Cape Cod Melody Tent is a South Shore Playhouse Associates-owned tent theater located in Hyannis, Massachusetts , in the county of Barnstable . Affiliated with the South Shore Music Circus, these are the only two continuously-operated tent theaters in the round in the United States.
59-526: The Cape Cod Melody Tent is a seasonal venue that runs from May through September. The Music Circus and Melody Tent are owned and operated by the South Shore Playhouse Associates, a not-for-profit organization. The seating capacity is approximately 2,300. It was originally known as Cape Cod Music Circus from 1950–1951. David M. Holtzmann, a theatrical attorney who represented actress Gertrude Lawrence , owned both theaters from
118-524: A Sanskrit word Shunye or shunya to refer to the concept of void . In mathematics texts this word often refers to the number zero. In a similar vein, Pāṇini (5th century BC) used the null (zero) operator in the Ashtadhyayi , an early example of an algebraic grammar for the Sanskrit language (also see Pingala ). There are other uses of zero before Brahmagupta, though the documentation
177-525: A numeral is not clearly distinguished from the number that it represents. In mathematics, the notion of number has been extended over the centuries to include zero (0), negative numbers , rational numbers such as one half ( 1 2 ) {\displaystyle \left({\tfrac {1}{2}}\right)} , real numbers such as the square root of 2 ( 2 ) {\displaystyle \left({\sqrt {2}}\right)} and π , and complex numbers which extend
236-404: A , b positive and the other negative. The incorrect use of this identity, and the related identity in the case when both a and b are negative even bedeviled Euler . This difficulty eventually led him to the convention of using the special symbol i in place of − 1 {\displaystyle {\sqrt {-1}}} to guard against this mistake. The 18th century saw
295-603: A base 4, base 5 "finger" abacus. By 130 AD, Ptolemy , influenced by Hipparchus and the Babylonians, was using a symbol for 0 (a small circle with a long overbar) within a sexagesimal numeral system otherwise using alphabetic Greek numerals . Because it was used alone, not as just a placeholder, this Hellenistic zero was the first documented use of a true zero in the Old World. In later Byzantine manuscripts of his Syntaxis Mathematica ( Almagest ),
354-409: A detailed site plan to the local fire code official, including "details of the means of egress, seating capacity, [and] arrangement of the seating...." Once safety considerations have been satisfied, determinations of seating capacity turn on the total size of the venue, and its purpose. For sports venues, the "decision on maximum seating capacity is determined by several factors. Chief among these are
413-439: A given direction is postulated to converge to the corresponding ideal point. This is closely related to the idea of vanishing points in perspective drawing. The earliest fleeting reference to square roots of negative numbers occurred in the work of the mathematician and inventor Heron of Alexandria in the 1st century AD , when he considered the volume of an impossible frustum of a pyramid . They became more prominent when in
472-451: A notable expansion. The idea of the graphic representation of complex numbers had appeared, however, as early as 1685, in Wallis 's De algebra tractatus . In the same year, Gauss provided the first generally accepted proof of the fundamental theorem of algebra , showing that every polynomial over the complex numbers has a full set of solutions in that realm. Gauss studied complex numbers of
531-451: A part from infinity or add a part to infinity, still what remains is infinity." Infinity was a popular topic of philosophical study among the Jain mathematicians c. 400 BC. They distinguished between five types of infinity: infinite in one and two directions, infinite in area, infinite everywhere, and infinite perpetually. The symbol ∞ {\displaystyle {\text{∞}}}
590-503: A placeholder digit in representing another number as was done by the Babylonians or as a symbol for a lack of quantity as was done by Ptolemy and the Romans. The use of 0 as a number should be distinguished from its use as a placeholder numeral in place-value systems . Many ancient texts used 0. Babylonian and Egyptian texts used it. Egyptians used the word nfr to denote zero balance in double entry accounting . Indian texts used
649-425: A rigorous method of treating the ideas about infinite and infinitesimal numbers that had been used casually by mathematicians, scientists, and engineers ever since the invention of infinitesimal calculus by Newton and Leibniz . A modern geometrical version of infinity is given by projective geometry , which introduces "ideal points at infinity", one for each spatial direction. Each family of parallel lines in
SECTION 10
#1732794447256708-679: A system that used combinations of letters from the Roman alphabet, remained dominant in Europe until the spread of the superior Hindu–Arabic numeral system around the late 14th century, and the Hindu–Arabic numeral system remains the most common system for representing numbers in the world today. The key to the effectiveness of the system was the symbol for zero , which was developed by ancient Indian mathematicians around 500 AD. The first known documented use of zero dates to AD 628, and appeared in
767-463: A table derived from the seating capacity of the space. The International Fire Code, portions of which have been adopted by many jurisdictions, is directed more towards the use of a facility than the construction. It specifies, "For areas having fixed seating without dividing arms, the occupant load shall not be less than the number of seats based on one person for each 18 inches (457 mm) of seating length". It also requires that every public venue submit
826-494: A theatre or other performing space, the "seating capacity of the performance facility must be disclosed". Seating capacity may influence the kind of contract to be used and the royalties to be given. The seating capacity must also be disclosed to the copyright owner in seeking a license for the copyrighted work to be performed in that venue. Venues that may be leased for private functions such as ballrooms and auditoriums generally advertise their seating capacity. Seating capacity
885-479: A way to swap true roots and false roots as well. At the same time, the Chinese were indicating negative numbers by drawing a diagonal stroke through the right-most non-zero digit of the corresponding positive number's numeral. The first use of negative numbers in a European work was by Nicolas Chuquet during the 15th century. He used them as exponents , but referred to them as "absurd numbers". As recently as
944-440: Is a stub . You can help Misplaced Pages by expanding it . Seating capacity Seating capacity is the number of people who can be seated in a specific space , in terms of both the physical space available, and limitations set by law . Seating capacity can be used in the description of anything ranging from an automobile that seats two to a stadium that seats hundreds of thousands of people. The largest sporting venue in
1003-444: Is a subset of the next one. So, for example, a rational number is also a real number, and every real number is also a complex number. This can be expressed symbolically as A more complete list of number sets appears in the following diagram. The most familiar numbers are the natural numbers (sometimes called whole numbers or counting numbers): 1, 2, 3, and so on. Traditionally, the sequence of natural numbers started with 1 (0
1062-691: Is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system , which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system , which allows for the representation of any non-negative integer using a combination of ten fundamental numeric symbols, called digits . In addition to their use in counting and measuring, numerals are often used for labels (as with telephone numbers), for ordering (as with serial numbers ), and for codes (as with ISBNs ). In common usage,
1121-538: Is also an important consideration in the construction and use of sports venues such as stadiums and arenas . When entities such as the National Football League 's Super Bowl Committee decide on a venue for a particular event, seating capacity, which reflects the possible number of tickets that can be sold for the event, is an important consideration. Seating capacity differs from total capacity (sometimes called public capacity ), which describes
1180-579: Is common for the Jain math sutra to include calculations of decimal-fraction approximations to pi or the square root of 2 . Similarly, Babylonian math texts used sexagesimal (base 60) fractions with great frequency. The earliest known use of irrational numbers was in the Indian Sulba Sutras composed between 800 and 500 BC. The first existence proofs of irrational numbers is usually attributed to Pythagoras , more specifically to
1239-538: Is largely due to Ernst Kummer , who also invented ideal numbers , which were expressed as geometrical entities by Felix Klein in 1893. In 1850 Victor Alexandre Puiseux took the key step of distinguishing between poles and branch points, and introduced the concept of essential singular points . This eventually led to the concept of the extended complex plane . Prime numbers have been studied throughout recorded history. They are positive integers that are divisible only by 1 and themselves. Euclid devoted one book of
SECTION 20
#17327944472561298-588: Is not as complete as it is in the Brāhmasphuṭasiddhānta . Records show that the Ancient Greeks seemed unsure about the status of 0 as a number: they asked themselves "How can 'nothing' be something?" leading to interesting philosophical and, by the Medieval period, religious arguments about the nature and existence of 0 and the vacuum. The paradoxes of Zeno of Elea depend in part on
1357-405: Is often used to represent an infinite quantity. Aristotle defined the traditional Western notion of mathematical infinity. He distinguished between actual infinity and potential infinity —the general consensus being that only the latter had true value. Galileo Galilei 's Two New Sciences discussed the idea of one-to-one correspondences between infinite sets. But the next major advance in
1416-434: Is the first book that mentions zero as a number, hence Brahmagupta is usually considered the first to formulate the concept of zero. He gave rules of using zero with negative and positive numbers, such as "zero plus a positive number is a positive number, and a negative number plus zero is the negative number". The Brāhmasphuṭasiddhānta is the earliest known text to treat zero as a number in its own right, rather than as simply
1475-508: Is transcendental and Lindemann proved in 1882 that π is transcendental. Finally, Cantor showed that the set of all real numbers is uncountably infinite but the set of all algebraic numbers is countably infinite , so there is an uncountably infinite number of transcendental numbers. The earliest known conception of mathematical infinity appears in the Yajur Veda , an ancient Indian script, which at one point states, "If you remove
1534-568: The Brāhmasphuṭasiddhānta , the main work of the Indian mathematician Brahmagupta . He treated 0 as a number and discussed operations involving it, including division . By this time (the 7th century) the concept had clearly reached Cambodia as Khmer numerals , and documentation shows the idea later spreading to China and the Islamic world . Brahmagupta's Brāhmasphuṭasiddhānta
1593-697: The Elements to the theory of primes; in it he proved the infinitude of the primes and the fundamental theorem of arithmetic , and presented the Euclidean algorithm for finding the greatest common divisor of two numbers. In 240 BC, Eratosthenes used the Sieve of Eratosthenes to quickly isolate prime numbers. But most further development of the theory of primes in Europe dates to the Renaissance and later eras. In 1796, Adrien-Marie Legendre conjectured
1652-783: The Pythagorean Hippasus of Metapontum , who produced a (most likely geometrical) proof of the irrationality of the square root of 2 . The story goes that Hippasus discovered irrational numbers when trying to represent the square root of 2 as a fraction. However, Pythagoras believed in the absoluteness of numbers, and could not accept the existence of irrational numbers. He could not disprove their existence through logic, but he could not accept irrational numbers, and so, allegedly and frequently reported, he sentenced Hippasus to death by drowning, to impede spreading of this disconcerting news. The 16th century brought final European acceptance of negative integral and fractional numbers. By
1711-726: The complex number system. In modern mathematics, number systems are considered important special examples of more general algebraic structures such as rings and fields , and the application of the term "number" is a matter of convention, without fundamental significance. Bones and other artifacts have been discovered with marks cut into them that many believe are tally marks . These tally marks may have been used for counting elapsed time, such as numbers of days, lunar cycles or keeping records of quantities, such as of animals. A tallying system has no concept of place value (as in modern decimal notation), which limits its representation of large numbers. Nonetheless, tallying systems are considered
1770-595: The prime number theorem , describing the asymptotic distribution of primes. Other results concerning the distribution of the primes include Euler's proof that the sum of the reciprocals of the primes diverges, and the Goldbach conjecture , which claims that any sufficiently large even number is the sum of two primes. Yet another conjecture related to the distribution of prime numbers is the Riemann hypothesis , formulated by Bernhard Riemann in 1859. The prime number theorem
1829-461: The 16th century closed formulas for the roots of third and fourth degree polynomials were discovered by Italian mathematicians such as Niccolò Fontana Tartaglia and Gerolamo Cardano . It was soon realized that these formulas, even if one was only interested in real solutions, sometimes required the manipulation of square roots of negative numbers. This was doubly unsettling since they did not even consider negative numbers to be on firm ground at
Cape Cod Melody Tent - Misplaced Pages Continue
1888-467: The 17th century, mathematicians generally used decimal fractions with modern notation. It was not, however, until the 19th century that mathematicians separated irrationals into algebraic and transcendental parts, and once more undertook the scientific study of irrationals. It had remained almost dormant since Euclid . In 1872, the publication of the theories of Karl Weierstrass (by his pupil E. Kossak), Eduard Heine , Georg Cantor , and Richard Dedekind
1947-595: The 18th century, it was common practice to ignore any negative results returned by equations on the assumption that they were meaningless. It is likely that the concept of fractional numbers dates to prehistoric times . The Ancient Egyptians used their Egyptian fraction notation for rational numbers in mathematical texts such as the Rhind Mathematical Papyrus and the Kahun Papyrus . Classical Greek and Indian mathematicians made studies of
2006-611: The 3rd century AD in Greece. Diophantus referred to the equation equivalent to 4 x + 20 = 0 (the solution is negative) in Arithmetica , saying that the equation gave an absurd result. During the 600s, negative numbers were in use in India to represent debts. Diophantus' previous reference was discussed more explicitly by Indian mathematician Brahmagupta , in Brāhmasphuṭasiddhānta in 628, who used negative numbers to produce
2065-603: The Hellenistic zero had morphed into the Greek letter Omicron (otherwise meaning 70). Another true zero was used in tables alongside Roman numerals by 525 (first known use by Dionysius Exiguus ), but as a word, nulla meaning nothing , not as a symbol. When division produced 0 as a remainder, nihil , also meaning nothing , was used. These medieval zeros were used by all future medieval computists (calculators of Easter). An isolated use of their initial, N,
2124-416: The development of Greek mathematics , stimulating the investigation of many problems in number theory which are still of interest today. During the 19th century, mathematicians began to develop many different abstractions which share certain properties of numbers, and may be seen as extending the concept. Among the first were the hypercomplex numbers , which consist of various extensions or modifications of
2183-655: The first kind of abstract numeral system. The first known system with place value was the Mesopotamian base 60 system ( c. 3400 BC) and the earliest known base 10 system dates to 3100 BC in Egypt . Numbers should be distinguished from numerals , the symbols used to represent numbers. The Egyptians invented the first ciphered numeral system, and the Greeks followed by mapping their counting numbers onto Ionian and Doric alphabets. Roman numerals,
2242-417: The form a + bi , where a and b are integers (now called Gaussian integers ) or rational numbers. His student, Gotthold Eisenstein , studied the type a + bω , where ω is a complex root of x − 1 = 0 (now called Eisenstein integers ). Other such classes (called cyclotomic fields ) of complex numbers derive from the roots of unity x − 1 = 0 for higher values of k . This generalization
2301-744: The general form quadratic formula that remains in use today. However, in the 12th century in India, Bhaskara gives negative roots for quadratic equations but says the negative value "is in this case not to be taken, for it is inadequate; people do not approve of negative roots". European mathematicians, for the most part, resisted the concept of negative numbers until the 17th century, although Fibonacci allowed negative solutions in financial problems where they could be interpreted as debts (chapter 13 of Liber Abaci , 1202) and later as losses (in Flos ). René Descartes called them false roots as they cropped up in algebraic polynomials yet he found
2360-579: The idea of a cut (Schnitt) in the system of real numbers , separating all rational numbers into two groups having certain characteristic properties. The subject has received later contributions at the hands of Weierstrass, Kronecker , and Méray. The search for roots of quintic and higher degree equations was an important development, the Abel–Ruffini theorem ( Ruffini 1799, Abel 1824) showed that they could not be solved by radicals (formulas involving only arithmetical operations and roots). Hence it
2419-549: The late 1950s until his death in 1965, after which they were operated by his widow, Sondra. In March 1990, the South Shore Playhouse Associates purchased the Cape Cod Melody Tent and have since made numerous modern upgrades including a new vinyl tent with Cupola venting system, new seats, new stage and computerized lighting and sound systems. This article about a building or structure in Massachusetts
Cape Cod Melody Tent - Misplaced Pages Continue
2478-443: The maximum total number of people can refer to either the physical space available or limitations set by law. Number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals ; for example, "5"
2537-471: The primary sports program and the size of the market area". In motion picture venues, the "limit of seating capacity is determined by the maximal viewing distance for a given size of screen", with image quality for closer viewers declining as the screen is expanded to accommodate more distant viewers. Seating capacity of venues also plays a role in what media they are able to provide and how they are able to provide it. In contracting to permit performers to use
2596-509: The properties of numbers. Besides their practical uses, numbers have cultural significance throughout the world. For example, in Western society, the number 13 is often regarded as unlucky , and " a million " may signify "a lot" rather than an exact quantity. Though it is now regarded as pseudoscience , belief in a mystical significance of numbers, known as numerology , permeated ancient and medieval thought. Numerology heavily influenced
2655-403: The real numbers with a square root of −1 (and its combinations with real numbers by adding or subtracting its multiples). Calculations with numbers are done with arithmetical operations, the most familiar being addition , subtraction , multiplication , division , and exponentiation . Their study or usage is called arithmetic , a term which may also refer to number theory , the study of
2714-399: The seats shall be securely fastened to the floor" but provides exceptions if the total number of seats is fewer than 100, if there is a substantial amount of space available between seats or if the seats are at tables. It also delineates the number of available exits for interior balconies and galleries based on the seating capacity, and sets forth the number of required wheelchair spaces in
2773-567: The theory of rational numbers, as part of the general study of number theory . The best known of these is Euclid's Elements , dating to roughly 300 BC. Of the Indian texts, the most relevant is the Sthananga Sutra , which also covers number theory as part of a general study of mathematics. The concept of decimal fractions is closely linked with decimal place-value notation; the two seem to have developed in tandem. For example, it
2832-408: The theory was made by Georg Cantor ; in 1895 he published a book about his new set theory , introducing, among other things, transfinite numbers and formulating the continuum hypothesis . In the 1960s, Abraham Robinson showed how infinitely large and infinitesimal numbers can be rigorously defined and used to develop the field of nonstandard analysis. The system of hyperreal numbers represents
2891-430: The time. When René Descartes coined the term "imaginary" for these quantities in 1637, he intended it as derogatory. (See imaginary number for a discussion of the "reality" of complex numbers.) A further source of confusion was that the equation seemed capriciously inconsistent with the algebraic identity which is valid for positive real numbers a and b , and was also used in complex number calculations with one of
2950-438: The total number of people who can fit in a venue or in a vehicle either sitting or standing. Where seating capacity is a legal requirement, however, as it is in movie theatres and on aircraft , the law reflects the fact that the number of people allowed in should not exceed the number who can be seated. Use of the term "public capacity" indicates that a venue is allowed to hold more people than it can actually seat. Again,
3009-578: The uncertain interpretation of 0. (The ancient Greeks even questioned whether 1 was a number.) The late Olmec people of south-central Mexico began to use a symbol for zero, a shell glyph , in the New World, possibly by the 4th century BC but certainly by 40 BC, which became an integral part of Maya numerals and the Maya calendar . Maya arithmetic used base 4 and base 5 written as base 20. George I. Sánchez in 1961 reported
SECTION 50
#17327944472563068-420: The work of Abraham de Moivre and Leonhard Euler . De Moivre's formula (1730) states: while Euler's formula of complex analysis (1748) gave us: The existence of complex numbers was not completely accepted until Caspar Wessel described the geometrical interpretation in 1799. Carl Friedrich Gauss rediscovered and popularized it several years later, and as a result the theory of complex numbers received
3127-558: The world, the Indianapolis Motor Speedway , has a permanent seating capacity for more than 235,000 people and infield seating that raises capacity to an approximate 400,000. Safety is a primary concern in determining the seating capacity of a venue: "Seating capacity, seating layouts and densities are largely dictated by legal requirements for the safe evacuation of the occupants in the event of fire". The International Building Code specifies, "In places of assembly,
3186-472: The writings of Joseph Louis Lagrange . Other noteworthy contributions have been made by Druckenmüller (1837), Kunze (1857), Lemke (1870), and Günther (1872). Ramus first connected the subject with determinants , resulting, with the subsequent contributions of Heine, Möbius , and Günther, in the theory of Kettenbruchdeterminanten . The existence of transcendental numbers was first established by Liouville (1844, 1851). Hermite proved in 1873 that e
3245-456: Was brought about. In 1869, Charles Méray had taken the same point of departure as Heine, but the theory is generally referred to the year 1872. Weierstrass's method was completely set forth by Salvatore Pincherle (1880), and Dedekind's has received additional prominence through the author's later work (1888) and endorsement by Paul Tannery (1894). Weierstrass, Cantor, and Heine base their theories on infinite series, while Dedekind founds his on
3304-539: Was finally proved by Jacques Hadamard and Charles de la Vallée-Poussin in 1896. Goldbach and Riemann's conjectures remain unproven and unrefuted. Numbers can be classified into sets , called number sets or number systems , such as the natural numbers and the real numbers . The main number systems are as follows: N 0 {\displaystyle \mathbb {N} _{0}} or N 1 {\displaystyle \mathbb {N} _{1}} are sometimes used. Each of these number systems
3363-434: Was necessary to consider the wider set of algebraic numbers (all solutions to polynomial equations). Galois (1832) linked polynomial equations to group theory giving rise to the field of Galois theory . Simple continued fractions , closely related to irrational numbers (and due to Cataldi, 1613), received attention at the hands of Euler , and at the opening of the 19th century were brought into prominence through
3422-424: Was not even considered a number for the Ancient Greeks.) However, in the 19th century, set theorists and other mathematicians started including 0 ( cardinality of the empty set , i.e. 0 elements, where 0 is thus the smallest cardinal number ) in the set of natural numbers. Today, different mathematicians use the term to describe both sets, including 0 or not. The mathematical symbol for
3481-519: Was used in a table of Roman numerals by Bede or a colleague about 725, a true zero symbol. The abstract concept of negative numbers was recognized as early as 100–50 BC in China. The Nine Chapters on the Mathematical Art contains methods for finding the areas of figures; red rods were used to denote positive coefficients , black for negative. The first reference in a Western work was in
#255744