods and pharmaceuticals for calcium supplementation , in the paper industry as bleaches, as components in cement and electrical insulators, and in the manufacture of soaps. On the other hand, the metal in pure form has few applications due to its high reactivity; still, in small quantities it is often used as an alloying component in steelmaking, and sometimes, as

21204-406: The elements are available by name, atomic number, density, melting point, boiling point and chemical symbol , as well as ionization energy . The nuclides of stable and radioactive elements are also available as a list of nuclides , sorted by length of half-life for those that are unstable. One of the most convenient, and certainly the most traditional presentation of the elements, is in the form of

21390-470: The elements are often summarized using the periodic table, which powerfully and elegantly organizes the elements by increasing atomic number into rows ( "periods" ) in which the columns ( "groups" ) share recurring ("periodic") physical and chemical properties. The table contains 118 confirmed elements as of 2021. Although earlier precursors to this presentation exist, its invention is generally credited to Russian chemist Dmitri Mendeleev in 1869, who intended

21576-480: The elements can be uniquely sequenced by atomic number, conventionally from lowest to highest (as in a periodic table), sets of elements are sometimes specified by such notation as "through", "beyond", or "from ... through", as in "through iron", "beyond uranium", or "from lanthanum through lutetium". The terms "light" and "heavy" are sometimes also used informally to indicate relative atomic numbers (not densities), as in "lighter than carbon" or "heavier than lead", though

21762-413: The elements without any stable isotopes are technetium (atomic number 43), promethium (atomic number 61), and all observed elements with atomic number greater than 82. Of the 80 elements with at least one stable isotope, 26 have only one stable isotope. The mean number of stable isotopes for the 80 stable elements is 3.1 stable isotopes per element. The largest number of stable isotopes for a single element

21948-474: The elements, including consideration of their general physical and chemical properties, their states of matter under familiar conditions, their melting and boiling points, their densities, their crystal structures as solids, and their origins. Several terms are commonly used to characterize the general physical and chemical properties of the chemical elements. A first distinction is between metals , which readily conduct electricity , nonmetals , which do not, and

22134-399: The environment, no living organism is known to metabolize aluminium salts , but this aluminium is well tolerated by plants and animals. Because of the abundance of these salts, the potential for a biological role for them is of interest, and studies are ongoing. Of aluminium isotopes, only Al is stable. This situation is common for elements with an odd atomic number. It is

22320-478: The exception of most alkali metals and group 13 metals) and over 150 intermetallics with other metals are known. Preparation involves heating fixed metals together in certain proportion, followed by gradual cooling and annealing . Bonding in them is predominantly metallic and the crystal structure primarily depends on efficiency of packing. There are few compounds with lower oxidation states. A few aluminium(I) compounds exist: AlF, AlCl, AlBr, and AlI exist in

22506-492: The existing names for anciently known elements (e.g., gold, mercury, iron) were kept in most countries. National differences emerged over the element names either for convenience, linguistic niceties, or nationalism. For example, German speakers use "Wasserstoff" (water substance) for "hydrogen", "Sauerstoff" (acid substance) for "oxygen" and "Stickstoff" (smothering substance) for "nitrogen"; English and some other languages use "sodium" for "natrium", and "potassium" for "kalium"; and

22692-630: The explosive stellar nucleosynthesis that produced the heavy metals before the formation of our Solar System . At over 1.9 × 10 years, over a billion times longer than the estimated age of the universe, bismuth-209 has the longest known alpha decay half-life of any isotope, and is almost always considered on par with the 80 stable elements. The heaviest elements (those beyond plutonium, element 94) undergo radioactive decay with half-lives so short that they are not found in nature and must be synthesized . There are now 118 known elements. In this context, "known" means observed well enough, even from just

22878-520: The fact that its nuclei are much lighter, while difference in the unit cell size does not compensate for this difference. The only lighter metals are the metals of groups 1 and 2 , which apart from beryllium and magnesium are too reactive for structural use (and beryllium is very toxic). Aluminium is not as strong or stiff as steel, but the low density makes up for this in the aerospace industry and for many other applications where light weight and relatively high strength are crucial. Pure aluminium

23064-398: The first and the second. Direct activation of enzymes by binding calcium is common; some other enzymes are activated by noncovalent association with direct calcium-binding enzymes. Calcium also binds to the phospholipid layer of the cell membrane , anchoring proteins associated with the cell surface. As an example of the wide range of solubility of calcium compounds, monocalcium phosphate

23250-746: The first type include limestone , dolomite , marble , chalk , and iceland spar ; aragonite beds make up the Bahamas , the Florida Keys , and the Red Sea basins. Corals , sea shells , and pearls are mostly made up of calcium carbonate. Among the other important minerals of calcium are gypsum (CaSO 4 ·2H 2 O), anhydrite (CaSO 4 ), fluorite (CaF 2 ), and apatite ([Ca 5 (PO 4 ) 3 X], X = OH, Cl, or F).gre The major producers of calcium are China (about 10000 to 12000 tonnes per year), Russia (about 6000 to 8000 tonnes per year), and

23436-529: The formation of Earth, they are certain to have completely decayed, and if present in novae, are in quantities too small to have been noted. Technetium was the first purportedly non-naturally occurring element synthesized, in 1937, though trace amounts of technetium have since been found in nature (and also the element may have been discovered naturally in 1925). This pattern of artificial production and later natural discovery has been repeated with several other radioactive naturally occurring rare elements. List of

23622-414: The formation of bone by allowing and enhancing the deposition of calcium ions there, allowing rapid bone turnover without affecting bone mass or mineral content. When plasma calcium levels fall, cell surface receptors are activated and the secretion of parathyroid hormone occurs; it then proceeds to stimulate the entry of calcium into the plasma pool by taking it from targeted kidney, gut, and bone cells, with

23808-730: The gas phase after explosion and in stellar absorption spectra. More thoroughly investigated are compounds of the formula R 4 Al 2 which contain an Al–Al bond and where R is a large organic ligand . A variety of compounds of empirical formula AlR 3 and AlR 1.5 Cl 1.5 exist. The aluminium trialkyls and triaryls are reactive, volatile, and colorless liquids or low-melting solids. They catch fire spontaneously in air and react with water, thus necessitating precautions when handling them. They often form dimers, unlike their boron analogues, but this tendency diminishes for branched-chain alkyls (e.g. Pr , Bu , Me 3 CCH 2 ); for example, triisobutylaluminium exists as an equilibrium mixture of

23994-453: The gaseous phase when the respective trihalide is heated with aluminium, and at cryogenic temperatures. A stable derivative of aluminium monoiodide is the cyclic adduct formed with triethylamine , Al 4 I 4 (NEt 3 ) 4 . Al 2 O and Al 2 S also exist but are very unstable. Very simple aluminium(II) compounds are invoked or observed in the reactions of Al metal with oxidants. For example, aluminium monoxide , AlO, has been detected in

24180-420: The half-lives of Ca and Ca are 5.9 × 10 years and 2.8 × 10 years respectively. Apart from the practically stable Ca, the longest lived radioisotope of calcium is Ca. It decays by electron capture to stable K with a half-life of about 10 years. Its existence in the early Solar System as an extinct radionuclide has been inferred from excesses of K: traces of Ca also still exist today, as it

24366-431: The half-lives predicted for the observationally stable lead isotopes range from 10 to 10 years. Elements with atomic numbers 43, 61, and 83 through 94 are unstable enough that their radioactive decay can be detected. Three of these elements, bismuth (element 83), thorium (90), and uranium (92) have one or more isotopes with half-lives long enough to survive as remnants of the explosive stellar nucleosynthesis that produced

24552-646: The halides, nitrate , and sulfate . For similar reasons, anhydrous aluminium salts cannot be made by heating their "hydrates": hydrated aluminium chloride is in fact not AlCl 3 ·6H 2 O but [Al(H 2 O) 6 ]Cl 3 , and the Al–O bonds are so strong that heating is not sufficient to break them and form Al–Cl bonds instead: All four trihalides are well known. Unlike the structures of the three heavier trihalides, aluminium fluoride (AlF 3 ) features six-coordinate aluminium, which explains its involatility and insolubility as well as high heat of formation . Each aluminium atom

24738-399: The heaviest elements also undergo spontaneous fission . Isotopes that are not radioactive, are termed "stable" isotopes. All known stable isotopes occur naturally (see primordial nuclide ). The many radioisotopes that are not found in nature have been characterized after being artificially produced. Certain elements have no stable isotopes and are composed only of radioisotopes: specifically

24924-488: The heavy elements before the formation of the Solar System. For example, at over 1.9 × 10 years, over a billion times longer than the estimated age of the universe, bismuth-209 has the longest known alpha decay half-life of any isotope. The last 24 elements (those beyond plutonium, element 94) undergo radioactive decay with short half-lives and cannot be produced as daughters of longer-lived elements, and thus are not known to occur in nature at all. 1 The properties of

25110-413: The information for children and adolescents was not sufficient to determine ULs. Calcium is an essential element needed in large quantities. The Ca ion acts as an electrolyte and is vital to the health of the muscular, circulatory, and digestive systems; is indispensable to the building of bone in the form of hydroxyapatite ; and supports synthesis and function of blood cells. For example, it regulates

25296-433: The low-pressure polymerization of ethene and propene . There are also some heterocyclic and cluster organoaluminium compounds involving Al–N bonds. The industrially most important aluminium hydride is lithium aluminium hydride (LiAlH 4 ), which is used as a reducing agent in organic chemistry . It can be produced from lithium hydride and aluminium trichloride . The simplest hydride, aluminium hydride or alane,

25482-512: The mass production of aluminium led to its extensive use in industry and everyday life. In the First and Second World Wars, aluminium was a crucial strategic resource for aviation . In 1954, aluminium became the most produced non-ferrous metal , surpassing copper . In the 21st century, most aluminium was consumed in transportation, engineering, construction, and packaging in the United States, Western Europe, and Japan. Despite its prevalence in

25668-529: The metal remained rare; its cost exceeded that of gold. The first industrial production of aluminium was established in 1856 by French chemist Henri Etienne Sainte-Claire Deville and companions. Deville had discovered that aluminium trichloride could be reduced by sodium, which was more convenient and less expensive than potassium, which Wöhler had used. Even then, aluminium was still not of great purity and produced aluminium differed in properties by sample. Because of its electricity-conducting capacity, aluminium

25854-600: The metal to be isolated from alum was alumium , which Davy suggested in an 1808 article on his electrochemical research, published in Philosophical Transactions of the Royal Society . It appeared that the name was created from the English word alum and the Latin suffix -ium ; but it was customary then to give elements names originating in Latin, so this name was not adopted universally. This name

26040-465: The metal with many uses at the time. During World War I , major governments demanded large shipments of aluminium for light strong airframes; during World War II , demand by major governments for aviation was even higher. By the mid-20th century, aluminium had become a part of everyday life and an essential component of housewares. In 1954, production of aluminium surpassed that of copper , historically second in production only to iron, making it

26226-491: The metal. Almost all metallic aluminium is produced from the ore bauxite (AlO x (OH) 3–2 x ). Bauxite occurs as a weathering product of low iron and silica bedrock in tropical climatic conditions. In 2017, most bauxite was mined in Australia, China, Guinea, and India. The history of aluminium has been shaped by usage of alum . The first written record of alum, made by Greek historian Herodotus , dates back to

26412-485: The monomer and dimer. These dimers, such as trimethylaluminium (Al 2 Me 6 ), usually feature tetrahedral Al centers formed by dimerization with some alkyl group bridging between both aluminium atoms. They are hard acids and react readily with ligands, forming adducts. In industry, they are mostly used in alkene insertion reactions, as discovered by Karl Ziegler , most importantly in "growth reactions" that form long-chain unbranched primary alkenes and alcohols, and in

26598-497: The most common isotope of calcium in nature is Ca, which makes up 96.941% of all natural calcium. It is produced in the silicon-burning process from fusion of alpha particles and is the heaviest stable nuclide with equal proton and neutron numbers; its occurrence is also supplemented slowly by the decay of primordial K . Adding another alpha particle leads to unstable Ti, which decays via two successive electron captures to stable Ca; this makes up 2.806% of all natural calcium and

26784-506: The most produced non-ferrous metal . During the mid-20th century, aluminium emerged as a civil engineering material, with building applications in both basic construction and interior finish work, and increasingly being used in military engineering, for both airplanes and land armor vehicle engines. Earth's first artificial satellite , launched in 1957, consisted of two separate aluminium semi-spheres joined and all subsequent space vehicles have used aluminium to some extent. The aluminium can

26970-429: The neighbouring group 2 metals. It crystallises in the face-centered cubic arrangement like strontium and barium; above 443 °C (716 K), it changes to a body-centered cubic . Its density of 1.526 g/cm (at 20 °C) is the lowest in its group. Calcium is harder than lead but can be cut with a knife with effort. While calcium is a poorer conductor of electricity than copper or aluminium by volume, it

27156-562: The next decade, the -um spelling dominated American usage. In 1925, the American Chemical Society adopted this spelling. The International Union of Pure and Applied Chemistry (IUPAC) adopted aluminium as the standard international name for the element in 1990. In 1993, they recognized aluminum as an acceptable variant; the most recent 2005 edition of the IUPAC nomenclature of inorganic chemistry also acknowledges this spelling. IUPAC official publications use

27342-429: The only primordial aluminium isotope, i.e. the only one that has existed on Earth in its current form since the formation of the planet. It is therefore a mononuclidic element and its standard atomic weight is virtually the same as that of the isotope. This makes aluminium very useful in nuclear magnetic resonance (NMR), as its single stable isotope has a high NMR sensitivity. The standard atomic weight of aluminium

27528-410: The other hand increases the compound's solubility, volatility, and kinetic stability. Natural calcium is a mixture of five stable isotopes (Ca, Ca, Ca, Ca, and Ca) and one isotope with a half-life so long that it is for all practical purposes stable ( Ca , with a half-life of about 4.3 × 10 years). Calcium is the first (lightest) element to have six naturally occurring isotopes. By far

27714-407: The oxidation state 3+. The coordination number of such compounds varies, but generally Al is either six- or four-coordinate. Almost all compounds of aluminium(III) are colorless. In aqueous solution, Al exists as the hexaaqua cation [Al(H 2 O) 6 ] , which has an approximate K a of 10 . Such solutions are acidic as this cation can act as a proton donor and progressively hydrolyze until

27900-460: The patents he filed between 1886 and 1903. It is unknown whether this spelling was introduced by mistake or intentionally, but Hall preferred aluminum since its introduction because it resembled platinum , the name of a prestigious metal. By 1890, both spellings had been common in the United States, the -ium spelling being slightly more common; by 1895, the situation had reversed; by 1900, aluminum had become twice as common as aluminium ; in

28086-539: The periodic table, are often included as well. Nevertheless, beryllium and magnesium differ significantly from the other members of the group in their physical and chemical behavior: they behave more like aluminium and zinc respectively and have some of the weaker metallic character of the post-transition metals , which is why the traditional definition of the term "alkaline earth metal" excludes them. Calcium metal melts at 842 °C and boils at 1494 °C; these values are higher than those for magnesium and strontium,

28272-449: The periodic table, calcium has two valence electrons in the outermost s-orbital, which are very easily lost in chemical reactions to form a dipositive ion with the stable electron configuration of a noble gas , in this case argon . Hence, calcium is almost always divalent in its compounds, which are usually ionic . Hypothetical univalent salts of calcium would be stable with respect to their elements, but not to disproportionation to

28458-418: The periodic table, which groups together elements with similar chemical properties (and usually also similar electronic structures). The atomic number of an element is equal to the number of protons in each atom, and defines the element. For example, all carbon atoms contain 6 protons in their atomic nucleus ; so the atomic number of carbon is 6. Carbon atoms may have different numbers of neutrons; atoms of

28644-426: The periodic tables presented here includes: actinides , alkali metals , alkaline earth metals , halogens , lanthanides , transition metals , post-transition metals , metalloids , reactive nonmetals , and noble gases . In this system, the alkali metals, alkaline earth metals, and transition metals, as well as the lanthanides and the actinides, are special groups of the metals viewed in a broader sense. Similarly,

28830-404: The planet. However, minute traces of Al are produced from argon in the atmosphere by spallation caused by cosmic ray protons. The ratio of Al to Be has been used for radiodating of geological processes over 10 to 10  year time scales, in particular transport, deposition, sediment storage, burial times, and erosion. Most meteorite scientists believe that the energy released by

29016-412: The pure element to exist in multiple chemical structures ( spatial arrangements of atoms ), known as allotropes , which differ in their properties. For example, carbon can be found as diamond , which has a tetrahedral structure around each carbon atom; graphite , which has layers of carbon atoms with a hexagonal structure stacked on top of each other; graphene , which is a single layer of graphite that

29202-404: The rate of removal of Ca by mineral precipitation exceeds the input of new calcium into the ocean. In 1997, Skulan and DePaolo presented the first evidence of change in seawater Ca/Ca over geologic time, along with a theoretical explanation of these changes. More recent papers have confirmed this observation, demonstrating that seawater Ca concentration is not constant, and that the ocean is never in

29388-772: The reactive nonmetals and the noble gases are nonmetals viewed in the broader sense. In some presentations, the halogens are not distinguished, with astatine identified as a metalloid and the others identified as nonmetals. Another commonly used basic distinction among the elements is their state of matter (phase), whether solid , liquid , or gas , at standard temperature and pressure (STP). Most elements are solids at STP, while several are gases. Only bromine and mercury are liquid at 0 degrees Celsius (32 degrees Fahrenheit) and 1 atmosphere pressure; caesium and gallium are solid at that temperature, but melt at 28.4°C (83.2°F) and 29.8°C (85.6°F), respectively. Melting and boiling points , typically expressed in degrees Celsius at

29574-919: The remaining 11 elements have half lives too short for them to have been present at the beginning of the Solar System, and are therefore considered transient elements. Of these 11 transient elements, five ( polonium , radon , radium , actinium , and protactinium ) are relatively common decay products of thorium and uranium . The remaining six transient elements (technetium, promethium, astatine, francium , neptunium , and plutonium ) occur only rarely, as products of rare decay modes or nuclear reaction processes involving uranium or other heavy elements. Elements with atomic numbers 1 through 82, except 43 (technetium) and 61 (promethium), each have at least one isotope for which no radioactive decay has been observed. Observationally stable isotopes of some elements (such as tungsten and lead ), however, are predicted to be slightly radioactive with very long half-lives: for example,

29760-423: The respective hydrogen chalcogenide . As aluminium is a small atom relative to these chalcogens, these have four-coordinate tetrahedral aluminium with various polymorphs having structures related to wurtzite , with two-thirds of the possible metal sites occupied either in an orderly (α) or random (β) fashion; the sulfide also has a γ form related to γ-alumina, and an unusual high-temperature hexagonal form where half

29946-405: The salt involved: calcium citrate , malate , and lactate are highly bioavailable, while the oxalate is less. Other calcium preparations include calcium carbonate , calcium citrate malate , and calcium gluconate . The intestine absorbs about one-third of calcium eaten as the free ion , and plasma calcium level is then regulated by the kidneys . Parathyroid hormone and vitamin D promote

30132-624: The same element can have different numbers of neutrons in their nuclei, known as isotopes of the element. Two or more atoms can combine to form molecules . Some elements are formed from molecules of identical atoms , e. g. atoms of hydrogen (H) form diatomic molecules (H 2 ). Chemical compounds are substances made of atoms of different elements; they can have molecular or non-molecular structure. Mixtures are materials containing different chemical substances; that means (in case of molecular substances) that they contain different types of molecules. Atoms of one element can be transformed into atoms of

30318-495: The same element having different numbers of neutrons are known as isotopes of the element. The number of protons in the nucleus also determines its electric charge , which in turn determines the number of electrons of the atom in its non-ionized state. The electrons are placed into atomic orbitals that determine the atom's chemical properties . The number of neutrons in a nucleus usually has very little effect on an element's chemical properties; except for hydrogen (for which

30504-404: The same number of protons in their nucleus), but having different numbers of neutrons . Thus, for example, there are three main isotopes of carbon. All carbon atoms have 6 protons, but they can have either 6, 7, or 8 neutrons. Since the mass numbers of these are 12, 13 and 14 respectively, said three isotopes are known as carbon-12 , carbon-13 , and carbon-14 ( C, C, and C). Natural carbon

30690-485: The scale of the economies. However, the need to exploit lower-grade poorer quality deposits and the use of fast increasing input costs (above all, energy) increased the net cost of aluminium; the real price began to grow in the 1970s with the rise of energy cost. Production moved from the industrialized countries to countries where production was cheaper. Production costs in the late 20th century changed because of advances in technology, lower energy prices, exchange rates of

30876-457: The second half of the 20th century, physics laboratories became able to produce elements with half-lives too short for an appreciable amount of them to exist at any time. These are also named by IUPAC, which generally adopts the name chosen by the discoverer. This practice can lead to the controversial question of which research group actually discovered an element, a question that delayed the naming of elements with atomic number of 104 and higher for

31062-418: The similar ionic radii of Yb (102 pm) and Ca (100 pm). Most of these compounds can only be prepared at low temperatures; bulky ligands tend to favor stability. For example, calcium di cyclopentadienyl , Ca(C 5 H 5 ) 2 , must be made by directly reacting calcium metal with mercurocene or cyclopentadiene itself; replacing the C 5 H 5 ligand with the bulkier C 5 (CH 3 ) 5 ligand on

31248-498: The simplest terms, mountain-building exposes calcium-bearing rocks such as basalt and granodiorite to chemical weathering and releases Ca into surface water. These ions are transported to the ocean where they react with dissolved CO 2 to form limestone ( CaCO 3 ), which in turn settles to the sea floor where it is incorporated into new rocks. Dissolved CO 2 , along with carbonate and bicarbonate ions, are termed " dissolved inorganic carbon " (DIC). The actual reaction

31434-520: The steel and become small and spherical, improving castability, cleanliness and general mechanical properties. Calcium is also used in maintenance-free automotive batteries , in which the use of 0.1% calcium– lead alloys instead of the usual antimony –lead alloys leads to lower water loss and lower self-discharging. Due to the risk of expansion and cracking, aluminium is sometimes also incorporated into these alloys. These lead–calcium alloys are also used in casting, replacing lead–antimony alloys. Calcium

31620-408: The structure of BCl 3 . Aluminium tribromide and aluminium triiodide form Al 2 X 6 dimers in all three phases and hence do not show such significant changes of properties upon phase change. These materials are prepared by treating aluminium with the halogen. The aluminium trihalides form many addition compounds or complexes; their Lewis acidic nature makes them useful as catalysts for

31806-585: The surficial system (atmosphere, ocean, soils and living organisms), storing it in carbonate rocks where it is likely to stay for hundreds of millions of years. The weathering of calcium from rocks thus scrubs CO 2 from the ocean and atmosphere, exerting a strong long-term effect on climate. The largest use of metallic calcium is in steelmaking , due to its strong chemical affinity for oxygen and sulfur . Its oxides and sulfides, once formed, give liquid lime aluminate and sulfide inclusions in steel which float out; on treatment, these inclusions disperse throughout

31992-468: The surrounding solution enriched in heavier isotopes at a magnitude of roughly 0.025% per atomic mass unit (amu) at room temperature. Mass-dependent differences in calcium isotope composition are conventionally expressed by the ratio of two isotopes (usually Ca/Ca) in a sample compared to the same ratio in a standard reference material. Ca/Ca varies by about 1- 2‰ among organisms on Earth. Calcium compounds were known for millennia, though their chemical makeup

32178-496: The synthetically produced transuranic elements, available samples have been too small to determine crystal structures. Chemical elements may also be categorized by their origin on Earth, with the first 94 considered naturally occurring, while those with atomic numbers beyond 94 have only been produced artificially via human-made nuclear reactions. Of the 94 naturally occurring elements, 83 are considered primordial and either stable or weakly radioactive. The longest-lived isotopes of

32364-955: The table to illustrate recurring trends in the properties of the elements. The layout of the table has been refined and extended over time as new elements have been discovered and new theoretical models have been developed to explain chemical behavior. Use of the periodic table is now ubiquitous in chemistry, providing an extremely useful framework to classify, systematize and compare all the many different forms of chemical behavior. The table has also found wide application in physics , geology , biology , materials science , engineering , agriculture , medicine , nutrition , environmental health , and astronomy . Its principles are especially important in chemical engineering . The various chemical elements are formally identified by their unique atomic numbers, their accepted names, and their chemical symbols . The known elements have atomic numbers from 1 to 118, conventionally presented as Arabic numerals . Since

32550-409: The tomb of Tutankhamun . The ancient Romans instead used lime mortars made by heating limestone (CaCO 3 ). The name "calcium" itself derives from the Latin word calx "lime". Vitruvius noted that the lime that resulted was lighter than the original limestone, attributing this to the boiling of the water. In 1755, Joseph Black proved that this was due to the loss of carbon dioxide , which as

32736-536: The two therefore look similar. Aluminium is also good at reflecting solar radiation , although prolonged exposure to sunlight in air adds wear to the surface of the metal; this may be prevented if aluminium is anodized , which adds a protective layer of oxide on the surface. The density of aluminium is 2.70 g/cm , about 1/3 that of steel, much lower than other commonly encountered metals, making aluminium parts easily identifiable through their lightness. Aluminium's low density compared to most other metals arises from

32922-561: The universe at large, in the spectra of stars and also supernovae, where short-lived radioactive elements are newly being made. The first 94 elements have been detected directly on Earth as primordial nuclides present from the formation of the Solar System , or as naturally occurring fission or transmutation products of uranium and thorium. The remaining 24 heavier elements, not found today either on Earth or in astronomical spectra, have been produced artificially: all are radioactive, with short half-lives; if any of these elements were present at

33108-528: The work of Dmitri Mendeleev , a Russian chemist who published the first recognizable periodic table in 1869. This table organizes the elements by increasing atomic number into rows (" periods ") in which the columns (" groups ") share recurring ("periodic") physical and chemical properties . The periodic table summarizes various properties of the elements, allowing chemists to derive relationships between them and to make predictions about elements not yet discovered, and potential new compounds. By November 2016,

33294-461: Was a salt of an earth of alum. In 1595, German doctor and chemist Andreas Libavius experimentally confirmed this. In 1722, German chemist Friedrich Hoffmann announced his belief that the base of alum was a distinct earth. In 1754, German chemist Andreas Sigismund Marggraf synthesized alumina by boiling clay in sulfuric acid and subsequently adding potash . Attempts to produce aluminium date back to 1760. The first successful attempt, however,

33480-494: Was borrowed from French, which in turn derived it from alumen , the classical Latin name for alum , the mineral from which it was collected. The Latin word alumen stems from the Proto-Indo-European root *alu- meaning "bitter" or "beer". British chemist Humphry Davy , who performed a number of experiments aimed to isolate the metal, is credited as the person who named the element. The first name proposed for

33666-422: Was completed in 1824 by Danish physicist and chemist Hans Christian Ørsted . He reacted anhydrous aluminium chloride with potassium amalgam , yielding a lump of metal looking similar to tin. He presented his results and demonstrated a sample of the new metal in 1825. In 1827, German chemist Friedrich Wöhler repeated Ørsted's experiments but did not identify any aluminium. (The reason for this inconsistency

33852-443: Was criticized by contemporary chemists from France, Germany, and Sweden, who insisted the metal should be named for the oxide, alumina, from which it would be isolated. The English name alum does not come directly from Latin, whereas alumine / alumina obviously comes from the Latin word alumen (upon declension , alumen changes to alumin- ). One example was Essai sur la Nomenclature chimique (July 1811), written in French by

34038-418: Was invented in 1956 and employed as a storage for drinks in 1958. Throughout the 20th century, the production of aluminium rose rapidly: while the world production of aluminium in 1900 was 6,800 metric tons, the annual production first exceeded 100,000 metric tons in 1916; 1,000,000 tons in 1941; 10,000,000 tons in 1971. In the 1970s, the increased demand for aluminium made it an exchange commodity; it entered

34224-526: Was not understood until the 17th century. Lime as a building material and as plaster for statues was used as far back as around 7000 BC. The first dated lime kiln dates back to 2500 BC and was found in Khafajah , Mesopotamia . About the same time, dehydrated gypsum (CaSO 4 ·2H 2 O) was being used in the Great Pyramid of Giza . This material would later be used for the plaster in

34410-433: Was only discovered in 1921.) He conducted a similar experiment in the same year by mixing anhydrous aluminium chloride with potassium and produced a powder of aluminium. In 1845, he was able to produce small pieces of the metal and described some physical properties of this metal. For many years thereafter, Wöhler was credited as the discoverer of aluminium. As Wöhler's method could not yield great quantities of aluminium,

34596-580: Was used as the cap of the Washington Monument , completed in 1885. The tallest building in the world at the time, the non-corroding metal cap was intended to serve as a lightning rod peak. The first industrial large-scale production method was independently developed in 1886 by French engineer Paul Héroult and American engineer Charles Martin Hall ; it is now known as the Hall–Héroult process . The Hall–Héroult process converts alumina into metal. Austrian chemist Carl Joseph Bayer discovered

#214785