Misplaced Pages

Crowell Trust

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms . A sub-discipline of both chemistry and biology , biochemistry may be divided into three fields: structural biology , enzymology , and metabolism . Over the last decades of the 20th century, biochemistry has become successful at explaining living processes through these three disciplines. Almost all areas of the life sciences are being uncovered and developed through biochemical methodology and research. Biochemistry focuses on understanding the chemical basis which allows biological molecules to give rise to the processes that occur within living cells and between cells, in turn relating greatly to the understanding of tissues and organs as well as organism structure and function. Biochemistry is closely related to molecular biology , the study of the molecular mechanisms of biological phenomena.

#885114

127-528: The Crowell Trust (full name: The Henry Parsons Crowell and Susan Coleman Crowell Trust ) is a charitable foundation in the United States which states that it "is dedicated to the teaching and active extension of the doctrines of Evangelical Christianity". It has funded a television program opposing evolution , which television station KNME refused to broadcast. The foundation was established in 1927 by American businessman Henry Parsons Crowell , who

254-628: A biological polymer , they undergo a process called dehydration synthesis . Different macromolecules can assemble in larger complexes, often needed for biological activity . Two of the main functions of carbohydrates are energy storage and providing structure. One of the common sugars known as glucose is a carbohydrate, but not all carbohydrates are sugars. There are more carbohydrates on Earth than any other known type of biomolecule; they are used to store energy and genetic information , as well as play important roles in cell to cell interactions and communications . The simplest type of carbohydrate

381-433: A carboxylic acid group, –COOH (although these exist as –NH 3 and –COO under physiologic conditions), a simple hydrogen atom , and a side chain commonly denoted as "–R". The side chain "R" is different for each amino acid of which there are 20 standard ones . It is this "R" group that makes each amino acid different, and the properties of the side chains greatly influence the overall three-dimensional conformation of

508-490: A DNA sequence within a chromosome is known as a locus . If the DNA sequence at a locus varies between individuals, the different forms of this sequence are called alleles. DNA sequences can change through mutations, producing new alleles. If a mutation occurs within a gene, the new allele may affect the trait that the gene controls, altering the phenotype of the organism. However, while this simple correspondence between an allele and

635-570: A GC-biased E. coli mutator strain in 1967, along with the proposal of the neutral theory , established the plausibility of mutational explanations for molecular patterns, which are now common in the molecular evolution literature. For instance, mutation biases are frequently invoked in models of codon usage. Such models also include effects of selection, following the mutation-selection-drift model, which allows both for mutation biases and differential selection based on effects on translation. Hypotheses of mutation bias have played an important role in

762-399: A chemical theory of metabolism, or even earlier to the 18th century studies on fermentation and respiration by Antoine Lavoisier . Many other pioneers in the field who helped to uncover the layers of complexity of biochemistry have been proclaimed founders of modern biochemistry. Emil Fischer , who studied the chemistry of proteins , and F. Gowland Hopkins , who studied enzymes and

889-514: A chromosome becoming duplicated (usually by genetic recombination ), which can introduce extra copies of a gene into a genome. Extra copies of genes are a major source of the raw material needed for new genes to evolve. This is important because most new genes evolve within gene families from pre-existing genes that share common ancestors. For example, the human eye uses four genes to make structures that sense light: three for colour vision and one for night vision ; all four are descended from

1016-434: A component of DNA . A monosaccharide can switch between acyclic (open-chain) form and a cyclic form. The open-chain form can be turned into a ring of carbon atoms bridged by an oxygen atom created from the carbonyl group of one end and the hydroxyl group of another. The cyclic molecule has a hemiacetal or hemiketal group, depending on whether the linear form was an aldose or a ketose . In these cyclic forms,

1143-406: A cyclic [ring] and planar [flat] structure) while others are not. Some are flexible, while others are rigid. Lipids are usually made from one molecule of glycerol combined with other molecules. In triglycerides , the main group of bulk lipids, there is one molecule of glycerol and three fatty acids . Fatty acids are considered the monomer in that case, and maybe saturated (no double bonds in

1270-468: A few (around three to six) monosaccharides are joined, it is called an oligosaccharide ( oligo- meaning "few"). These molecules tend to be used as markers and signals , as well as having some other uses. Many monosaccharides joined form a polysaccharide . They can be joined in one long linear chain, or they may be branched . Two of the most common polysaccharides are cellulose and glycogen , both consisting of repeating glucose monomers . Cellulose

1397-402: A manner similar to a sequence of letters spelling out a sentence. Before a cell divides, the DNA is copied, so that each of the resulting two cells will inherit the DNA sequence. Portions of a DNA molecule that specify a single functional unit are called genes; different genes have different sequences of bases. Within cells, each long strand of DNA is called a chromosome . The specific location of

SECTION 10

#1732783811886

1524-404: A molecule with a 5-membered ring, called glucofuranose . The same reaction can take place between carbons 1 and 5 to form a molecule with a 6-membered ring, called glucopyranose . Cyclic forms with a 7-atom ring called heptoses are rare. Two monosaccharides can be joined by a glycosidic or ester bond into a disaccharide through a dehydration reaction during which a molecule of water

1651-405: A nutrient in a long-term laboratory experiment , Flavobacterium evolving a novel enzyme that allows these bacteria to grow on the by-products of nylon manufacturing, and the soil bacterium Sphingobium evolving an entirely new metabolic pathway that degrades the synthetic pesticide pentachlorophenol . An interesting but still controversial idea is that some adaptations might increase

1778-611: A phenomenon termed de novo gene birth . The generation of new genes can also involve small parts of several genes being duplicated, with these fragments then recombining to form new combinations with new functions ( exon shuffling ). When new genes are assembled from shuffling pre-existing parts, domains act as modules with simple independent functions, which can be mixed together to produce new combinations with new and complex functions. For example, polyketide synthases are large enzymes that make antibiotics ; they contain up to 100 independent domains that each catalyse one step in

1905-538: A population are therefore more likely to be replaced by the offspring of parents with favourable characteristics for that environment. In the early 20th century, competing ideas of evolution were refuted and evolution was combined with Mendelian inheritance and population genetics to give rise to modern evolutionary theory. In this synthesis the basis for heredity is in DNA molecules that pass information from generation to generation. The processes that change DNA in

2032-575: A population include natural selection, genetic drift, mutation , and gene flow . All life on Earth—including humanity —shares a last universal common ancestor (LUCA), which lived approximately 3.5–3.8 billion years ago. The fossil record includes a progression from early biogenic graphite to microbial mat fossils to fossilised multicellular organisms . Existing patterns of biodiversity have been shaped by repeated formations of new species ( speciation ), changes within species ( anagenesis ), and loss of species ( extinction ) throughout

2159-430: A population is not critical, but instead a measure known as the effective population size. The effective population is usually smaller than the total population since it takes into account factors such as the level of inbreeding and the stage of the lifecycle in which the population is the smallest. The effective population size may not be the same for every gene in the same population. It is usually difficult to measure

2286-439: A population over successive generations. The process of evolution has given rise to biodiversity at every level of biological organisation . The scientific theory of evolution by natural selection was conceived independently by two British naturalists, Charles Darwin and Alfred Russel Wallace , in the mid-19th century as an explanation for why organisms are adapted to their physical and biological environments. The theory

2413-433: A population through neutral transitions due to the principles of excess capacity, presuppression, and ratcheting, and it has been applied in areas ranging from the origins of the spliceosome to the complex interdependence of microbial communities . The time it takes a neutral allele to become fixed by genetic drift depends on population size; fixation is more rapid in smaller populations. The number of individuals in

2540-414: A protein. Some amino acids have functions by themselves or in a modified form; for instance, glutamate functions as an important neurotransmitter . Amino acids can be joined via a peptide bond . In this dehydration synthesis, a water molecule is removed and the peptide bond connects the nitrogen of one amino acid's amino group to the carbon of the other's carboxylic acid group. The resulting molecule

2667-499: A range of genes from bacteria, fungi and plants. Viruses can also carry DNA between organisms, allowing transfer of genes even across biological domains . Large-scale gene transfer has also occurred between the ancestors of eukaryotic cells and bacteria, during the acquisition of chloroplasts and mitochondria . It is possible that eukaryotes themselves originated from horizontal gene transfers between bacteria and archaea . Some heritable changes cannot be explained by changes to

SECTION 20

#1732783811886

2794-566: A reducing end because of full acetal formation between the aldehyde carbon of glucose (C1) and the keto carbon of fructose (C2). Lipids comprise a diverse range of molecules and to some extent is a catchall for relatively water-insoluble or nonpolar compounds of biological origin, including waxes , fatty acids , fatty-acid derived phospholipids , sphingolipids , glycolipids , and terpenoids (e.g., retinoids and steroids ). Some lipids are linear, open-chain aliphatic molecules, while others have ring structures. Some are aromatic (with

2921-430: A reduction in scope when it was discovered that (1) GC-biased gene conversion makes an important contribution to composition in diploid organisms such as mammals and (2) bacterial genomes frequently have AT-biased mutation. Contemporary thinking about the role of mutation biases reflects a different theory from that of Haldane and Fisher. More recent work showed that the original "pressures" theory assumes that evolution

3048-452: A single ancestral gene. New genes can be generated from an ancestral gene when a duplicate copy mutates and acquires a new function. This process is easier once a gene has been duplicated because it increases the redundancy of the system; one gene in the pair can acquire a new function while the other copy continues to perform its original function. Other types of mutations can even generate entirely new genes from previously noncoding DNA,

3175-419: A single chromosome compared to expectations , which is called their linkage disequilibrium . A set of alleles that is usually inherited in a group is called a haplotype . This can be important when one allele in a particular haplotype is strongly beneficial: natural selection can drive a selective sweep that will also cause the other alleles in the haplotype to become more common in the population; this effect

3302-420: A species or population, in particular shifts in allele frequency and adaptation. Macroevolution is the outcome of long periods of microevolution. Thus, the distinction between micro- and macroevolution is not a fundamental one—the difference is simply the time involved. However, in macroevolution, the traits of the entire species may be important. For instance, a large amount of variation among individuals allows

3429-544: A species to rapidly adapt to new habitats , lessening the chance of it going extinct, while a wide geographic range increases the chance of speciation, by making it more likely that part of the population will become isolated. In this sense, microevolution and macroevolution might involve selection at different levels—with microevolution acting on genes and organisms, versus macroevolutionary processes such as species selection acting on entire species and affecting their rates of speciation and extinction. A common misconception

3556-411: A striking example are people with the inherited trait of albinism , who do not tan at all and are very sensitive to sunburn . Heritable characteristics are passed from one generation to the next via DNA , a molecule that encodes genetic information. DNA is a long biopolymer composed of four types of bases. The sequence of bases along a particular DNA molecule specifies the genetic information, in

3683-440: A study of the components and composition of living things and how they come together to become life. In this sense, the history of biochemistry may therefore go back as far as the ancient Greeks . However, biochemistry as a specific scientific discipline began sometime in the 19th century, or a little earlier, depending on which aspect of biochemistry is being focused on. Some argued that the beginning of biochemistry may have been

3810-472: A system in which organisms interact with every other element, physical as well as biological , in their local environment. Eugene Odum , a founder of ecology, defined an ecosystem as: "Any unit that includes all of the organisms...in a given area interacting with the physical environment so that a flow of energy leads to clearly defined trophic structure, biotic diversity, and material cycles (i.e., exchange of materials between living and nonliving parts) within

3937-428: A trait works in some cases, most traits are influenced by multiple genes in a quantitative or epistatic manner. Evolution can occur if there is genetic variation within a population. Variation comes from mutations in the genome, reshuffling of genes through sexual reproduction and migration between populations ( gene flow ). Despite the constant introduction of new variation through mutation and gene flow, most of

Crowell Trust - Misplaced Pages Continue

4064-454: Is directional selection , which is a shift in the average value of a trait over time—for example, organisms slowly getting taller. Secondly, disruptive selection is selection for extreme trait values and often results in two different values becoming most common, with selection against the average value. This would be when either short or tall organisms had an advantage, but not those of medium height. Finally, in stabilising selection there

4191-442: Is more noticeable . Indeed, the evolution of microorganisms is particularly important to evolutionary research since their rapid reproduction allows the study of experimental evolution and the observation of evolution and adaptation in real time. Adaptation is the process that makes organisms better suited to their habitat. Also, the term adaptation may refer to a trait that is important for an organism's survival. For example,

4318-431: Is a monosaccharide , which among other properties contains carbon , hydrogen , and oxygen , mostly in a ratio of 1:2:1 (generalized formula C n H 2 n O n , where n is at least 3). Glucose (C 6 H 12 O 6 ) is one of the most important carbohydrates; others include fructose (C 6 H 12 O 6 ), the sugar commonly associated with the sweet taste of fruits , and deoxyribose (C 5 H 10 O 4 ),

4445-427: Is a byproduct of this process that may sometimes be adaptively beneficial. Gene flow is the exchange of genes between populations and between species. It can therefore be a source of variation that is new to a population or to a species. Gene flow can be caused by the movement of individuals between separate populations of organisms, as might be caused by the movement of mice between inland and coastal populations, or

4572-412: Is an energy source in most life forms. For instance, polysaccharides are broken down into their monomers by enzymes ( glycogen phosphorylase removes glucose residues from glycogen, a polysaccharide). Disaccharides like lactose or sucrose are cleaved into their two component monosaccharides. Glucose is mainly metabolized by a very important ten-step pathway called glycolysis , the net result of which

4699-407: Is an important structural component of plant's cell walls and glycogen is used as a form of energy storage in animals. Sugar can be characterized by having reducing or non-reducing ends. A reducing end of a carbohydrate is a carbon atom that can be in equilibrium with the open-chain aldehyde ( aldose ) or keto form ( ketose ). If the joining of monomers takes place at such a carbon atom,

4826-417: Is an inherited characteristic and an individual might inherit the "brown-eye trait" from one of their parents. Inherited traits are controlled by genes and the complete set of genes within an organism's genome (genetic material) is called its genotype . The complete set of observable traits that make up the structure and behaviour of an organism is called its phenotype . Some of these traits come from

4953-464: Is based on standing variation: when evolution depends on events of mutation that introduce new alleles, mutational and developmental biases in the introduction of variation (arrival biases) can impose biases on evolution without requiring neutral evolution or high mutation rates. Several studies report that the mutations implicated in adaptation reflect common mutation biases though others dispute this interpretation. Recombination allows alleles on

5080-407: Is called deep homology . During evolution, some structures may lose their original function and become vestigial structures. Such structures may have little or no function in a current species, yet have a clear function in ancestral species, or other closely related species. Examples include pseudogenes , the non-functional remains of eyes in blind cave-dwelling fish, wings in flightless birds,

5207-424: Is called a dipeptide , and short stretches of amino acids (usually, fewer than thirty) are called peptides or polypeptides . Longer stretches merit the title proteins . As an example, the important blood serum protein albumin contains 585 amino acid residues . Proteins can have structural and/or functional roles. For instance, movements of the proteins actin and myosin ultimately are responsible for

Crowell Trust - Misplaced Pages Continue

5334-692: Is called genetic hitchhiking or genetic draft. Genetic draft caused by the fact that some neutral genes are genetically linked to others that are under selection can be partially captured by an appropriate effective population size. A special case of natural selection is sexual selection, which is selection for any trait that increases mating success by increasing the attractiveness of an organism to potential mates. Traits that evolved through sexual selection are particularly prominent among males of several animal species. Although sexually favoured, traits such as cumbersome antlers, mating calls, large body size and bright colours often attract predation, which compromises

5461-594: Is measured by an organism's ability to survive and reproduce, which determines the size of its genetic contribution to the next generation. However, fitness is not the same as the total number of offspring: instead fitness is indicated by the proportion of subsequent generations that carry an organism's genes. For example, if an organism could survive well and reproduce rapidly, but its offspring were all too small and weak to survive, this organism would make little genetic contribution to future generations and would thus have low fitness. If an allele increases fitness more than

5588-421: Is not an essential element for plants. Plants need boron and silicon , but animals may not (or may need ultra-small amounts). Just six elements— carbon , hydrogen , nitrogen , oxygen , calcium and phosphorus —make up almost 99% of the mass of living cells, including those in the human body (see composition of the human body for a complete list). In addition to the six major elements that compose most of

5715-508: Is released. The reverse reaction in which the glycosidic bond of a disaccharide is broken into two monosaccharides is termed hydrolysis . The best-known disaccharide is sucrose or ordinary sugar , which consists of a glucose molecule and a fructose molecule joined. Another important disaccharide is lactose found in milk, consisting of a glucose molecule and a galactose molecule. Lactose may be hydrolysed by lactase , and deficiency in this enzyme results in lactose intolerance . When

5842-421: Is selection against extreme trait values on both ends, which causes a decrease in variance around the average value and less diversity. This would, for example, cause organisms to eventually have a similar height. Natural selection most generally makes nature the measure against which individuals and individual traits, are more or less likely to survive. "Nature" in this sense refers to an ecosystem , that is,

5969-429: Is that evolution has goals, long-term plans, or an innate tendency for "progress", as expressed in beliefs such as orthogenesis and evolutionism; realistically, however, evolution has no long-term goal and does not necessarily produce greater complexity. Although complex species have evolved, they occur as a side effect of the overall number of organisms increasing, and simple forms of life still remain more common in

6096-447: Is the nearly neutral theory , according to which a mutation that would be effectively neutral in a small population is not necessarily neutral in a large population. Other theories propose that genetic drift is dwarfed by other stochastic forces in evolution, such as genetic hitchhiking, also known as genetic draft. Another concept is constructive neutral evolution (CNE), which explains that complex systems can emerge and spread into

6223-506: Is the generic name of the family of biopolymers . They are complex, high-molecular-weight biochemical macromolecules that can convey genetic information in all living cells and viruses. The monomers are called nucleotides , and each consists of three components: a nitrogenous heterocyclic base (either a purine or a pyrimidine ), a pentose sugar, and a phosphate group. The most common nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The phosphate group and

6350-495: Is the more common means of reproduction among eukaryotes and multicellular organisms. The Red Queen hypothesis has been used to explain the significance of sexual reproduction as a means to enable continual evolution and adaptation in response to coevolution with other species in an ever-changing environment. Another hypothesis is that sexual reproduction is primarily an adaptation for promoting accurate recombinational repair of damage in germline DNA, and that increased diversity

6477-439: Is the process by which traits that enhance survival and reproduction become more common in successive generations of a population. It embodies three principles: More offspring are produced than can possibly survive, and these conditions produce competition between organisms for survival and reproduction. Consequently, organisms with traits that give them an advantage over their competitors are more likely to pass on their traits to

SECTION 50

#1732783811886

6604-492: Is thought to be the reason why complex life appeared only after Earth's atmosphere accumulated large amounts of oxygen. In vertebrates , vigorously contracting skeletal muscles (during weightlifting or sprinting, for example) do not receive enough oxygen to meet the energy demand, and so they shift to anaerobic metabolism , converting glucose to lactate. The combination of glucose from noncarbohydrates origin, such as fat and proteins. This only happens when glycogen supplies in

6731-409: Is to break down one molecule of glucose into two molecules of pyruvate . This also produces a net two molecules of ATP , the energy currency of cells, along with two reducing equivalents of converting NAD (nicotinamide adenine dinucleotide: oxidized form) to NADH (nicotinamide adenine dinucleotide: reduced form). This does not require oxygen; if no oxygen is available (or the cell cannot use oxygen),

6858-416: The essential amino acids . Mammals do possess the enzymes to synthesize alanine , asparagine , aspartate , cysteine , glutamate , glutamine , glycine , proline , serine , and tyrosine , the nonessential amino acids. While they can synthesize arginine and histidine , they cannot produce it in sufficient amounts for young, growing animals, and so these are often considered essential amino acids. If

6985-424: The glutamate residue at position 6 with a valine residue changes the behavior of hemoglobin so much that it results in sickle-cell disease . Finally, quaternary structure is concerned with the structure of a protein with multiple peptide subunits, like hemoglobin with its four subunits. Not all proteins have more than one subunit. Ingested proteins are usually broken up into single amino acids or dipeptides in

7112-425: The neutral theory of molecular evolution most evolutionary changes are the result of the fixation of neutral mutations by genetic drift. In this model, most genetic changes in a population are thus the result of constant mutation pressure and genetic drift. This form of the neutral theory has been debated since it does not seem to fit some genetic variation seen in nature. A better-supported version of this model

7239-454: The product of a gene , or prevent the gene from functioning, or have no effect. About half of the mutations in the coding regions of protein-coding genes are deleterious — the other half are neutral. A small percentage of the total mutations in this region confer a fitness benefit. Some of the mutations in other parts of the genome are deleterious but the vast majority are neutral. A few are beneficial. Mutations can involve large sections of

7366-549: The small intestine and then absorbed. They can then be joined to form new proteins. Intermediate products of glycolysis, the citric acid cycle, and the pentose phosphate pathway can be used to form all twenty amino acids, and most bacteria and plants possess all the necessary enzymes to synthesize them. Humans and other mammals, however, can synthesize only half of them. They cannot synthesize isoleucine , leucine , lysine , methionine , phenylalanine , threonine , tryptophan , and valine . Because they must be ingested, these are

7493-399: The " vital principle ") distinct from any found in non-living matter, and it was thought that only living beings could produce the molecules of life. In 1828, Friedrich Wöhler published a paper on his serendipitous urea synthesis from potassium cyanate and ammonium sulfate ; some regarded that as a direct overthrow of vitalism and the establishment of organic chemistry . However,

7620-518: The N-terminal domain. The enzyme-linked immunosorbent assay (ELISA), which uses antibodies, is one of the most sensitive tests modern medicine uses to detect various biomolecules. Probably the most important proteins, however, are the enzymes . Virtually every reaction in a living cell requires an enzyme to lower the activation energy of the reaction. These molecules recognize specific reactant molecules called substrates ; they then catalyze

7747-492: The NAD is restored by converting the pyruvate to lactate (lactic acid) (e.g. in humans) or to ethanol plus carbon dioxide (e.g. in yeast ). Other monosaccharides like galactose and fructose can be converted into intermediates of the glycolytic pathway. In aerobic cells with sufficient oxygen , as in most human cells, the pyruvate is further metabolized. It is irreversibly converted to acetyl-CoA , giving off one carbon atom as

SECTION 60

#1732783811886

7874-485: The Wöhler synthesis has sparked controversy as some reject the death of vitalism at his hands. Since then, biochemistry has advanced, especially since the mid-20th century, with the development of new techniques such as chromatography , X-ray diffraction , dual polarisation interferometry , NMR spectroscopy , radioisotopic labeling , electron microscopy and molecular dynamics simulations. These techniques allowed for

8001-519: The ability of organisms to generate genetic diversity and adapt by natural selection (increasing organisms' evolvability). Adaptation occurs through the gradual modification of existing structures. Consequently, structures with similar internal organisation may have different functions in related organisms. This is the result of a single ancestral structure being adapted to function in different ways. The bones within bat wings, for example, are very similar to those in mice feet and primate hands, due to

8128-402: The adaptation of horses' teeth to the grinding of grass. By using the term adaptation for the evolutionary process and adaptive trait for the product (the bodily part or function), the two senses of the word may be distinguished. Adaptations are produced by natural selection. The following definitions are due to Theodosius Dobzhansky: Adaptation may cause either the gain of a new feature, or

8255-507: The alleles are subject to sampling error . This drift halts when an allele eventually becomes fixed, either by disappearing from the population or by replacing the other alleles entirely. Genetic drift may therefore eliminate some alleles from a population due to chance alone. Even in the absence of selective forces, genetic drift can cause two separate populations that begin with the same genetic structure to drift apart into two divergent populations with different sets of alleles. According to

8382-416: The amino group is removed from an amino acid, it leaves behind a carbon skeleton called an α- keto acid . Enzymes called transaminases can easily transfer the amino group from one amino acid (making it an α-keto acid) to another α-keto acid (making it an amino acid). This is important in the biosynthesis of amino acids, as for many of the pathways, intermediates from other biochemical pathways are converted to

8509-434: The amount of energy gained from glycolysis (six molecules of ATP are used, compared to the two gained in glycolysis). Analogous to the above reactions, the glucose produced can then undergo glycolysis in tissues that need energy, be stored as glycogen (or starch in plants), or be converted to other monosaccharides or joined into di- or oligosaccharides. The combined pathways of glycolysis during exercise, lactate's crossing via

8636-878: The animals' needs. Unicellular organisms release the ammonia into the environment. Likewise, bony fish can release ammonia into the water where it is quickly diluted. In general, mammals convert ammonia into urea, via the urea cycle . In order to determine whether two proteins are related, or in other words to decide whether they are homologous or not, scientists use sequence-comparison methods. Methods like sequence alignments and structural alignments are powerful tools that help scientists identify homologies between related molecules. The relevance of finding homologies among proteins goes beyond forming an evolutionary pattern of protein families . By finding how similar two protein sequences are, we acquire knowledge about their structure and therefore their function. Nucleic acids , so-called because of their prevalence in cellular nuclei ,

8763-441: The biosphere. For example, the overwhelming majority of species are microscopic prokaryotes , which form about half the world's biomass despite their small size and constitute the vast majority of Earth's biodiversity. Simple organisms have therefore been the dominant form of life on Earth throughout its history and continue to be the main form of life up to the present day, with complex life only appearing more diverse because it

8890-468: The bloodstream to the liver, subsequent gluconeogenesis and release of glucose into the bloodstream is called the Cori cycle . Researchers in biochemistry use specific techniques native to biochemistry, but increasingly combine these with techniques and ideas developed in the fields of genetics , molecular biology , and biophysics . There is not a defined line between these disciplines. Biochemistry studies

9017-513: The body and are broken into fatty acids and glycerol, the final degradation products of fats and lipids. Lipids, especially phospholipids , are also used in various pharmaceutical products , either as co-solubilizers (e.g. in parenteral infusions) or else as drug carrier components (e.g. in a liposome or transfersome ). Proteins are very large molecules—macro-biopolymers—made from monomers called amino acids . An amino acid consists of an alpha carbon atom attached to an amino group, –NH 2 ,

9144-539: The carbon chain) or unsaturated (one or more double bonds in the carbon chain). Most lipids have some polar character and are largely nonpolar. In general, the bulk of their structure is nonpolar or hydrophobic ("water-fearing"), meaning that it does not interact well with polar solvents like water . Another part of their structure is polar or hydrophilic ("water-loving") and will tend to associate with polar solvents like water. This makes them amphiphilic molecules (having both hydrophobic and hydrophilic portions). In

9271-490: The case of cholesterol , the polar group is a mere –OH (hydroxyl or alcohol). In the case of phospholipids, the polar groups are considerably larger and more polar, as described below. Lipids are an integral part of our daily diet. Most oils and milk products that we use for cooking and eating like butter , cheese , ghee etc. are composed of fats . Vegetable oils are rich in various polyunsaturated fatty acids (PUFA). Lipid-containing foods undergo digestion within

9398-651: The causes and cures of diseases . Nutrition studies how to maintain health and wellness and also the effects of nutritional deficiencies . In agriculture, biochemists investigate soil and fertilizers with the goal of improving crop cultivation, crop storage, and pest control . In recent decades, biochemical principles and methods have been combined with problem-solving approaches from engineering to manipulate living systems in order to produce useful tools for research, industrial processes, and diagnosis and control of disease—the discipline of biotechnology . At its most comprehensive definition, biochemistry can be seen as

9525-488: The change over time in this genetic variation. The frequency of one particular allele will become more or less prevalent relative to other forms of that gene. Variation disappears when a new allele reaches the point of fixation —when it either disappears from the population or replaces the ancestral allele entirely. Mutations are changes in the DNA sequence of a cell's genome and are the ultimate source of genetic variation in all organisms. When mutations occur, they may alter

9652-507: The contraction of skeletal muscle. One property many proteins have is that they specifically bind to a certain molecule or class of molecules—they may be extremely selective in what they bind. Antibodies are an example of proteins that attach to one specific type of molecule. Antibodies are composed of heavy and light chains. Two heavy chains would be linked to two light chains through disulfide linkages between their amino acids. Antibodies are specific through variation based on differences in

9779-403: The descent of all these structures from a common mammalian ancestor. However, since all living organisms are related to some extent, even organs that appear to have little or no structural similarity, such as arthropod , squid and vertebrate eyes, or the limbs and wings of arthropods and vertebrates, can depend on a common set of homologous genes that control their assembly and function; this

9906-400: The development of thinking about the evolution of genome composition, including isochores. Different insertion vs. deletion biases in different taxa can lead to the evolution of different genome sizes. The hypothesis of Lynch regarding genome size relies on mutational biases toward increase or decrease in genome size. However, mutational hypotheses for the evolution of composition suffered

10033-490: The direct control of genes include the inheritance of cultural traits and symbiogenesis . From a neo-Darwinian perspective, evolution occurs when there are changes in the frequencies of alleles within a population of interbreeding organisms, for example, the allele for black colour in a population of moths becoming more common. Mechanisms that can lead to changes in allele frequencies include natural selection, genetic drift, and mutation bias. Evolution by natural selection

10160-591: The discovery and detailed analysis of many molecules and metabolic pathways of the cell , such as glycolysis and the Krebs cycle (citric acid cycle), and led to an understanding of biochemistry on a molecular level. Another significant historic event in biochemistry is the discovery of the gene , and its role in the transfer of information in the cell. In the 1950s, James D. Watson , Francis Crick , Rosalind Franklin and Maurice Wilkins were instrumental in solving DNA structure and suggesting its relationship with

10287-492: The discovery of the first enzyme , diastase (now called amylase ), in 1833 by Anselme Payen , while others considered Eduard Buchner 's first demonstration of a complex biochemical process alcoholic fermentation in cell-free extracts in 1897 to be the birth of biochemistry. Some might also point as its beginning to the influential 1842 work by Justus von Liebig , Animal chemistry, or, Organic chemistry in its applications to physiology and pathology , which presented

10414-519: The dynamic nature of biochemistry, represent two examples of early biochemists. The term "biochemistry" was first used when Vinzenz Kletzinsky (1826–1882) had his "Compendium der Biochemie" printed in Vienna in 1858; it derived from a combination of biology and chemistry . In 1877, Felix Hoppe-Seyler used the term ( biochemie in German) as a synonym for physiological chemistry in the foreword to

10541-554: The electrons from high-energy states in NADH and quinol is conserved first as proton gradient and converted to ATP via ATP synthase. This generates an additional 28 molecules of ATP (24 from the 8 NADH + 4 from the 2 quinols), totaling to 32 molecules of ATP conserved per degraded glucose (two from glycolysis + two from the citrate cycle). It is clear that using oxygen to completely oxidize glucose provides an organism with far more energy than any oxygen-independent metabolic feature, and this

10668-426: The enzyme can be regulated, enabling control of the biochemistry of the cell as a whole. The structure of proteins is traditionally described in a hierarchy of four levels. The primary structure of a protein consists of its linear sequence of amino acids; for instance, "alanine-glycine-tryptophan-serine-glutamate-asparagine-glycine-lysine-...". Secondary structure is concerned with local morphology (morphology being

10795-469: The enzyme complexes of the respiratory chain, an electron transport system transferring the electrons ultimately to oxygen and conserving the released energy in the form of a proton gradient over a membrane ( inner mitochondrial membrane in eukaryotes). Thus, oxygen is reduced to water and the original electron acceptors NAD and quinone are regenerated. This is why humans breathe in oxygen and breathe out carbon dioxide. The energy released from transferring

10922-489: The evolutionary history of life on Earth. Morphological and biochemical traits tend to be more similar among species that share a more recent common ancestor , which historically was used to reconstruct phylogenetic trees , although direct comparison of genetic sequences is a more common method today. Evolutionary biologists have continued to study various aspects of evolution by forming and testing hypotheses as well as constructing theories based on evidence from

11049-414: The field or laboratory and on data generated by the methods of mathematical and theoretical biology . Their discoveries have influenced not just the development of biology but also other fields including agriculture, medicine, and computer science . Evolution in organisms occurs through changes in heritable characteristics—the inherited characteristics of an organism. In humans, for example, eye colour

11176-448: The first issue of Zeitschrift für Physiologische Chemie (Journal of Physiological Chemistry) where he argued for the setting up of institutes dedicated to this field of study. The German chemist Carl Neuberg however is often cited to have coined the word in 1903, while some credited it to Franz Hofmeister . It was once generally believed that life and its materials had some essential property or substance (often referred to as

11303-427: The fitness of an allele is not a fixed characteristic; if the environment changes, previously neutral or harmful traits may become beneficial and previously beneficial traits become harmful. However, even if the direction of selection does reverse in this way, traits that were lost in the past may not re-evolve in an identical form. However, a re-activation of dormant genes, as long as they have not been eliminated from

11430-467: The free hydroxy group of the pyranose or furanose form is exchanged with an OH-side-chain of another sugar, yielding a full acetal . This prevents opening of the chain to the aldehyde or keto form and renders the modified residue non-reducing. Lactose contains a reducing end at its glucose moiety, whereas the galactose moiety forms a full acetal with the C4-OH group of glucose. Saccharose does not have

11557-482: The genetic material of the cell, nucleic acids often play a role as second messengers , as well as forming the base molecule for adenosine triphosphate (ATP), the primary energy-carrier molecule found in all living organisms. Also, the nitrogenous bases possible in the two nucleic acids are different: adenine, cytosine, and guanine occur in both RNA and DNA, while thymine occurs only in DNA and uracil occurs in RNA. Glucose

11684-526: The genetic transfer of information. In 1958, George Beadle and Edward Tatum received the Nobel Prize for work in fungi showing that one gene produces one enzyme . In 1988, Colin Pitchfork was the first person convicted of murder with DNA evidence, which led to the growth of forensic science . More recently, Andrew Z. Fire and Craig C. Mello received the 2006 Nobel Prize for discovering

11811-472: The genome and were only suppressed perhaps for hundreds of generations, can lead to the re-occurrence of traits thought to be lost like hindlegs in dolphins, teeth in chickens, wings in wingless stick insects, tails and additional nipples in humans etc. "Throwbacks" such as these are known as atavisms . Natural selection within a population for a trait that can vary across a range of values, such as height, can be categorised into three different types. The first

11938-479: The genome of a species is very similar among all individuals of that species. However, discoveries in the field of evolutionary developmental biology have demonstrated that even relatively small differences in genotype can lead to dramatic differences in phenotype both within and between species. An individual organism's phenotype results from both its genotype and the influence of the environment it has lived in. The modern evolutionary synthesis defines evolution as

12065-448: The human body, humans require smaller amounts of possibly 18 more. The 4 main classes of molecules in biochemistry (often called biomolecules ) are carbohydrates , lipids , proteins , and nucleic acids . Many biological molecules are polymers : in this terminology, monomers are relatively small macromolecules that are linked together to create large macromolecules known as polymers. When monomers are linked together to synthesize

12192-640: The idea of developmental bias . Haldane and Fisher argued that, because mutation is a weak pressure easily overcome by selection, tendencies of mutation would be ineffectual except under conditions of neutral evolution or extraordinarily high mutation rates. This opposing-pressures argument was long used to dismiss the possibility of internal tendencies in evolution, until the molecular era prompted renewed interest in neutral evolution. Noboru Sueoka and Ernst Freese proposed that systematic biases in mutation might be responsible for systematic differences in genomic GC composition between species. The identification of

12319-450: The interaction of its genotype with the environment while others are neutral. Some observable characteristics are not inherited. For example, suntanned skin comes from the interaction between a person's genotype and sunlight; thus, suntans are not passed on to people's children. The phenotype is the ability of the skin to tan when exposed to sunlight. However, some people tan more easily than others, due to differences in genotypic variation;

12446-512: The level of the individual organism are genes called transposons , which can replicate and spread throughout a genome. Selection at a level above the individual, such as group selection , may allow the evolution of cooperation. Genetic drift is the random fluctuation of allele frequencies within a population from one generation to the next. When selective forces are absent or relatively weak, allele frequencies are equally likely to drift upward or downward in each successive generation because

12573-458: The liver are worn out. The pathway is a crucial reversal of glycolysis from pyruvate to glucose and can use many sources like amino acids, glycerol and Krebs Cycle . Large scale protein and fat catabolism usually occur when those suffer from starvation or certain endocrine disorders. The liver regenerates the glucose, using a process called gluconeogenesis . This process is not quite the opposite of glycolysis, and actually requires three times

12700-452: The longer term, evolution produces new species through splitting ancestral populations of organisms into new groups that cannot or will not interbreed. These outcomes of evolution are distinguished based on time scale as macroevolution versus microevolution. Macroevolution refers to evolution that occurs at or above the level of species, in particular speciation and extinction, whereas microevolution refers to smaller evolutionary changes within

12827-405: The loss of an ancestral feature. An example that shows both types of change is bacterial adaptation to antibiotic selection, with genetic changes causing antibiotic resistance by both modifying the target of the drug, or increasing the activity of transporters that pump the drug out of the cell. Other striking examples are the bacteria Escherichia coli evolving the ability to use citric acid as

12954-458: The mechanics in developmental plasticity and canalisation . Heritability may also occur at even larger scales. For example, ecological inheritance through the process of niche construction is defined by the regular and repeated activities of organisms in their environment. This generates a legacy of effects that modify and feed back into the selection regime of subsequent generations. Other examples of heritability in evolution that are not under

13081-408: The movement of pollen between heavy-metal-tolerant and heavy-metal-sensitive populations of grasses. Gene transfer between species includes the formation of hybrid organisms and horizontal gene transfer . Horizontal gene transfer is the transfer of genetic material from one organism to another organism that is not its offspring; this is most common among bacteria. In medicine, this contributes to

13208-427: The next generation than those with traits that do not confer an advantage. This teleonomy is the quality whereby the process of natural selection creates and preserves traits that are seemingly fitted for the functional roles they perform. Consequences of selection include nonrandom mating and genetic hitchhiking . The central concept of natural selection is the evolutionary fitness of an organism. Fitness

13335-499: The offspring of sexual organisms contain random mixtures of their parents' chromosomes that are produced through independent assortment. In a related process called homologous recombination , sexual organisms exchange DNA between two matching chromosomes. Recombination and reassortment do not alter allele frequencies, but instead change which alleles are associated with each other, producing offspring with new combinations of alleles. Sex usually increases genetic variation and may increase

13462-456: The other alleles of that gene, then with each generation this allele has a higher probability of becoming common within the population. These traits are said to be "selected for ." Examples of traits that can increase fitness are enhanced survival and increased fecundity . Conversely, the lower fitness caused by having a less beneficial or deleterious allele results in this allele likely becoming rarer—they are "selected against ." Importantly,

13589-578: The overall process, like a step in an assembly line. One example of mutation is wild boar piglets. They are camouflage coloured and show a characteristic pattern of dark and light longitudinal stripes. However, mutations in the melanocortin 1 receptor ( MC1R ) disrupt the pattern. The majority of pig breeds carry MC1R mutations disrupting wild-type colour and different mutations causing dominant black colouring. In asexual organisms, genes are inherited together, or linked , as they cannot mix with genes of other organisms during reproduction. In contrast,

13716-527: The presence of hip bones in whales and snakes, and sexual traits in organisms that reproduce via asexual reproduction. Examples of vestigial structures in humans include wisdom teeth , the coccyx , the vermiform appendix , and other behavioural vestiges such as goose bumps and primitive reflexes . However, many traits that appear to be simple adaptations are in fact exaptations : structures originally adapted for one function, but which coincidentally became somewhat useful for some other function in

13843-469: The process. One example is the African lizard Holaspis guentheri , which developed an extremely flat head for hiding in crevices, as can be seen by looking at its near relatives. However, in this species, the head has become so flattened that it assists in gliding from tree to tree—an exaptation. Within cells, molecular machines such as the bacterial flagella and protein sorting machinery evolved by

13970-494: The rate of evolution. The two-fold cost of sex was first described by John Maynard Smith . The first cost is that in sexually dimorphic species only one of the two sexes can bear young. This cost does not apply to hermaphroditic species, like most plants and many invertebrates . The second cost is that any individual who reproduces sexually can only pass on 50% of its genes to any individual offspring, with even less passed on as each new generation passes. Yet sexual reproduction

14097-410: The reaction between them. By lowering the activation energy , the enzyme speeds up that reaction by a rate of 10 or more; a reaction that would normally take over 3,000 years to complete spontaneously might take less than a second with an enzyme. The enzyme itself is not used up in the process and is free to catalyze the same reaction with a new set of substrates. Using various modifiers, the activity of

14224-486: The recruitment of several pre-existing proteins that previously had different functions. Another example is the recruitment of enzymes from glycolysis and xenobiotic metabolism to serve as structural proteins called crystallins within the lenses of organisms' eyes. Biochemical Much of biochemistry deals with the structures, functions, and interactions of biological macromolecules such as proteins , nucleic acids , carbohydrates , and lipids . They provide

14351-408: The relative importance of selection and neutral processes, including drift. The comparative importance of adaptive and non-adaptive forces in driving evolutionary change is an area of current research . Mutation bias is usually conceived as a difference in expected rates for two different kinds of mutation, e.g., transition-transversion bias, GC-AT bias, deletion-insertion bias. This is related to

14478-413: The ring usually has 5 or 6 atoms. These forms are called furanoses and pyranoses , respectively—by analogy with furan and pyran , the simplest compounds with the same carbon-oxygen ring (although they lack the carbon-carbon double bonds of these two molecules). For example, the aldohexose glucose may form a hemiacetal linkage between the hydroxyl on carbon 1 and the oxygen on carbon 4, yielding

14605-559: The role of RNA interference (RNAi) in the silencing of gene expression . Around two dozen chemical elements are essential to various kinds of biological life . Most rare elements on Earth are not needed by life (exceptions being selenium and iodine ), while a few common ones ( aluminum and titanium ) are not used. Most organisms share element needs, but there are a few differences between plants and animals . For example, ocean algae use bromine , but land plants and animals do not seem to need any. All animals require sodium , but

14732-417: The same strand of DNA to become separated. However, the rate of recombination is low (approximately two events per chromosome per generation). As a result, genes close together on a chromosome may not always be shuffled away from each other and genes that are close together tend to be inherited together, a phenomenon known as linkage . This tendency is measured by finding how often two alleles occur together on

14859-552: The sequence of nucleotides in the DNA. These phenomena are classed as epigenetic inheritance systems. DNA methylation marking chromatin , self-sustaining metabolic loops, gene silencing by RNA interference and the three-dimensional conformation of proteins (such as prions ) are areas where epigenetic inheritance systems have been discovered at the organismic level. Developmental biologists suggest that complex interactions in genetic networks and communication among cells can lead to heritable variations that may underlay some of

14986-406: The spread of antibiotic resistance , as when one bacteria acquires resistance genes it can rapidly transfer them to other species. Horizontal transfer of genes from bacteria to eukaryotes such as the yeast Saccharomyces cerevisiae and the adzuki bean weevil Callosobruchus chinensis has occurred. An example of larger-scale transfers are the eukaryotic bdelloid rotifers , which have received

15113-585: The structure of cells and perform many of the functions associated with life. The chemistry of the cell also depends upon the reactions of small molecules and ions . These can be inorganic (for example, water and metal ions) or organic (for example, the amino acids , which are used to synthesize proteins ). The mechanisms used by cells to harness energy from their environment via chemical reactions are known as metabolism . The findings of biochemistry are applied primarily in medicine , nutrition and agriculture . In medicine, biochemists investigate

15240-476: The study of structure). Some combinations of amino acids will tend to curl up in a coil called an α-helix or into a sheet called a β-sheet ; some α-helixes can be seen in the hemoglobin schematic above. Tertiary structure is the entire three-dimensional shape of the protein. This shape is determined by the sequence of amino acids. In fact, a single change can change the entire structure. The alpha chain of hemoglobin contains 146 amino acid residues; substitution of

15367-683: The sugar of each nucleotide bond with each other to form the backbone of the nucleic acid, while the sequence of nitrogenous bases stores the information. The most common nitrogenous bases are adenine , cytosine , guanine , thymine , and uracil . The nitrogenous bases of each strand of a nucleic acid will form hydrogen bonds with certain other nitrogenous bases in a complementary strand of nucleic acid. Adenine binds with thymine and uracil, thymine binds only with adenine, and cytosine and guanine can bind only with one another. Adenine, thymine, and uracil contain two hydrogen bonds, while hydrogen bonds formed between cytosine and guanine are three. Aside from

15494-640: The survival of individual males. This survival disadvantage is balanced by higher reproductive success in males that show these hard-to-fake , sexually selected traits. Evolution influences every aspect of the form and behaviour of organisms. Most prominent are the specific behavioural and physical adaptations that are the outcome of natural selection. These adaptations increase fitness by aiding activities such as finding food, avoiding predators or attracting mates. Organisms can also respond to selection by cooperating with each other, usually by aiding their relatives or engaging in mutually beneficial symbiosis . In

15621-642: The system...." Each population within an ecosystem occupies a distinct niche , or position, with distinct relationships to other parts of the system. These relationships involve the life history of the organism, its position in the food chain and its geographic range. This broad understanding of nature enables scientists to delineate specific forces which, together, comprise natural selection. Natural selection can act at different levels of organisation , such as genes, cells, individual organisms, groups of organisms and species. Selection can act at multiple levels simultaneously. An example of selection occurring below

15748-425: The waste product carbon dioxide , generating another reducing equivalent as NADH . The two molecules acetyl-CoA (from one molecule of glucose) then enter the citric acid cycle , producing two molecules of ATP, six more NADH molecules and two reduced (ubi)quinones (via FADH 2 as enzyme-bound cofactor), and releasing the remaining carbon atoms as carbon dioxide. The produced NADH and quinol molecules then feed into

15875-474: The α-keto acid skeleton, and then an amino group is added, often via transamination . The amino acids may then be linked together to form a protein. A similar process is used to break down proteins. It is first hydrolyzed into its component amino acids. Free ammonia (NH3), existing as the ammonium ion (NH4+) in blood, is toxic to life forms. A suitable method for excreting it must therefore exist. Different tactics have evolved in different animals, depending on

16002-663: Was first set out in detail in Darwin's book On the Origin of Species . Evolution by natural selection is established by observable facts about living organisms: (1) more offspring are often produced than can possibly survive; (2) traits vary among individuals with respect to their morphology , physiology , and behaviour; (3) different traits confer different rates of survival and reproduction (differential fitness ); and (4) traits can be passed from generation to generation ( heritability of fitness). In successive generations, members of

16129-692: Was founder of the Quaker Oats Company , but not himself a Quaker . The foundation makes grants to various organizations in order to promote Evangelical Christianity . This article about a philanthropic or charitable organization is a stub . You can help Misplaced Pages by expanding it . Evolution Evolution is the change in the heritable characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within

#885114