Misplaced Pages

Sinclair Cambridge

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles . It is a subfield of physics and electrical engineering which uses active devices such as transistors , diodes , and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog signals to digital signals.

#944055

83-479: The Sinclair Cambridge was a pocket-sized calculator introduced in August 1973 by Sinclair Radionics . It was available both in kit form to be assembled by the purchaser, or assembled prior to purchase. The range ultimately comprised seven models, the original "four-function" Cambridge – which carried out the four basic mathematical functions of addition, subtraction, multiplication, and division – being followed by

166-432: A mass-production basis, which limited them to a number of specialised applications. The MOSFET was invented at Bell Labs between 1955 and 1960. It was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. Its advantages include high scalability , affordability, low power consumption, and high density . It revolutionized the electronics industry , becoming

249-403: A radio antenna , practicable. Vacuum tubes (thermionic valves) were the first active electronic components which controlled current flow by influencing the flow of individual electrons , and enabled the construction of equipment that used current amplification and rectification to give us radio , television , radar , long-distance telephony and much more. The early growth of electronics

332-535: A 5-digit mantissa and 2-digit exponent. On later scientific variants the power draw for the display required a larger PP3 battery , creating a bulge in the lower rear casing of the appliance. A later model, the Sinclair Cambridge Scientific, was launched in March 1974 at a price of £49.95 (£5 cheaper than its nearest rival from Hewlett-Packard ). As the name suggests, it was a development of

415-407: A button can perform multi-function working with key combinations . Calculators usually have liquid-crystal displays (LCD) as output in place of historical light-emitting diode (LED) displays and vacuum fluorescent displays (VFD); details are provided in the section Technical improvements . Large-sized figures are often used to improve readability; while using decimal separator (usually

498-399: A calculator could be made using just a few chips of low power consumption, allowing portable models powered from rechargeable batteries. The first handheld calculator was a 1967 prototype called Cal Tech , whose development was led by Jack Kilby at Texas Instruments in a research project to produce a portable calculator. It could add, multiply, subtract, and divide, and its output device

581-684: A development from the "Cal-Tech" project. It had no traditional display; numerical output was on thermal paper tape. Sharp put in great efforts in size and power reduction and introduced in January 1971 the Sharp EL-8 , also marketed as the Facit 1111, which was close to being a pocket calculator. It weighed 1.59 pounds (721 grams), had a vacuum fluorescent display , rechargeable NiCad batteries, and initially sold for US$ 395. However, integrated circuit development efforts culminated in early 1971 with

664-609: A full single chip calculator IC for the Monroe Royal Digital III calculator. Pico was a spinout by five GI design engineers whose vision was to create single chip calculator ICs. Pico and GI went on to have significant success in the burgeoning handheld calculator market. The first truly pocket-sized electronic calculator was the Busicom LE-120A "HANDY", which was marketed early in 1971. Made in Japan, this

747-427: A kit. An extensive manual explained how to calculate functions such as trigonometry , nth root extraction and compound interest on the device. The Cambridge was extremely small for a calculator of the time: it weighed less than 3.5 ounces (99 g) and measured 50 by 111 by 28 millimetres (2.0 in × 4.4 in × 1.1 in). Power was supplied by four AAA batteries . The use of cheap components

830-418: A leading role in the field of microwave and high power transmission as well as television receivers until the middle of the 1980s. Since then, solid-state devices have all but completely taken over. Vacuum tubes are still used in some specialist applications such as high power RF amplifiers , cathode-ray tubes , specialist audio equipment, guitar amplifiers and some microwave devices . In April 1955,

913-566: A mix of the two types. Analog circuits are becoming less common, as many of their functions are being digitized. Analog circuits use a continuous range of voltage or current for signal processing, as opposed to the discrete levels used in digital circuits. Analog circuits were common throughout an electronic device in the early years in devices such as radio receivers and transmitters. Analog electronic computers were valuable for solving problems with continuous variables until digital processing advanced. As semiconductor technology developed, many of

SECTION 10

#1732798217945

996-540: A physical space, although in more recent years the trend has been towards electronics lab simulation software , such as CircuitLogix , Multisim , and PSpice . Today's electronics engineers have the ability to design circuits using premanufactured building blocks such as power supplies , semiconductors (i.e. semiconductor devices, such as transistors), and integrated circuits. Electronic design automation software programs include schematic capture programs and printed circuit board design programs. Popular names in

1079-485: A pocket calculator. Launched in early 1972, it was unlike the other basic four-function pocket calculators then available in that it was the first pocket calculator with scientific functions that could replace a slide rule . The $ 395 HP-35 , along with nearly all later HP engineering calculators, uses reverse Polish notation (RPN), also called postfix notation. A calculation like "8 plus 5" is, using RPN, performed by pressing 8 , Enter↑ , 5 , and + ; instead of

1162-428: A point rather than a comma ) instead of or in addition to vulgar fractions . Various symbols for function commands may also be shown on the display. Fractions such as 1 ⁄ 3 are displayed as decimal approximations , for example rounded to 0.33333333 . Also, some fractions (such as 1 ⁄ 7 , which is 0.14285714285714 ; to 14 significant figures ) can be difficult to recognize in decimal form; as

1245-437: A result, many scientific calculators are able to work in vulgar fractions or mixed numbers . Calculators also have the ability to save numbers into computer memory . Basic calculators usually store only one number at a time; more specific types are able to store many numbers represented in variables . Usually these variables are named ans or ans(0). The variables can also be used for constructing formulas . Some models have

1328-420: A series of separate identical seven-segment displays to build a metering circuit, for example. If the numeric quantity were stored and manipulated as pure binary, interfacing to such a display would require complex circuitry. Therefore, in cases where the calculations are relatively simple, working throughout with BCD can lead to a simpler overall system than converting to and from binary. (For example, CDs keep

1411-419: Is common in electronic systems where a numeric value is to be displayed, especially in systems consisting solely of digital logic, and not containing a microprocessor. By employing BCD, the manipulation of numerical data for display can be greatly simplified by treating each digit as a separate single sub-circuit. This matches much more closely the physical reality of display hardware—a designer might choose to use

1494-548: Is defined as unwanted disturbances superposed on a useful signal that tend to obscure its information content. Noise is not the same as signal distortion caused by a circuit. Noise is associated with all electronic circuits. Noise may be electromagnetically or thermally generated, which can be decreased by lowering the operating temperature of the circuit. Other types of noise, such as shot noise cannot be removed as they are due to limitations in physical properties. Many different methods of connecting components have been used over

1577-473: Is needed to fit all the desired functions in the limited memory space available in the calculator chip , with acceptable calculation time. The first known tools used to aid arithmetic calculations were: bones (used to tally items), pebbles, and counting boards , and the abacus , known to have been used by Sumerians and Egyptians before 2000 BC. Except for the Antikythera mechanism (an "out of

1660-405: Is notably different from the layout of telephone Touch-Tone keypads which have the 1 - 2 - 3 keys on top and 7 - 8 - 9 keys on the third row. In general, a basic electronic calculator consists of the following components: Clock rate of a processor chip refers to the frequency at which the central processing unit (CPU) is running. It is used as an indicator of

1743-610: Is the first calculator in the world which includes the square root function. Later that same year were released the ELKA 22 (with a luminescent display) and the ELKA 25, with an built-in printer. Several other models were developed until the first pocket model, the ELKA 101 , was released in 1974. The writing on it was in Roman script , and it was exported to western countries. The first desktop programmable calculators were produced in

SECTION 20

#1732798217945

1826-595: Is the voltage comparator which receives a continuous range of voltage but only outputs one of two levels as in a digital circuit. Similarly, an overdriven transistor amplifier can take on the characteristics of a controlled switch , having essentially two levels of output. Analog circuits are still widely used for signal amplification, such as in the entertainment industry, and conditioning signals from analog sensors, such as in industrial measurement and control. Digital circuits are electric circuits based on discrete voltage levels. Digital circuits use Boolean algebra and are

1909-448: Is therefore the process of defining and developing complex electronic devices to satisfy specified requirements of the user. Due to the complex nature of electronics theory, laboratory experimentation is an important part of the development of electronic devices. These experiments are used to test or verify the engineer's design and detect errors. Historically, electronics labs have consisted of electronics devices and equipment located in

1992-624: The IBM 608 was the first IBM product to use transistor circuits without any vacuum tubes and is believed to be the first all-transistorized calculator to be manufactured for the commercial market. The 608 contained more than 3,000 germanium transistors. Thomas J. Watson Jr. ordered all future IBM products to use transistors in their design. From that time on transistors were almost exclusively used for computer logic circuits and peripheral devices. However, early junction transistors were relatively bulky devices that were difficult to manufacture on

2075-713: The Sinclair Executive , Sinclair's first pocket calculator, in September 1972. At the time, the Executive was smaller and noticeably thinner than any of its competitors, at 56 by 138 by 9 millimetres (2.20 in × 5.43 in × 0.35 in), fitting easily into a shirt pocket. A major factor in the Cambridge's success was its low price; when launched in August 1973, it sold for £32.95 ( £29.95 + VAT ) fully assembled or £27.45 ( £24.95 + VAT) as

2158-459: The electron in 1897 by Sir Joseph John Thomson , along with the subsequent invention of the vacuum tube which could amplify and rectify small electrical signals , inaugurated the field of electronics and the electron age. Practical applications started with the invention of the diode by Ambrose Fleming and the triode by Lee De Forest in the early 1900s, which made the detection of small electrical voltages, such as radio signals from

2241-448: The 1960s, U.S. manufacturers were unable to compete with Japanese companies such as Sony and Hitachi who could produce high-quality goods at lower prices. By the 1980s, however, U.S. manufacturers became the world leaders in semiconductor development and assembly. However, during the 1990s and subsequently, the industry shifted overwhelmingly to East Asia (a process begun with the initial movement of microchip mass-production there in

2324-538: The 1970s), as plentiful, cheap labor, and increasing technological sophistication, became widely available there. Over three decades, the United States' global share of semiconductor manufacturing capacity fell, from 37% in 1990, to 12% in 2022. America's pre-eminent semiconductor manufacturer, Intel Corporation , fell far behind its subcontractor Taiwan Semiconductor Manufacturing Company (TSMC) in manufacturing technology. By that time, Taiwan had become

2407-515: The ANITA was superseded in June 1963 by the U.S. manufactured Friden EC-130, which had an all-transistor design, a stack of four 13-digit numbers displayed on a 5-inch (13 cm) cathode-ray tube (CRT), and introduced Reverse Polish Notation (RPN) to the calculator market for a price of $ 2200, which was about three times the cost of an electromechanical calculator of the time. Like Bell Punch, Friden

2490-545: The Autumn of 1971, with four functions and an eight-digit red LED display, for US$ 240 , while in August 1972 the four-function Sinclair Executive became the first slimline pocket calculator measuring 5.4 by 2.2 by 0.35 inches (137.2 mm × 55.9 mm × 8.9 mm) and weighing 2.5 ounces (71 g). It retailed for around £79 ( US$ 194 at the time). By the end of the decade, similar calculators were priced less than £5 ($ 6.85). Following protracted development over

2573-486: The Cambridge Scientific, Cambridge Memory, two versions of Cambridge Memory %, Cambridge Scientific Programmable and Cambridge Universal. The Sinclair calculators were successful because they were far cheaper than the competition; however, their design led to slow and less accurate computations of transcendental functions (maximum three decimal places of accuracy). The Cambridge had been preceded by

Sinclair Cambridge - Misplaced Pages Continue

2656-589: The Cambridge, using the same case, with the addition of some common scientific functions ( sin , cos , tan , etc.). The other calculators in the range were the Cambridge Memory, Cambridge Memory % (which came in two different versions), Cambridge Programmable (marketed in the United States as the Radio Shack EC-4001), Cambridge Scientific, Cambridge Scientific Programmable and Cambridge Universal. The Cambridge Programmable (sold in

2739-712: The EDA software world are NI Multisim, Cadence ( ORCAD ), EAGLE PCB and Schematic, Mentor (PADS PCB and LOGIC Schematic), Altium (Protel), LabCentre Electronics (Proteus), gEDA , KiCad and many others. Heat generated by electronic circuitry must be dissipated to prevent immediate failure and improve long term reliability. Heat dissipation is mostly achieved by passive conduction/convection. Means to achieve greater dissipation include heat sinks and fans for air cooling, and other forms of computer cooling such as water cooling . These techniques use convection , conduction , and radiation of heat energy . Electronic noise

2822-696: The Mk VII for continental Europe and the Mk VIII for Britain and the rest of the world, both for delivery from early 1962. The Mk VII was a slightly earlier design with a more complicated mode of multiplication, and was soon dropped in favour of the simpler Mark VIII. The ANITA had a full keyboard, similar to mechanical comptometers of the time, a feature that was unique to it and the later Sharp CS-10A among electronic calculators. The ANITA weighed roughly 33 pounds (15 kg) due to its large tube system. Bell Punch had been producing key-driven mechanical calculators of

2905-557: The U.S as the Radio Shack EC-4001) was released in 1975. It lacked accuracy in many of its scientific functions, some yielding only four significant digits . It featured a single memory register and a limit of 36 program steps, along with a conditional jump instruction. The Programmable came with a program library consisting of four books, covering general functions, finance & statistics, mathematics, physics & engineering and electronics. The Cambridge Programmable

2988-493: The ability to extend memory capacity to store more numbers; the extended memory address is termed an array index. Power sources of calculators are batteries , solar cells or mains electricity (for old models), turning on with a switch or button. Some models even have no turn-off button but they provide some way to put off (for example, leaving no operation for a moment, covering solar cell exposure, or closing their lid ). Crank -powered calculators were also common in

3071-413: The adding machine as a means of completing this operation. There is a debate about whether Pascal or Shickard should be credited as the known inventor of a calculating machine due to the differences (like the different aims) of both inventions. Schickard and Pascal were followed by Gottfried Leibniz who spent forty years designing a four-operation mechanical calculator, the stepped reckoner , inventing in

3154-535: The advancement of electronics is the semiconductor industry , which in response to global demand continually produces ever-more sophisticated electronic devices and circuits. The semiconductor industry is one of the largest and most profitable sectors in the global economy, with annual revenues exceeding $ 481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $ 29 trillion in online sales in 2017. The identification of

3237-560: The algebraic infix notation : 8 , + , 5 , = . It had 35 buttons and was based on Mostek Mk6020 chip. The first Soviet scientific pocket-sized calculator the "B3-18" was completed by the end of 1975. In 1973, Texas Instruments (TI) introduced the SR-10 , ( SR signifying slide rule ) an algebraic entry pocket calculator using scientific notation for $ 150. Shortly after the SR-11 featured an added key for entering pi (π). It

3320-409: The basis of all digital computers and microprocessor devices. They range from simple logic gates to large integrated circuits, employing millions of such gates. Digital circuits use a binary system with two voltage levels labelled "0" and "1" to indicated logical status. Often logic "0" will be a lower voltage and referred to as "Low" while logic "1" is referred to as "High". However, some systems use

3403-459: The circuit, thus slowing the computer. The invention of the integrated circuit by Jack Kilby and Robert Noyce solved this problem by making all the components and the chip out of the same block (monolith) of semiconductor material. The circuits could be made smaller, and the manufacturing process could be automated. This led to the idea of integrating all components on a single-crystal silicon wafer, which led to small-scale integration (SSI) in

Sinclair Cambridge - Misplaced Pages Continue

3486-415: The comptometer type under the names "Plus" and "Sumlock", and had realised in the mid-1950s that the future of calculators lay in electronics. They employed the young graduate Norbert Kitz, who had worked on the early British Pilot ACE computer project, to lead the development. The ANITA sold well since it was the only electronic desktop calculator available, and was silent and quick. The tube technology of

3569-538: The course of two years including a botched partnership with Texas Instruments, Eldorado Electrodata released five pocket calculators in 1972. One called the Touch Magic was "no bigger than a pack of cigarettes" according to Administrative Management . The first Soviet Union made pocket-sized calculator, the Elektronika B3-04 was developed by the end of 1973 and sold at the start of 1974. One of

3652-874: The early 1960s, and then medium-scale integration (MSI) in the late 1960s, followed by VLSI . In 2008, billion-transistor processors became commercially available. An electronic component is any component in an electronic system either active or passive. Components are connected together, usually by being soldered to a printed circuit board (PCB), to create an electronic circuit with a particular function. Components may be packaged singly, or in more complex groups as integrated circuits . Passive electronic components are capacitors , inductors , resistors , whilst active components are such as semiconductor devices; transistors and thyristors , which control current flow at electron level. Electronic circuit functions can be divided into two function groups: analog and digital. A particular device may consist of circuitry that has either or

3735-428: The early computer era. The following keys are common to most pocket calculators. While the arrangement of the digits is standard, the positions of other keys vary from model to model; the illustration is an example. The arrangement of digits on calculator and other numeric keypads with the 7 - 8 - 9 keys two rows above the 1 - 2 - 3 keys is derived from calculators and cash registers . It

3818-452: The electronic logic gates to generate binary states. Highly integrated devices: Electronic systems design deals with the multi-disciplinary design issues of complex electronic devices and systems, such as mobile phones and computers . The subject covers a broad spectrum, from the design and development of an electronic system ( new product development ) to assuring its proper function, service life and disposal . Electronic systems design

3901-472: The end of that decade, prices had dropped to the point where a basic calculator was affordable to most and they became common in schools. In addition to general purpose calculators, there are those designed for specific markets. For example, there are scientific calculators , which include trigonometric and statistical calculations. Some calculators even have the ability to do computer algebra . Graphing calculators can be used to graph functions defined on

3984-493: The eve of the industrial revolution made large scale production of more compact and modern units possible. The Arithmometer , invented in 1820 as a four-operation mechanical calculator, was released to production in 1851 as an adding machine and became the first commercially successful unit; forty years later, by 1890, about 2,500 arithmometers had been sold plus a few hundreds more from two arithmometer clone makers (Burkhardt, Germany, 1878 and Layton, UK, 1883) and Felt and Tarrant,

4067-467: The first Japanese one) was the Casio (AL-1000) produced in 1967. It featured a nixie tubes display and had transistor electronics and ferrite core memory. The Monroe Epic programmable calculator came on the market in 1967. A large, printing, desk-top unit, with an attached floor-standing logic tower, it could be programmed to perform many computer-like functions. However, the only branch instruction

4150-492: The first direct multiplication machine in 1834: this was also the second key-driven machine in the world, following that of James White (1822). It was not until the 19th century and the Industrial Revolution that real developments began to occur. Although machines capable of performing all four arithmetic functions existed prior to the 19th century, the refinement of manufacturing and fabrication processes during

4233-560: The first low-cost calculators was the Sinclair Cambridge , launched in August 1973. It retailed for £29.95 ($ 41.03), or £5 ($ 6.85) less in kit form, and later models included some scientific functions. The Sinclair calculators were successful because they were far cheaper than the competition; however, their design led to slow and less accurate computations of transcendental functions (maximum three decimal places of accuracy). Meanwhile, Hewlett-Packard (HP) had been developing

SECTION 50

#1732798217945

4316-562: The following ways: The electronics industry consists of various sectors. The central driving force behind the entire electronics industry is the semiconductor industry sector, which has annual sales of over $ 481 billion as of 2018. The largest industry sector is e-commerce , which generated over $ 29 trillion in 2017. The most widely manufactured electronic device is the metal-oxide-semiconductor field-effect transistor (MOSFET), with an estimated 13   sextillion MOSFETs having been manufactured between 1960 and 2018. In

4399-489: The functions of analog circuits were taken over by digital circuits, and modern circuits that are entirely analog are less common; their functions being replaced by hybrid approach which, for instance, uses analog circuits at the front end of a device receiving an analog signal, and then use digital processing using microprocessor techniques thereafter. Sometimes it may be difficult to classify some circuits that have elements of both linear and non-linear operation. An example

4482-610: The introduction of the first "calculator on a chip", the MK6010 by Mostek , followed by Texas Instruments later in the year. Although these early hand-held calculators were very costly, these advances in electronics, together with developments in display technology (such as the vacuum fluorescent display , LED , and LCD ), led within a few years to the cheap pocket calculator available to all. In 1971, Pico Electronics and General Instrument also introduced their first collaboration in ICs,

4565-555: The logic circuits, appeared in the 1940s and 1950s. Electronic circuits developed for computers also had application to electronic calculators. The Casio Computer Company, in Japan , released the Model 14-A calculator in 1957, which was the world's first all-electric (relatively) compact calculator. It did not use electronic logic but was based on relay technology, and was built into a desk. The IBM 608 plugboard programmable calculator

4648-637: The mid-1960s. They included the Mathatronics Mathatron (1964) and the Olivetti Programma 101 (late 1965) which were solid-state, desktop, printing, floating point, algebraic entry, programmable, stored-program electronic calculators. Both could be programmed by the end user and print out their results. The Programma 101 saw much wider distribution and had the added feature of offline storage of programs via magnetic cards. Another early programmable desktop calculator (and maybe

4731-399: The most widely used electronic device in the world. The MOSFET is the basic element in most modern electronic equipment. As the complexity of circuits grew, problems arose. One problem was the size of the circuit. A complex circuit like a computer was dependent on speed. If the components were large, the wires interconnecting them must be long. The electric signals took time to go through

4814-711: The only other competitor in true commercial production, had sold 100 comptometers . It wasn't until 1902 that the familiar push-button user interface was developed, with the introduction of the Dalton Adding Machine, developed by James L. Dalton in the United States . In 1921, Edith Clarke invented the "Clarke calculator", a simple graph-based calculator for solving line equations involving hyperbolic functions. This allowed electrical engineers to simplify calculations for inductance and capacitance in power transmission lines . The Curta calculator

4897-422: The power grid, was released at the start of the 1970s. The electronic calculators of the mid-1960s were large and heavy desktop machines due to their use of hundreds of transistors on several circuit boards with a large power consumption that required an AC power supply. There were great efforts to put the logic required for a calculator into fewer and fewer integrated circuits (chips) and calculator electronics

4980-421: The process his leibniz wheel , but who couldn't design a fully operational machine. There were also five unsuccessful attempts to design a calculating clock in the 17th century. The 18th century saw the arrival of some notable improvements, first by Poleni with the first fully functional calculating clock and four-operation machine, but these machines were almost always one of a kind . Luigi Torchi invented

5063-631: The processor's speed, and is measured in clock cycles per second or hertz (Hz) . For basic calculators, the speed can vary from a few hundred hertz to the kilohertz range. A basic explanation as to how calculations are performed in a simple four-function calculator: To perform the calculation 25 + 9 , one presses keys in the following sequence on most calculators: 2   5   +   9   = . Other functions are usually performed using repeated additions or subtractions. Most pocket calculators do all their calculations in binary-coded decimal (BCD) rather than binary. BCD

SECTION 60

#1732798217945

5146-508: The real line, or higher-dimensional Euclidean space . As of 2016 , basic calculators cost little, but scientific and graphing models tend to cost more. Computer operating systems as far back as early Unix have included interactive calculator programs such as dc and hoc , and interactive BASIC could be used to do calculations on most 1970s and 1980s home computers. Calculator functions are included in most smartphones , tablets , and personal digital assistant (PDA) type devices. With

5229-540: The reverse definition ("0" is "High") or are current based. Quite often the logic designer may reverse these definitions from one circuit to the next as they see fit to facilitate their design. The definition of the levels as "0" or "1" is arbitrary. Ternary (with three states) logic has been studied, and some prototype computers made, but have not gained any significant practical acceptance. Universally, Computers and Digital signal processors are constructed with digital circuits using Transistors such as MOSFETs in

5312-603: The same time). The Victor 3900 was the first to use integrated circuits in place of individual transistors , but production problems delayed sales until 1966. There followed a series of electronic calculator models from these and other manufacturers, including Canon , Mathatronics , Olivetti , SCM (Smith-Corona-Marchant), Sony , Toshiba , and Wang . The early calculators used hundreds of germanium transistors , which were cheaper than silicon transistors , on multiple circuit boards. Display types used were CRT, cold-cathode Nixie tubes , and filament lamps . Memory technology

5395-403: The time" astronomical device), development of computing tools arrived near the start of the 17th century: the geometric-military compass (by Galileo ), logarithms and Napier bones (by Napier ), and the slide rule (by Edmund Gunter ). The Renaissance saw the invention of the mechanical calculator by Wilhelm Schickard in 1623, and later by Blaise Pascal in 1642. A device that

5478-738: The track number in BCD, limiting them to 99 tracks.) The same argument applies when hardware of this type uses an embedded microcontroller or other small processor. Often, smaller code results when representing numbers internally in BCD format, since a conversion from or to binary representation can be expensive on such limited processors. For these applications, some small processors feature BCD arithmetic modes, which assist when writing routines that manipulate BCD quantities. Where calculators have added functions (such as square root, or trigonometric functions ), software algorithms are required to produce high precision results. Sometimes significant design effort

5561-643: The very wide availability of smartphones and the like, dedicated hardware calculators, while still widely used, are less common than they once were. In 1986, calculators still represented an estimated 41% of the world's general-purpose hardware capacity to compute information. By 2007, this had diminished to less than 0.05%. Electronic calculators contain a keyboard with buttons for digits and arithmetical operations; some even contain "00" and "000" buttons to make larger or smaller numbers easier to enter. Most basic calculators assign only one digit or operation on each button; however, in more specific calculators,

5644-762: The years. For instance, early electronics often used point to point wiring with components attached to wooden breadboards to construct circuits. Cordwood construction and wire wrap were other methods used. Most modern day electronics now use printed circuit boards made of materials such as FR4 , or the cheaper (and less hard-wearing) Synthetic Resin Bonded Paper ( SRBP , also known as Paxoline/Paxolin (trade marks) and FR2) – characterised by its brown colour. Health and environmental concerns associated with electronics assembly have gained increased attention in recent years, especially for products destined to go to European markets. Electrical components are generally mounted in

5727-624: Was IBM's first all-transistor product, released in 1957; this was a console type system, with input and output on punched cards, and replaced the earlier, larger, vacuum-tube IBM 603 . In October 1961, the world's first all-electronic desktop calculator, the British Bell Punch /Sumlock Comptometer ANITA ( A N ew I nspiration T o A rithmetic/ A ccounting) was announced. This machine used vacuum tubes , cold-cathode tubes and Dekatrons in its circuits, with 12 cold-cathode "Nixie" tubes for its display. Two models were displayed,

5810-578: Was a manufacturer of mechanical calculators that had decided that the future lay in electronics. In 1964 more all-transistor electronic calculators were introduced: Sharp introduced the CS-10A , which weighed 25 kilograms (55 lb) and cost 500,000 yen ($ 4555.81), and Industria Macchine Elettroniche of Italy introduced the IME 84, to which several extra keyboard and display units could be connected so that several people could make use of it (but apparently not at

5893-589: Was a paper tape. As a result of the "Cal-Tech" project, Texas Instruments was granted master patents on portable calculators. The first commercially produced portable calculators appeared in Japan in 1970, and were soon marketed around the world. These included the Sanyo ICC-0081 "Mini Calculator", the Canon Pocketronic, and the Sharp QT-8B "micro Compet". The Canon Pocketronic was

5976-553: Was also the first calculator to use an LED display, the first hand-held calculator to use a single integrated circuit (then proclaimed as a "calculator on a chip"), the Mostek MK6010, and the first electronic calculator to run off replaceable batteries. Using four AA-size cells the LE-120A measures 4.9 by 2.8 by 0.9 inches (124 mm × 71 mm × 23 mm). The first European-made pocket-sized calculator, DB 800

6059-419: Was an implied unconditional branch (GOTO) at the end of the operation stack, returning the program to its starting instruction. Thus, it was not possible to include any conditional branch (IF-THEN-ELSE) logic. During this era, the absence of the conditional branch was sometimes used to distinguish a programmable calculator from a computer. The first Soviet programmable desktop calculator ISKRA 123 , powered by

6142-444: Was an important contributor to the unit's cost. A common defect was failure of the switch contacts, making it impossible to switch the calculator off. Due to the use of contacts made of nickel coated with tin, rather than gold, an oxide layer would be smeared across the insulating barrier after repeatedly using the switch. Numbers were displayed on the 8-digit LED display (made by National Semiconductor ) in scientific format with

6225-436: Was at times somewhat over-promoted as being able to perform all four arithmetic operations with minimal human intervention. Pascal's calculator could add and subtract two numbers directly and thus, if the tedium could be borne, multiply and divide by repetition. Schickard's machine, constructed several decades earlier, used a clever set of mechanised multiplication tables to ease the process of multiplication and division with

6308-574: Was created in the early 1960s. Pocket-sized devices became available in the 1970s, especially after the Intel 4004 , the first microprocessor , was developed by Intel for the Japanese calculator company Busicom . Modern electronic calculators vary from cheap, give-away, credit-card-sized models to sturdy desktop models with built-in printers. They became popular in the mid-1970s as the incorporation of integrated circuits reduced their size and cost. By

6391-474: Was developed in 1948 and, although costly, became popular for its portability. This purely mechanical hand-held device could do addition, subtraction, multiplication and division. By the early 1970s electronic pocket calculators ended manufacture of mechanical calculators, although the Curta remains a popular collectable item. The first mainframe computers, initially using vacuum tubes and later transistors in

6474-513: Was followed the next year by the SR-50 which added log and trig functions to compete with the HP-35, and in 1977 the mass-marketed TI-30 line which is still produced. Electronics Electronic devices have hugely influenced the development of many aspects of modern society, such as telecommunications , entertainment, education, health care, industry, and security. The main driving force behind

6557-592: Was made in May 1971 by Digitron in Buje , Croatia (former Yugoslavia ) with four functions and an eight-digit display and special characters for a negative number and a warning that the calculation has too many digits to display. The first American-made pocket-sized calculator, the Bowmar 901B (popularly termed The Bowmar Brain ), measuring 5.2 by 3.0 by 1.5 inches (132 mm × 76 mm × 38 mm), came out in

6640-608: Was one of the leading edges of semiconductor development. U.S. semiconductor manufacturers led the world in large scale integration (LSI) semiconductor development, squeezing more and more functions into individual integrated circuits. This led to alliances between Japanese calculator manufacturers and U.S. semiconductor companies: Canon Inc. with Texas Instruments , Hayakawa Electric (later renamed Sharp Corporation ) with North-American Rockwell Microelectronics (later renamed Rockwell International ), Busicom with Mostek and Intel , and General Instrument with Sanyo . By 1970,

6723-473: Was rapid, and by the 1920s, commercial radio broadcasting and telecommunications were becoming widespread and electronic amplifiers were being used in such diverse applications as long-distance telephony and the music recording industry. The next big technological step took several decades to appear, when the first working point-contact transistor was invented by John Bardeen and Walter Houser Brattain at Bell Labs in 1947. However, vacuum tubes played

6806-689: Was superseded by the Sinclair Enterprise , which allowed 80 program steps. Veniamin Ilmer transcribed the ROM of the chip die from the Sinclair Cambridge Type 2, and in 2024 built an emulator using it. Calculator An electronic calculator is typically a portable electronic device used to perform calculations , ranging from basic arithmetic to complex mathematics . The first solid-state electronic calculator

6889-767: Was usually based on the delay-line memory or the magnetic-core memory , though the Toshiba "Toscal" BC-1411 appears to have used an early form of dynamic RAM built from discrete components. Already there was a desire for smaller and less power-hungry machines. Bulgaria's ELKA 6521 , introduced in 1965, was developed by the Central Institute for Calculation Technologies and built at the Elektronika factory in Sofia . The name derives from EL ektronen KA lkulator , and it weighed around 8 kg (18 lb). It

#944055