The Chile triple junction (or Chile margin triple junction ) is a geologic triple junction located on the seafloor of the Pacific Ocean off Taitao and Tres Montes Peninsula on the southern coast of Chile . Here three tectonic plates meet: the South American plate , the Nazca plate and the Antarctic plate . This triple junction is unusual in that it consists of a mid-oceanic ridge , the Chile Rise , being subducted under the South American plate at the Peru–Chile Trench . The Chile triple junction is the boundary between the Chilean Rise and the Chilean margin, where the Nazca, Antarctic, and South American plates meet at the trench.
83-692: The Antarctic plate started to subduct beneath South America 14 million years ago in the Miocene epoch forming the Chile triple junction. At first the Antarctic plate subducted only in the southernmost tip of Patagonia , meaning that the Chile triple junction lay near the Strait of Magellan . As the southern part of Nazca plate and the Chile Rise became consumed by subduction and the more northerly regions of
166-542: A broader aridification trend. The EMCI ended 18 million years ago, giving way to the Middle Miocene Warm Interval (MMWI), the warmest part of which was the MMCO that began 16 million years ago. As the world transitioned into the MMCO, carbon dioxide concentrations varied between 300 and 500 ppm. Global annual mean surface temperature during the MMCO was about 18.4 °C. MMCO warmth was driven by
249-529: A clade of large terrestrial predatory crocodyliformes distantly related to modern crocodilians, from which they likely diverged over 180 million years ago, are known from the Miocene of South America. The last Desmostylians thrived during this period before becoming the only extinct marine mammal order. The pinnipeds , which appeared near the end of the Oligocene, became more aquatic. A prominent genus
332-570: A cooler, drier climate. C 4 grasses, which are able to assimilate carbon dioxide and water more efficiently than C 3 grasses, expanded to become ecologically significant near the end of the Miocene between 6 and 7 million years ago, although they did not expand northward during the Late Miocene. The expansion of grasslands and radiations among terrestrial herbivores correlates to fluctuations in CO 2 . One study, however, has attributed
415-486: A good analogue for future warmer climates caused by anthropogenic global warming , with this being especially true of the global climate during the Middle Miocene Climatic Optimum (MMCO), because the last time carbon dioxide levels were comparable to projected future atmospheric carbon dioxide levels resulting from anthropogenic climate change was during the MMCO. The Ross Sea margin of
498-435: A good model for a "living fossil". Eucalyptus fossil leaves occur in the Miocene of New Zealand , where the genus is not native today, but have been introduced from Australia . Both marine and continental fauna were fairly modern, although marine mammals were less numerous. Only in isolated South America and Australia did widely divergent fauna exist. In Eurasia, genus richness shifted southward to lower latitudes from
581-598: A major expansion of Antarctic glaciers. This severed the connection between the Indian Ocean and the Mediterranean Sea and formed the present land connection between Afro-Arabia and Eurasia. The subsequent uplift of mountains in the western Mediterranean region and a global fall in sea levels combined to cause a temporary drying up of the Mediterranean Sea (known as the Messinian salinity crisis ) near
664-480: A major expansion of grass-grazer ecosystems . Herds of large, swift grazers were hunted by predators across broad sweeps of open grasslands , displacing desert, woodland, and browsers . The higher organic content and water retention of the deeper and richer grassland soils , with long-term burial of carbon in sediments, produced a carbon and water vapor sink. This, combined with higher surface albedo and lower evapotranspiration of grassland, contributed to
747-559: A series of continental glaciations in the Quaternary Period that followed. In ICS terminology, from upper (later, more recent) to lower (earlier): The Pliocene Epoch is subdivided into two ages: The Miocene Epoch is subdivided into six ages: In different geophysical regions of the world, other regional names are also used for the same or overlapping ages and other timeline subdivisions. The terms Neogene System (formal) and Upper Tertiary System (informal) describe
830-602: A significant drop in atmospheric carbon dioxide levels. Both continental and oceanic thermal gradients in mid-latitudes during the Early Miocene were very similar to those in the present. Global cooling caused the East Asian Summer Monsoon (EASM) to begin to take on its modern form during the Early Miocene. From 22.1 to 19.7 Ma, the Xining Basin experienced relative warmth and humidity amidst
913-700: A significant local decline along the northeastern coast of Australia during the Tortonian, most likely due to warming seawater. Cetaceans attained their greatest diversity during the Miocene, with over 20 recognized genera of baleen whales in comparison to only six living genera. This diversification correlates with emergence of gigantic macro-predators such as megatoothed sharks and raptorial sperm whales . Prominent examples are O. megalodon and L. melvillei . Other notable large sharks were O. chubutensis , Isurus hastalis , and Hemipristis serra . Crocodilians also showed signs of diversification during
SECTION 10
#1732765910926996-651: A zone of low rainfall in the Late Miocene. The Indian Plate continued to collide with the Eurasian Plate , creating new mountain ranges and uplifting the Tibetan Plateau , resulting in the rain shadowing and aridification of the Asian interior. The Tian Shan experienced significant uplift in the Late Miocene, blocking westerlies from coming into the Tarim Basin and drying it as a result. At
1079-601: Is a geologic period and system that spans 20.45 million years from the end of the Paleogene Period 23.03 million years ago ( Mya ) to the beginning of the present Quaternary Period 2.58 million years ago. It is the second period of the Cenozoic and the eleventh period of the Phanerozoic . The Neogene is sub-divided into two epochs , the earlier Miocene and the later Pliocene . Some geologists assert that
1162-505: Is confined between the two large topographic features, the Chile Rise and the JFR. The northern Chilean margin is poor in sediments due to low sediment supplies from the Andes and the presence of the JFR, which acts as a barrier to the transport of trench sediments from the southern Chile trench to the north. Taitao Peninsula lies near the triple junction and various geological features, such as
1245-481: Is due to the comparatively fine divisibility of time units as time approaches the present, and due to geological preservation that causes the youngest sedimentary geological record to be preserved over a much larger area and to reflect many more environments than the older geological record. By dividing the Cenozoic Era into three (arguably two) periods ( Paleogene , Neogene, Quaternary ) instead of seven epochs,
1328-498: Is mainly formed of metasedimentary and metavolcanic rocks of Paleozoic age intruded by Cretaceous and Tertiary, acidic, I-type plutonic rocks of the Patagonian Batholith. In the southern-central Chilean margin, the sediment in the Chile trench is confined to the Chile Rise. The trench is unusually poor in sediments north of the JFR, but is heavily sedimented south of the Chile triple junction. The accretionary prism
1411-682: Is of particular interest to geologists and palaeoclimatologists because major phases of the geology of the Himalaya occurred during that epoch, affecting monsoonal patterns in Asia, which were interlinked with glacial periods in the northern hemisphere. The Miocene faunal stages from youngest to oldest are typically named according to the International Commission on Stratigraphy : Regionally, other systems are used, based on characteristic land mammals; some of them overlap with
1494-645: Is often seen as an analogous climate to the projected climate of the near future as a result of anthropogenic global warming . Towards the end of the Pliocene, decreased heat transport towards the Antarctic resulting from a weakening of the Indonesian Throughflow (ITF) cooled the Earth, a process that exacerbated itself in a positive feedback as sea levels dropped and the ITF diminished and further limited
1577-595: Is the first geological epoch of the Neogene Period and extends from about 23.03 to 5.333 million years ago (Ma). The Miocene was named by Scottish geologist Charles Lyell ; the name comes from the Greek words μείων ( meíōn , "less") and καινός ( kainós , "new") and means "less recent" because it has 18% fewer modern marine invertebrates than the Pliocene has. The Miocene followed
1660-559: The Middle Miocene Climate Transition (MMCT). Abrupt increases in opal deposition indicate this cooling was driven by enhanced drawdown of carbon dioxide via silicate weathering. The MMCT caused a sea surface temperature (SST) drop of approximately 6 °C in the North Atlantic. The drop in benthic foraminiferal δ O values was most noticeable in the waters around Antarctica, suggesting cooling
1743-466: The Oligocene and preceded the Pliocene. As Earth went from the Oligocene through the Miocene and into the Pliocene, the climate slowly cooled towards a series of ice ages . The Miocene boundaries are not marked by distinct global events but by regionally defined transitions from the warmer Oligocene to the cooler Pliocene Epoch. During the Early Miocene, Afro-Arabia collided with Eurasia, severing
SECTION 20
#17327659109261826-710: The Paleogene . The Early Miocene was relatively cool; Early Miocene mid-latitude seawater and continental thermal gradients were already very similar to those of the present. During the Middle Miocene , Earth entered a warm phase known as the Middle Miocene Climatic Optimum (MMCO), which was driven by the emplacement of the Columbia River Basalt Group . Around 11 Ma, the Middle Miocene Warm Interval gave way to
1909-568: The Taitao ophiolite , are related to the dynamics of the triple junction. Ridge and trench collisions are clear indications of the subduction history around the Pacific Ocean and are likely a dominant mechanism of ophiolite positioning. This results in a rapid sinking and spreading along with magmatic activity near the oceanic trench . Miocene The Miocene ( / ˈ m aɪ . ə s iː n , - oʊ -/ MY -ə-seen, -oh- )
1992-560: The carbon cycle occurred approximately 6 Ma, causing continental carbon reservoirs to no longer expand during cold spells, as they had done during cold periods in the Oligocene and most of the Miocene. At the end of the Miocene, global temperatures rose again as the amplitude of Earth's obliquity increased, which caused increased aridity in Central Asia. Around 5.5 Ma, the EAWM underwent a period of rapid intensification. Life during
2075-537: The Antarctic plate begun to subduct beneath Patagonia so that the Chile triple junction advanced gradually to its present position in front of Taitao Peninsula at 46°15'. The South American plate is moving away from the Nazca plate and moving in a direction to the north of the Chile ridge spreading center, while the Nazca plate is subducting under the South American plate at a rate of about 80–90 mm/a north of
2158-710: The Central Paratethys, cut off from sources of freshwater input by its separation from the Eastern Paratethys. From 13.36 to 12.65 Ma, the Central Paratethys was characterised by open marine conditions, before the reopening of the Bârlad Strait resulted in a shift to brackish-marine conditions in the Central Paratethys, causing the Badenian-Sarmatian Extinction Event. As a result of the Bârlad Strait's reopening,
2241-480: The Chile Rise or Chile Ridge being more prominent in the south. Additionally around 14 Ma, the Chile Rise collided with the South American continental plate . The high relief topography caused the trench to be devoid of sediment at the Chile-South America junction. Subduction accretion is an important process that leads to mountain building and the growth of continents, but it is also associated with
2324-837: The Early to the Middle Miocene. Europe's large mammal diversity significantly declined during the Late Miocene. In the Early Miocene, several Oligocene groups were still diverse, including nimravids , entelodonts , and three-toed equids. As in the previous Oligocene Epoch, oreodonts were still diverse, only to disappear in the earliest Pliocene. During the later Miocene mammals were more modern, with easily recognizable canids , bears , red pandas , procyonids , equids , beavers , deer , camelids , and whales , along with now-extinct groups like borophagine canids , certain gomphotheres , three-toed horses , and hornless rhinos like Teleoceras and Aphelos . The late Miocene also marks
2407-720: The East Antarctic Ice Sheet (EAIS) was highly dynamic during the Early Miocene. The Miocene began with the Early Miocene Cool Event (Mi-1) around 23 million years ago, which marked the start of the Early Miocene Cool Interval (EMCI). This cool event occurred immediately after the Oligocene-Miocene Transition (OMT) during a major expansion of Antarctica's ice sheets, but was not associated with
2490-545: The East Asian Winter Monsoon (EAWM) became stronger synchronously with a southward shift of the subarctic front. Greenland may have begun to have large glaciers as early as 8 to 7 Ma, although the climate for the most part remained warm enough to support forests there well into the Pliocene. Zhejiang, China was noticeably more humid than today. In the Great Rift Valley of Kenya , there
2573-460: The LMC; extratropical sea surface temperatures dropped substantially by approximately 7–9 °C. 41 kyr obliquity cycles became the dominant orbital climatic control 7.7 Ma and this dominance strengthened 6.4 Ma. Benthic δ O values show significant glaciation occurred from 6.26 to 5.50 Ma, during which glacial-interglacial cycles were governed by the 41 kyr obliquity cycle. A major reorganisation of
Chile triple junction - Misplaced Pages Continue
2656-579: The Late Cretaceous, are known from the Miocene of Patagonia, represented by the mole-like Necrolestes . The youngest known representatives of metatherians (the broader grouping to which marsupials belong) in Europe, Asia and Africa are known from the Miocene, including the European herpetotheriid Amphiperatherium , the peradectids Siamoperadectes and Sinoperadectes from Asia, and
2739-653: The Late Miocene, the Earth's climate began to display a high degree of similarity to that of the present day . The 173 kyr obliquity modulation cycle governed by Earth's interactions with Saturn became detectable in the Late Miocene. By 12 Ma, Oregon was a savanna akin to that of the western margins of the Sierra Nevada of northern California . Central Australia became progressively drier, although southwestern Australia experienced significant wettening from around 12 to 8 Ma. The South Asian Winter Monsoon (SAWM) underwent strengthening ~9.2–8.5 Ma. From 7.9 to 5.8 Ma,
2822-574: The Miocene Epoch was mostly supported by the two newly formed biomes , kelp forests and grasslands . Grasslands allow for more grazers, such as horses , rhinoceroses , and hippos . Ninety-five percent of modern plants existed by the end of this epoch . Modern bony fish genera were established. A modern-style latitudinal biodiversity gradient appeared ~15 Ma. The coevolution of gritty , fibrous, fire-tolerant grasses and long-legged gregarious ungulates with high-crowned teeth , led to
2905-558: The Miocene-Pliocene boundary. The first hominins , the ancestors of humans, may have appeared in southern Europe and migrated into Africa. The first humans (belonging to the species Homo habilis ) appeared in Africa near the end of the period. About 20 million years ago gymnosperms in the form of some conifer and cycad groups started to diversify and produce more species due to the changing conditions. In response to
2988-449: The Miocene. The largest form among them was a gigantic caiman Purussaurus which inhabited South America. Another gigantic form was a false gharial Rhamphosuchus , which inhabited modern age India . A strange form, Mourasuchus also thrived alongside Purussaurus . This species developed a specialized filter-feeding mechanism, and it likely preyed upon small fauna despite its gigantic size. The youngest members of Sebecidae ,
3071-698: The Miocene–Pliocene boundary, the Strait of Gibraltar opened, and the Mediterranean refilled. That event is referred to as the " Zanclean flood ". Also during the early Miocene (specifically the Aquitanian and Burdigalian Stages), the apes first evolved, began diversifying, and became widespread throughout the Old World . Around the end of this epoch, the ancestors of humans had split away from
3154-777: The Neogene and the Pliocene end at 2.58 Ma, that the Gelasian be transferred to the Pleistocene, and the Quaternary be recognized as the third period in the Cenozoic, citing key changes in Earth's climate, oceans, and biota that occurred 2.58 Ma and its correspondence to the Gauss-Matuyama magnetostratigraphic boundary . In 2006 ICS and INQUA reached a compromise that made Quaternary a sub-era, subdividing Cenozoic into
3237-744: The Neogene cannot be clearly delineated from the modern geological period, the Quaternary . The term "Neogene" was coined in 1853 by the Austrian palaeontologist Moritz Hörnes (1815–1868). The earlier term Tertiary Period was used to define the span of time now covered by Paleogene and Neogene and, despite no longer being recognized as a formal stratigraphic term , "Tertiary" still sometimes remains in informal use. During this period, mammals and birds continued to evolve into modern forms, while other groups of life remained relatively unchanged. The first humans ( Homo habilis ) appeared in Africa near
3320-550: The North American Great Plains and in Argentina . The global trend was towards increasing aridity caused primarily by global cooling reducing the ability of the atmosphere to absorb moisture, particularly after 7 to 8 million years ago. Uplift of East Africa in the late Miocene was partly responsible for the shrinking of tropical rain forests in that region, and Australia got drier as it entered
3403-656: The Oligocene–Miocene transgression. As the southern Andes rose in the Middle Miocene (14–12 million years ago) the resulting rain shadow originated the Patagonian Desert to the east. Far northern Australia was monsoonal during the Miocene. Although northern Australia is often believed to have been much wetter during the Miocene, this interpretation may be an artefact of preservation bias of riparian and lacustrine plants; this finding has itself been challenged by other papers. Western Australia, like today,
Chile triple junction - Misplaced Pages Continue
3486-562: The Pliocene Warm Interval (PWI), interrupting the longer-term cooling trend. The Pliocene Thermal Maximum (PTM) occurred between 3.3 and 3.0 Ma. During the Pliocene, Green Sahara phases of wet conditions in North Africa were frequent and occurred about every 21 kyr, being especially intense when Earth's orbit's eccentricity was high. The PWI had similar levels of atmospheric carbon dioxide to contemporary times and
3569-561: The Qiongdongnan Basin in the northern South China Sea indicates the Pearl River was a major source of sediment flux into the sea during the Early Miocene and was a major fluvial system as in the present. During the Oligocene and Early Miocene, the coast of northern Brazil, Colombia, south-central Peru , central Chile and large swathes of inland Patagonia were subject to a marine transgression . The transgressions in
3652-497: The activity of the Columbia River Basalts and enhanced by decreased albedo from the reduction of deserts and expansion of forests. Climate modelling suggests additional, currently unknown, factors also worked to create the warm conditions of the MMCO. The MMCO saw the expansion of the tropical climatic zone to much larger than its current size. The July ITCZ, the zone of maximal monsoonal rainfall, moved to
3735-531: The ancestors of the chimpanzees and had begun following their own evolutionary path during the final Messinian Stage (7.5–5.3 Ma) of the Miocene. As in the Oligocene before it, grasslands continued to expand, and forests to dwindle. In the seas of the Miocene, kelp forests made their first appearance and soon became one of Earth's most productive ecosystems. The plants and animals of the Miocene were recognizably modern. Mammals and birds were well established. Whales , pinnipeds , and kelp spread. The Miocene
3818-472: The aridity of the former. Unequivocally-recognizable dabbling ducks , plovers , typical owls , cockatoos and crows appear during the Miocene. By the epoch's end, all or almost all modern bird groups are believed to have been present; the few post-Miocene bird fossils which cannot be placed in the evolutionary tree with full confidence are simply too badly preserved, rather than too equivocal in character. Marine birds reached their highest diversity ever in
3901-490: The atmosphere, C 4 plants expanded and reached ecological dominance in grasslands during the last 10 million years. Also Asteraceae (daisies) went through a significant adaptive radiation . Eucalyptus fossil leaves occur in the Miocene of New Zealand, where the genus is not native today, but have been introduced from Australia. The Neogene traditionally ended at the end of the Pliocene Epoch, just before
3984-638: The beginning of the Miocene, the northern margin of the Arabian plate, then part of the African landmass, collided with Eurasia; as a result, the Tethys seaway continued to shrink and then disappeared as Africa collided with Eurasia in the Turkish – Arabian region. The first step of this closure occurred 20 Ma, reducing water mass exchange by 90%, while the second step occurred around 13.8 Ma, coincident with
4067-422: The connection between the Mediterranean and Indian Oceans, and allowing the interchange of fauna between Eurasia and Africa, including the dispersal of proboscideans and hominoids into Eurasia. During the late Miocene, the connections between the Atlantic and Mediterranean closed, causing the Mediterranean Sea to almost completely evaporate. This event is referred to as the " Messinian salinity crisis ". Then, at
4150-409: The cooler, seasonal climate, tropical plant species gave way to deciduous ones and grasslands replaced many forests. Grasses therefore greatly diversified, and herbivorous mammals evolved alongside it, creating the many grazing animals of today such as horses , antelope , and bison . Ice age mammals like the mammoths and woolly rhinoceros were common in Pliocene . With lower levels of CO 2 in
4233-460: The course of this epoch . The youngest representatives of Choristodera , an extinct order of aquatic reptiles that first appeared in the Middle Jurassic , are known from the Miocene of Europe, belonging to the genus Lazarussuchus , which had been the only known surviving genus of the group since the beginning of the Eocene. The last known representatives of the archaic primitive mammal order Meridiolestida , which dominated South America during
SECTION 50
#17327659109264316-521: The destruction of forearc material. The impact of topographic features, such as topographic features of mountain ranges and faulting, is one important mechanism. An impact between a spreading ridge and a continental forearc can result in a thermal pulse within the forearc. This thermal pulse can be quantified using apatite fission track data and the thermal maturity of organic carbon in the forearc sediment. Several authors have suggested that subduction erosion or slip during earthquakes may be responsible for
4399-414: The early to mid Miocene (23–15 Ma). Oceans cooled partly due to the formation of the Antarctic Circumpolar Current , and about 15 million years ago the ice cap in the southern hemisphere started to grow to its present form. The Greenland ice cap developed later, in the Middle Pliocene time, about 3 million years ago. Neogene The Neogene ( / ˈ n iː . ə dʒ iː n / NEE -ə-jeen , )
4482-451: The end of the Miocene due to increased habitat uniformity. The expansion of grasslands in North America also led to an explosive radiation among snakes. Previously, snakes were a minor component of the North American fauna, but during the Miocene, the number of species and their prevalence increased dramatically with the first appearances of vipers and elapids in North America and the significant diversification of Colubridae (including
4565-422: The end of the Miocene. The Paratethys underwent a significant transgression during the early Middle Miocene. Around 13.8 Ma, during a global sea level drop, the Eastern Paratethys was cut off from the global ocean by the closure of the Bârlad Strait, effectively turning it into a saltwater lake. From 13.8 to 13.36 Ma, an evaporite period similar to the later Messinian salinity crisis in the Mediterranean ensued in
4648-417: The end of the period. Some continental movements took place, the most significant event being the connection of North and South America at the Isthmus of Panama , late in the Pliocene. This cut off the warm ocean currents from the Pacific to the Atlantic Ocean, leaving only the Gulf Stream to transfer heat to the Arctic Ocean . The global climate cooled considerably throughout the Neogene, culminating in
4731-429: The enigmatic Saint Bathans Mammal . Microbial life in the igneous crust of the Fennoscandian Shield shifted from being dominated by methanogens to being primarily composed of sulphate-reducing prokaryotes . The change resulted from fracture reactivation during the Pyrenean-Alpine orogeny, enabling sulphate-reducing microbes to permeate into the Fennoscandian Shield via descending surficial waters. Diatom diversity
4814-461: The evolution of both groups into modern representatives. The early Miocene Saint Bathans Fauna is the only Cenozoic terrestrial fossil record of the landmass, showcasing a wide variety of not only bird species, including early representatives of clades such as moa , kiwi and adzebills , but also a diverse herpetofauna of sphenodontians , crocodiles and turtles as well as a rich terrestrial mammal fauna composed of various species of bats and
4897-499: The expansion of grasslands not to a CO 2 drop but to the increasing seasonality and aridity, coupled with a monsoon climate, which made wildfires highly prevalent compared to before. The Late Miocene expansion of grasslands had cascading effects on the global carbon cycle, evidenced by the imprint it left in carbon isotope records. Cycads between 11.5 and 5 million years ago began to rediversify after previous declines in variety due to climatic changes, and thus modern cycads are not
4980-653: The extinction of the last-surviving members of the hyaenodonts . Islands began to form between South and North America in the Late Miocene, allowing ground sloths like Thinobadistes to island-hop to North America. The expansion of silica-rich C 4 grasses led to worldwide extinctions of herbivorous species without high-crowned teeth . Mustelids diversified into their largest forms as terrestrial predators like Ekorus , Eomellivora , and Megalictis and bunodont otters like Enhydriodon and Sivaonyx appeared. Eulipotyphlans were widespread in Europe, being less diverse in Southern Europe than farther north due to
5063-421: The findings of marine invertebrate fossils of both Atlantic and Pacific affinity in La Cascada Formation . Connection would have occurred through narrow epicontinental seaways that formed channels in a dissected topography . The Antarctic Plate started to subduct beneath South America 14 million years ago in the Miocene, forming the Chile Triple Junction . At first the Antarctic Plate subducted only in
SECTION 60
#17327659109265146-403: The heat transported southward by the Leeuwin Current . By the end of the period the first of a series of glaciations of the current Ice Age began. Marine and continental flora and fauna have a modern appearance. The reptile group Choristodera went extinct in the early part of the period, while the amphibians known as Allocaudata disappeared at the end of it. Neogene also marked the end of
5229-411: The human lineage) appeared in Africa at the very end of the Miocene, including Sahelanthropus , Orrorin , and an early form of Ardipithecus ( A. kadabba ). The chimpanzee–human divergence is thought to have occurred at this time. The evolution of bipedalism in apes at the end of the Miocene instigated an increased rate of faunal turnover in Africa. In contrast, European apes met their end at
5312-422: The lake levels of the Eastern Paratethys dropped as it once again became a sea. The Fram Strait opened during the Miocene and acted as the only throughflow for Atlantic Water into the Arctic Ocean until the Quaternary period. Due to regional uplift of the continental shelf, this water could not move through the Barents Seaway in the Miocene. The modern day Mekong Delta took shape after 8 Ma. Geochemistry of
5395-414: The much cooler Late Miocene. The ice caps on both poles began to grow and thicken, a process enhanced by positive feedbacks from increased formation of sea ice. Between 7 and 5.3 Ma, a decrease in global temperatures termed the Late Miocene Cooling (LMC) ensued, driven by decreases in carbon dioxide concentrations. During the Pliocene, from about 5.3 to 2.7 Ma, another warm interval occurred, being known as
5478-496: The north, increasing precipitation over southern China whilst simultaneously decreasing it over Indochina during the EASM. Western Australia was at this time characterised by exceptional aridity. In Antarctica, average summer temperatures on land reached 10 °C. In the oceans, the lysocline shoaled by approximately half of a kilometre during warm phases that corresponded to orbital eccentricity maxima. The MMCO ended around 14 million years ago, when global temperatures fell in
5561-401: The old classical Tertiary and Quaternary, a compromise that was rejected by International Union of Geological Sciences because it split both Neogene and Pliocene in two. Following formal discussions at the 2008 International Geological Congress in Oslo, Norway, the ICS decided in May 2009 to make the Quaternary the youngest period of the Cenozoic Era with its base at 2.58 Mya and including
5644-503: The older definition of the beginning of the Quaternary Period; many time scales show this division. However, there was a movement amongst geologists (particularly marine geologists ) to also include ongoing geological time (Quaternary) in the Neogene, while others (particularly terrestrial geologists) insist the Quaternary to be a separate period of distinctly different record. The somewhat confusing terminology and disagreement amongst geologists on where to draw what hierarchical boundaries
5727-523: The origin of many modern genera such as Nerodia , Lampropeltis , Pituophis and Pantherophis ). Arthropods were abundant, including in areas such as Tibet where they have traditionally been thought to be undiverse. Neoisopterans diversified and expanded into areas they previously were absent from, such as Madagascar and Australia. In the oceans, brown algae , called kelp , proliferated, supporting new species of sea life, including otters , fish and various invertebrates . Corals suffered
5810-509: The periods are more closely comparable to the duration of periods in the Mesozoic and Paleozoic Eras. The International Commission on Stratigraphy (ICS) once proposed that the Quaternary be considered a sub-era (sub-erathem) of the Neogene, with a beginning date of 2.58 Ma, namely the start of the Gelasian Stage . In the 2004 proposal of the ICS, the Neogene would have consisted of the Miocene and Pliocene Epochs. The International Union for Quaternary Research (INQUA) counterproposed that
5893-463: The possible herpetotheriid Morotodon from the late Early Miocene of Uganda. Approximately 100 species of apes lived during this time , ranging throughout Africa, Asia and Europe and varying widely in size, diet, and anatomy. Due to scanty fossil evidence it is unclear which ape or apes contributed to the modern hominid clade, but molecular evidence indicates this ape lived between 18 and 13 million years ago. The first hominins ( bipedal apes of
5976-733: The preceding Oligocene and following Pliocene Epochs: Continents continued to drift toward their present positions. Of the modern geologic features, only the land bridge between South America and North America was absent, although South America was approaching the western subduction zone in the Pacific Ocean , causing both the rise of the Andes and a southward extension of the Meso-American peninsula. Mountain building took place in western North America , Europe , and East Asia . Both continental and marine Miocene deposits are common worldwide with marine outcrops common near modern shorelines. Well studied continental exposures occur in
6059-501: The reptilian genera Langstonia and Barinasuchus , terrestrial predators that were the last surviving members of Sebecosuchia , a group related to crocodiles. The oceans were dominated by large carnivores like megalodons and livyatans , and 19 million years ago about 70% of all pelagic shark species disappeared. Mammals and birds continued to be the dominant terrestrial vertebrates, and took many forms as they adapted to various habitats. An explosive radiation of ursids took place at
6142-622: The rocks deposited during the Neogene Period . The continents in the Neogene were very close to their current positions. The Isthmus of Panama formed, connecting North and South America . The Indian subcontinent continued to collide with Asia , forming the Himalayas . Sea levels fell, creating land bridges between Africa and Eurasia and between Eurasia and North America. The global climate became more seasonal and continued an overall drying and cooling trend which began during
6225-727: The southernmost tip of Patagonia, meaning that the Chile Triple Junction lay near the Strait of Magellan . As the southern part of Nazca Plate and the Chile Rise became consumed by subduction the more northerly regions of the Antarctic Plate begun to subduct beneath Patagonia so that the Chile Triple Junction advanced to the north over time. The asthenospheric window associated to the triple junction disturbed previous patterns of mantle convection beneath Patagonia inducing an uplift of ca. 1 km that reversed
6308-623: The triple junction. The triple junction of the Chile Ridge, the Chile Trench and the Antarctic plate collided about 14 Ma ago near the latitude of Tierra del Fuego . Since then it has migrated north, with the actual triple junction now located at 46°12'S.The Chilean margin consists of the Nazca-Antarctic spreading center, the Chile Rise or Chile Ridge, and the Chile Ridge, with the Nazca-Antarctic spreading center being at 46.5° S,
6391-473: The uplift of the Coastal Cordillera, a trench-parallel morphostructural system in north Chile. The Juan Fernández Ridge (JFR) is a prominent feature on the oceanic Nazca lithosphere located west of the Chile Trench. The O'Higgins seamount group, surrounded by a topographic swell, acts as a barrier between the north and south half of the Chile Trench. The continental basement of southern Chile
6474-604: The west coast of South America are thought to be caused by a regional phenomenon while the steadily rising central segment of the Andes represents an exception. While there are numerous registers of Oligocene–Miocene transgressions around the world it is doubtful that these correlate. It is thought that the Oligocene–Miocene transgression in Patagonia could have temporarily linked the Pacific and Atlantic Oceans, as inferred from
6557-423: Was Allodesmus . A ferocious walrus , Pelagiarctos may have preyed upon other species of pinnipeds including Allodesmus . Furthermore, South American waters witnessed the arrival of Megapiranha paranensis , which were considerably larger than modern age piranhas . New Zealand 's Miocene fossil record is particularly rich. Marine deposits showcase a variety of cetaceans and penguins , illustrating
6640-624: Was a gradual and progressive trend of increasing aridification, though it was not unidirectional, and wet humid episodes continued to occur. Between 7 and 5.3 Ma, temperatures dropped sharply again in the Late Miocene Cooling (LMC), most likely as a result of a decline in atmospheric carbon dioxide and a drop in the amplitude of Earth's obliquity, and the Antarctic ice sheet was approaching its present-day size and thickness. Ocean temperatures plummeted to near-modern values during
6723-464: Was arid, particularly so during the Middle Miocene. Climates remained moderately warm, although the slow global cooling that eventually led to the Pleistocene glaciations continued. Although a long-term cooling trend was well underway, there is evidence of a warm period during the Miocene when the global climate rivalled that of the Oligocene . The climate of the Miocene has been suggested as
6806-625: Was inversely correlated with carbon dioxide levels and global temperatures during the Miocene. Most modern lineages of diatoms appeared by the Late Miocene. There is evidence from oxygen isotopes at Deep Sea Drilling Program sites that ice began to build up in Antarctica about 36 Ma during the Eocene . Further marked decreases in temperature during the Middle Miocene at 15 Ma probably reflect increased ice growth in Antarctica. It can therefore be assumed that East Antarctica had some glaciers during
6889-646: Was most intense there. Around this time the Mi3b glacial event (a massive expansion of Antarctic glaciers) occurred. The East Antarctic Ice Sheet (EAIS) markedly stabilised following the MMCT. The intensification of glaciation caused a decoherence of sediment deposition from the 405 kyr eccentricity cycle. The MMWI ended about 11 Ma, when the Late Miocene Cool Interval (LMCI) started. A major but transient warming occurred around 10.8-10.7 Ma. During
#925074