Misplaced Pages

Acetyl-CoA

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms . A sub-discipline of both chemistry and biology , biochemistry may be divided into three fields: structural biology , enzymology , and metabolism . Over the last decades of the 20th century, biochemistry has become successful at explaining living processes through these three disciplines. Almost all areas of the life sciences are being uncovered and developed through biochemical methodology and research. Biochemistry focuses on understanding the chemical basis which allows biological molecules to give rise to the processes that occur within living cells and between cells, in turn relating greatly to the understanding of tissues and organs as well as organism structure and function. Biochemistry is closely related to molecular biology , the study of the molecular mechanisms of biological phenomena.

#517482

77-535: Acetyl-CoA ( acetyl coenzyme A ) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism . Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production. Coenzyme A (CoASH or CoA) consists of a β-mercaptoethylamine group linked to pantothenic acid (vitamin B5) through an amide linkage and 3'-phosphorylated ADP. The acetyl group (indicated in blue in

154-628: A biological polymer , they undergo a process called dehydration synthesis . Different macromolecules can assemble in larger complexes, often needed for biological activity . Two of the main functions of carbohydrates are energy storage and providing structure. One of the common sugars known as glucose is a carbohydrate, but not all carbohydrates are sugars. There are more carbohydrates on Earth than any other known type of biomolecule; they are used to store energy and genetic information , as well as play important roles in cell to cell interactions and communications . The simplest type of carbohydrate

231-433: A carboxylic acid group, –COOH (although these exist as –NH 3 and –COO under physiologic conditions), a simple hydrogen atom , and a side chain commonly denoted as "–R". The side chain "R" is different for each amino acid of which there are 20 standard ones . It is this "R" group that makes each amino acid different, and the properties of the side chains greatly influence the overall three-dimensional conformation of

308-399: A chemical theory of metabolism, or even earlier to the 18th century studies on fermentation and respiration by Antoine Lavoisier . Many other pioneers in the field who helped to uncover the layers of complexity of biochemistry have been proclaimed founders of modern biochemistry. Emil Fischer , who studied the chemistry of proteins , and F. Gowland Hopkins , who studied enzymes and

385-434: A component of DNA . A monosaccharide can switch between acyclic (open-chain) form and a cyclic form. The open-chain form can be turned into a ring of carbon atoms bridged by an oxygen atom created from the carbonyl group of one end and the hydroxyl group of another. The cyclic molecule has a hemiacetal or hemiketal group, depending on whether the linear form was an aldose or a ketose . In these cyclic forms,

462-406: A cyclic [ring] and planar [flat] structure) while others are not. Some are flexible, while others are rigid. Lipids are usually made from one molecule of glycerol combined with other molecules. In triglycerides , the main group of bulk lipids, there is one molecule of glycerol and three fatty acids . Fatty acids are considered the monomer in that case, and maybe saturated (no double bonds in

539-468: A few (around three to six) monosaccharides are joined, it is called an oligosaccharide ( oligo- meaning "few"). These molecules tend to be used as markers and signals , as well as having some other uses. Many monosaccharides joined form a polysaccharide . They can be joined in one long linear chain, or they may be branched . Two of the most common polysaccharides are cellulose and glycogen , both consisting of repeating glucose monomers . Cellulose

616-497: A molecular level, the mutation in Pgk1 impairs the thermal stability and inhibits the catalytic activity of the enzyme. PGK is the only enzyme in the immediate glycolytic pathway encoded by an X-linked gene. In the case of hemolytic anemia, PGK deficiency occurs in the erythrocytes . Currently, no definitive treatment exists for PGK deficiency. PGK1 overexpression has been associated with gastric cancer and has been found to increase

693-404: A molecule with a 5-membered ring, called glucofuranose . The same reaction can take place between carbons 1 and 5 to form a molecule with a 6-membered ring, called glucopyranose . Cyclic forms with a 7-atom ring called heptoses are rare. Two monosaccharides can be joined by a glycosidic or ester bond into a disaccharide through a dehydration reaction during which a molecule of water

770-414: A protein. Some amino acids have functions by themselves or in a modified form; for instance, glutamate functions as an important neurotransmitter . Amino acids can be joined via a peptide bond . In this dehydration synthesis, a water molecule is removed and the peptide bond connects the nitrogen of one amino acid's amino group to the carbon of the other's carboxylic acid group. The resulting molecule

847-566: A reducing end because of full acetal formation between the aldehyde carbon of glucose (C1) and the keto carbon of fructose (C2). Lipids comprise a diverse range of molecules and to some extent is a catchall for relatively water-insoluble or nonpolar compounds of biological origin, including waxes , fatty acids , fatty-acid derived phospholipids , sphingolipids , glycolipids , and terpenoids (e.g., retinoids and steroids ). Some lipids are linear, open-chain aliphatic molecules, while others have ring structures. Some are aromatic (with

SECTION 10

#1732801050518

924-440: A study of the components and composition of living things and how they come together to become life. In this sense, the history of biochemistry may therefore go back as far as the ancient Greeks . However, biochemistry as a specific scientific discipline began sometime in the 19th century, or a little earlier, depending on which aspect of biochemistry is being focused on. Some argued that the beginning of biochemistry may have been

1001-431: Is a monosaccharide , which among other properties contains carbon , hydrogen , and oxygen , mostly in a ratio of 1:2:1 (generalized formula C n H 2 n O n , where n is at least 3). Glucose (C 6 H 12 O 6 ) is one of the most important carbohydrates; others include fructose (C 6 H 12 O 6 ), the sugar commonly associated with the sweet taste of fruits , and deoxyribose (C 5 H 10 O 4 ),

1078-553: Is a series of chemical reactions that occur in the mitochondria of cells and is responsible for generating energy in the form of ATP . In addition, acetyl-CoA is a precursor for the biosynthesis of various acetyl-chemicals, acting as an intermediate to transfer an acetyl group during the biosynthesis of those acetyl-chemicals. Acetyl-CoA is also involved in the regulation of various cellular mechanisms by providing acetyl groups to target amino acid residues for post-translational acetylation reactions of proteins. The acetylation of CoA

1155-449: Is an X-linked recessive trait associated with hemolytic anemia , mental disorders and myopathy in humans, depending on form – there exists a hemolytic form and a myopathic form. Since the trait is X-linked, it is usually fully expressed in males, who have one X chromosome; affected females are typically asymptomatic. The condition results from mutations in Pgk1, the gene encoding PGK1, and twenty mutations have been identified. On

1232-412: Is an energy source in most life forms. For instance, polysaccharides are broken down into their monomers by enzymes ( glycogen phosphorylase removes glucose residues from glycogen, a polysaccharide). Disaccharides like lactose or sucrose are cleaved into their two component monosaccharides. Glucose is mainly metabolized by a very important ten-step pathway called glycolysis , the net result of which

1309-407: Is an important structural component of plant's cell walls and glycogen is used as a form of energy storage in animals. Sugar can be characterized by having reducing or non-reducing ends. A reducing end of a carbohydrate is a carbon atom that can be in equilibrium with the open-chain aldehyde ( aldose ) or keto form ( ketose ). If the joining of monomers takes place at such a carbon atom,

1386-424: Is called a dipeptide , and short stretches of amino acids (usually, fewer than thirty) are called peptides or polypeptides . Longer stretches merit the title proteins . As an example, the important blood serum protein albumin contains 585 amino acid residues . Proteins can have structural and/or functional roles. For instance, movements of the proteins actin and myosin ultimately are responsible for

1463-1130: Is determined by the carbon sources. Click on genes, proteins and metabolites below to visit Gene Wiki pages and related Misplaced Pages articles. The pathway can be downloaded and edited at WikiPathways . Glucose Hexokinase Glucose 6-phosphate Glucose-6-phosphate isomerase Fructose 6-phosphate Phosphofructokinase-1 Fructose 1,6-bisphosphate Fructose-bisphosphate aldolase Dihydroxyacetone phosphate + Glyceraldehyde 3-phosphate Triosephosphate isomerase 2 × Glyceraldehyde 3-phosphate Glyceraldehyde-3-phosphate dehydrogenase 2 × 1,3-Bisphosphoglycerate Phosphoglycerate kinase 2 × 3-Phosphoglycerate Phosphoglycerate mutase 2 × 2-Phosphoglycerate Phosphopyruvate hydratase ( enolase ) 2 × Phosphoenolpyruvate Pyruvate kinase 2 × Pyruvate Acetyl-CoA Oxaloacetate Malate Fumarate Succinate Succinyl-CoA Citrate cis- Aconitate Isocitrate Oxalosuccinate 2-oxoglutarate Biochemical reaction Much of biochemistry deals with

1540-421: Is not an essential element for plants. Plants need boron and silicon , but animals may not (or may need ultra-small amounts). Just six elements— carbon , hydrogen , nitrogen , oxygen , calcium and phosphorus —make up almost 99% of the mass of living cells, including those in the human body (see composition of the human body for a complete list). In addition to the six major elements that compose most of

1617-466: Is only expressed during spermatogenesis, was shown to be essential for sperm function in mice. Click on genes, proteins and metabolites below to link to respective articles. PGK is found in all living organisms and its sequence has been highly conserved throughout evolution. The enzyme exists as a 415- residue monomer containing two nearly equal-sized domains that correspond to the N- and C-termini of

SECTION 20

#1732801050518

1694-508: Is released. The reverse reaction in which the glycosidic bond of a disaccharide is broken into two monosaccharides is termed hydrolysis . The best-known disaccharide is sucrose or ordinary sugar , which consists of a glucose molecule and a fructose molecule joined. Another important disaccharide is lactose found in milk, consisting of a glucose molecule and a galactose molecule. Lactose may be hydrolysed by lactase , and deficiency in this enzyme results in lactose intolerance . When

1771-545: Is the phosphate donor and has a high phosphoryl-transfer potential. The PGK-catalyzed transfer of the phosphate group from 1,3-BPG to ADP to yield ATP can power the carbon-oxidation reaction of the previous glycolytic step (converting glyceraldehyde 3-phosphate to 3-phosphoglycerate ). The enzyme is activated by low concentrations of various multivalent anions, such as pyrophosphate, sulfate, phosphate, and citrate. High concentrations of MgATP and 3-PG activates PGK, while Mg2+ at high concentrations non-competitively inhibits

1848-506: Is the generic name of the family of biopolymers . They are complex, high-molecular-weight biochemical macromolecules that can convey genetic information in all living cells and viruses. The monomers are called nucleotides , and each consists of three components: a nitrogenous heterocyclic base (either a purine or a pyrimidine ), a pentose sugar, and a phosphate group. The most common nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The phosphate group and

1925-492: Is thought to be the reason why complex life appeared only after Earth's atmosphere accumulated large amounts of oxygen. In vertebrates , vigorously contracting skeletal muscles (during weightlifting or sprinting, for example) do not receive enough oxygen to meet the energy demand, and so they shift to anaerobic metabolism , converting glucose to lactate. The combination of glucose from noncarbohydrates origin, such as fat and proteins. This only happens when glycogen supplies in

2002-409: Is to break down one molecule of glucose into two molecules of pyruvate . This also produces a net two molecules of ATP , the energy currency of cells, along with two reducing equivalents of converting NAD (nicotinamide adenine dinucleotide: oxidized form) to NADH (nicotinamide adenine dinucleotide: reduced form). This does not require oxygen; if no oxygen is available (or the cell cannot use oxygen),

2079-566: Is unique to meiotic and postmeiotic spermatogenic cells, while PGK1, encoded on the X-chromosome , is ubiquitously expressed in all cells. PGK is present in all living organisms as one of the two ATP-generating enzymes in glycolysis. In the gluconeogenic pathway, PGK catalyzes the reverse reaction. Under biochemical standard conditions , the glycolytic direction is favored. In the Calvin cycle in photosynthetic organisms, PGK catalyzes

2156-423: The amino acids , which are used to synthesize proteins ). The mechanisms used by cells to harness energy from their environment via chemical reactions are known as metabolism . The findings of biochemistry are applied primarily in medicine , nutrition and agriculture . In medicine, biochemists investigate the causes and cures of diseases . Nutrition studies how to maintain health and wellness and also

2233-426: The chemistry required for biological activity of molecules, molecular biology studies their biological activity, genetics studies their heredity, which happens to be carried by their genome . This is shown in the following schematic that depicts one possible view of the relationships between the fields: Phosphoglycerate kinase Phosphoglycerate kinase ( EC 2.7.2.3 ) (PGK 1) is an enzyme that catalyzes

2310-416: The essential amino acids . Mammals do possess the enzymes to synthesize alanine , asparagine , aspartate , cysteine , glutamate , glutamine , glycine , proline , serine , and tyrosine , the nonessential amino acids. While they can synthesize arginine and histidine , they cannot produce it in sufficient amounts for young, growing animals, and so these are often considered essential amino acids. If

2387-424: The glutamate residue at position 6 with a valine residue changes the behavior of hemoglobin so much that it results in sickle-cell disease . Finally, quaternary structure is concerned with the structure of a protein with multiple peptide subunits, like hemoglobin with its four subunits. Not all proteins have more than one subunit. Ingested proteins are usually broken up into single amino acids or dipeptides in

Acetyl-CoA - Misplaced Pages Continue

2464-694: The reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP  : Like all kinases it is a transferase . PGK is a major enzyme used in glycolysis , in the first ATP-generating step of the glycolytic pathway. In gluconeogenesis , the reaction catalyzed by PGK proceeds in the opposite direction, generating ADP and 1,3-BPG. In humans, two isozymes of PGK have been so far identified, PGK1 and PGK2. The isozymes have 87-88% identical amino acid sequence identity and though they are structurally and functionally similar, they have different localizations: PGK2, encoded by an autosomal gene,

2541-549: The small intestine and then absorbed. They can then be joined to form new proteins. Intermediate products of glycolysis, the citric acid cycle, and the pentose phosphate pathway can be used to form all twenty amino acids, and most bacteria and plants possess all the necessary enzymes to synthesize them. Humans and other mammals, however, can synthesize only half of them. They cannot synthesize isoleucine , leucine , lysine , methionine , phenylalanine , threonine , tryptophan , and valine . Because they must be ingested, these are

2618-399: The " vital principle ") distinct from any found in non-living matter, and it was thought that only living beings could produce the molecules of life. In 1828, Friedrich Wöhler published a paper on his serendipitous urea synthesis from potassium cyanate and ammonium sulfate ; some regarded that as a direct overthrow of vitalism and the establishment of organic chemistry . However,

2695-518: The N-terminal domain. The enzyme-linked immunosorbent assay (ELISA), which uses antibodies, is one of the most sensitive tests modern medicine uses to detect various biomolecules. Probably the most important proteins, however, are the enzymes . Virtually every reaction in a living cell requires an enzyme to lower the activation energy of the reaction. These molecules recognize specific reactant molecules called substrates ; they then catalyze

2772-492: The NAD is restored by converting the pyruvate to lactate (lactic acid) (e.g. in humans) or to ethanol plus carbon dioxide (e.g. in yeast ). Other monosaccharides like galactose and fructose can be converted into intermediates of the glycolytic pathway. In aerobic cells with sufficient oxygen , as in most human cells, the pyruvate is further metabolized. It is irreversibly converted to acetyl-CoA , giving off one carbon atom as

2849-485: The Wöhler synthesis has sparked controversy as some reject the death of vitalism at his hands. Since then, biochemistry has advanced, especially since the mid-20th century, with the development of new techniques such as chromatography , X-ray diffraction , dual polarisation interferometry , NMR spectroscopy , radioisotopic labeling , electron microscopy and molecular dynamics simulations. These techniques allowed for

2926-416: The amino group is removed from an amino acid, it leaves behind a carbon skeleton called an α- keto acid . Enzymes called transaminases can easily transfer the amino group from one amino acid (making it an α-keto acid) to another α-keto acid (making it an amino acid). This is important in the biosynthesis of amino acids, as for many of the pathways, intermediates from other biochemical pathways are converted to

3003-434: The amount of energy gained from glycolysis (six molecules of ATP are used, compared to the two gained in glycolysis). Analogous to the above reactions, the glucose produced can then undergo glycolysis in tissues that need energy, be stored as glycogen (or starch in plants), or be converted to other monosaccharides or joined into di- or oligosaccharides. The combined pathways of glycolysis during exercise, lactate's crossing via

3080-878: The animals' needs. Unicellular organisms release the ammonia into the environment. Likewise, bony fish can release ammonia into the water where it is quickly diluted. In general, mammals convert ammonia into urea, via the urea cycle . In order to determine whether two proteins are related, or in other words to decide whether they are homologous or not, scientists use sequence-comparison methods. Methods like sequence alignments and structural alignments are powerful tools that help scientists identify homologies between related molecules. The relevance of finding homologies among proteins goes beyond forming an evolutionary pattern of protein families . By finding how similar two protein sequences are, we acquire knowledge about their structure and therefore their function. Nucleic acids , so-called because of their prevalence in cellular nuclei ,

3157-468: The bloodstream to the liver, subsequent gluconeogenesis and release of glucose into the bloodstream is called the Cori cycle . Researchers in biochemistry use specific techniques native to biochemistry, but increasingly combine these with techniques and ideas developed in the fields of genetics , molecular biology , and biophysics . There is not a defined line between these disciplines. Biochemistry studies

Acetyl-CoA - Misplaced Pages Continue

3234-513: The body and are broken into fatty acids and glycerol, the final degradation products of fats and lipids. Lipids, especially phospholipids , are also used in various pharmaceutical products , either as co-solubilizers (e.g. in parenteral infusions) or else as drug carrier components (e.g. in a liposome or transfersome ). Proteins are very large molecules—macro-biopolymers—made from monomers called amino acids . An amino acid consists of an alpha carbon atom attached to an amino group, –NH 2 ,

3311-539: The carbon chain) or unsaturated (one or more double bonds in the carbon chain). Most lipids have some polar character and are largely nonpolar. In general, the bulk of their structure is nonpolar or hydrophobic ("water-fearing"), meaning that it does not interact well with polar solvents like water . Another part of their structure is polar or hydrophilic ("water-loving") and will tend to associate with polar solvents like water. This makes them amphiphilic molecules (having both hydrophobic and hydrophilic portions). In

3388-490: The case of cholesterol , the polar group is a mere –OH (hydroxyl or alcohol). In the case of phospholipids, the polar groups are considerably larger and more polar, as described below. Lipids are an integral part of our daily diet. Most oils and milk products that we use for cooking and eating like butter , cheese , ghee etc. are composed of fats . Vegetable oils are rich in various polyunsaturated fatty acids (PUFA). Lipid-containing foods undergo digestion within

3465-529: The citric acid cycle, where the acetyl group is oxidized to carbon dioxide and water, and the energy released is captured in the form of 11 ATP and one GTP per acetyl group. Konrad Bloch and Feodor Lynen were awarded the 1964 Nobel Prize in Physiology or Medicine for their discoveries linking acetyl-CoA and fatty acid metabolism. Fritz Lipmann won the Nobel Prize in 1953 for his discovery of

3542-401: The cofactor coenzyme A . Acetyl-CoA is a metabolic intermediate that is involved in many metabolic pathways in an organism. It is produced during the breakdown of glucose , fatty acids , and amino acids , and is used in the synthesis of many other biomolecules , including cholesterol , fatty acids , and ketone bodies . Acetyl-CoA is also a key molecule in the citric acid cycle , which

3619-507: The contraction of skeletal muscle. One property many proteins have is that they specifically bind to a certain molecule or class of molecules—they may be extremely selective in what they bind. Antibodies are an example of proteins that attach to one specific type of molecule. Antibodies are composed of heavy and light chains. Two heavy chains would be linked to two light chains through disulfide linkages between their amino acids. Antibodies are specific through variation based on differences in

3696-401: The core of each domain is a 6-stranded parallel beta-sheet surrounded by alpha helices. The two lobes are capable of folding independently, consistent with the presence of intermediates on the folding pathway with a single domain folded. Though the binding of either substrate triggers a conformational change , only through the binding of both substrates does domain closure occur, leading to

3773-591: The discovery and detailed analysis of many molecules and metabolic pathways of the cell , such as glycolysis and the Krebs cycle (citric acid cycle), and led to an understanding of biochemistry on a molecular level. Another significant historic event in biochemistry is the discovery of the gene , and its role in the transfer of information in the cell. In the 1950s, James D. Watson , Francis Crick , Rosalind Franklin and Maurice Wilkins were instrumental in solving DNA structure and suggesting its relationship with

3850-492: The discovery of the first enzyme , diastase (now called amylase ), in 1833 by Anselme Payen , while others considered Eduard Buchner 's first demonstration of a complex biochemical process alcoholic fermentation in cell-free extracts in 1897 to be the birth of biochemistry. Some might also point as its beginning to the influential 1842 work by Justus von Liebig , Animal chemistry, or, Organic chemistry in its applications to physiology and pathology , which presented

3927-519: The dynamic nature of biochemistry, represent two examples of early biochemists. The term "biochemistry" was first used when Vinzenz Kletzinsky (1826–1882) had his "Compendium der Biochemie" printed in Vienna in 1858; it derived from a combination of biology and chemistry . In 1877, Felix Hoppe-Seyler used the term ( biochemie in German) as a synonym for physiological chemistry in the foreword to

SECTION 50

#1732801050518

4004-549: The effects of nutritional deficiencies . In agriculture, biochemists investigate soil and fertilizers with the goal of improving crop cultivation, crop storage, and pest control . In recent decades, biochemical principles and methods have been combined with problem-solving approaches from engineering to manipulate living systems in order to produce useful tools for research, industrial processes, and diagnosis and control of disease—the discipline of biotechnology . At its most comprehensive definition, biochemistry can be seen as

4081-554: The electrons from high-energy states in NADH and quinol is conserved first as proton gradient and converted to ATP via ATP synthase. This generates an additional 28 molecules of ATP (24 from the 8 NADH + 4 from the 2 quinols), totaling to 32 molecules of ATP conserved per degraded glucose (two from glycolysis + two from the citrate cycle). It is clear that using oxygen to completely oxidize glucose provides an organism with far more energy than any oxygen-independent metabolic feature, and this

4158-426: The enzyme can be regulated, enabling control of the biochemistry of the cell as a whole. The structure of proteins is traditionally described in a hierarchy of four levels. The primary structure of a protein consists of its linear sequence of amino acids; for instance, "alanine-glycine-tryptophan-serine-glutamate-asparagine-glycine-lysine-...". Secondary structure is concerned with local morphology (morphology being

4235-469: The enzyme complexes of the respiratory chain, an electron transport system transferring the electrons ultimately to oxygen and conserving the released energy in the form of a proton gradient over a membrane ( inner mitochondrial membrane in eukaryotes). Thus, oxygen is reduced to water and the original electron acceptors NAD and quinone are regenerated. This is why humans breathe in oxygen and breathe out carbon dioxide. The energy released from transferring

4312-399: The enzyme guides the phosphate group to the substrate. PGK proceeds through a charge-stabilized transition state that is favored over the arrangement of the bound substrate in the closed enzyme because in the transition state, all three phosphate oxygens are stabilized by ligands , as opposed to only two stabilized oxygens in the initial bound state. In the glycolytic pathway, 1,3-BPG

4389-462: The enzyme. PGK exhibits a wide specificity toward nucleotide substrates. Its activity is inhibited by salicylates, which appear to mimic the enzyme's nucleotide substrate. Macromolecular crowding has been shown to increase PGK activity in both computer simulations and in vitro environments simulating a cell interior; as a result of crowding, the enzyme becomes more enzymatically active and more compact. Phosphoglycerate kinase (PGK) deficiency

4466-448: The first issue of Zeitschrift für Physiologische Chemie (Journal of Physiological Chemistry) where he argued for the setting up of institutes dedicated to this field of study. The German chemist Carl Neuberg however is often cited to have coined the word in 1903, while some credited it to Franz Hofmeister . It was once generally believed that life and its materials had some essential property or substance (often referred to as

4543-467: The free hydroxy group of the pyranose or furanose form is exchanged with an OH-side-chain of another sugar, yielding a full acetal . This prevents opening of the chain to the aldehyde or keto form and renders the modified residue non-reducing. Lactose contains a reducing end at its glucose moiety, whereas the galactose moiety forms a full acetal with the C4-OH group of glucose. Saccharose does not have

4620-531: The genetic material of the cell, nucleic acids often play a role as second messengers , as well as forming the base molecule for adenosine triphosphate (ATP), the primary energy-carrier molecule found in all living organisms. Also, the nitrogenous bases possible in the two nucleic acids are different: adenine, cytosine, and guanine occur in both RNA and DNA, while thymine occurs only in DNA and uracil occurs in RNA. Glucose

4697-526: The genetic transfer of information. In 1958, George Beadle and Edward Tatum received the Nobel Prize for work in fungi showing that one gene produces one enzyme . In 1988, Colin Pitchfork was the first person convicted of murder with DNA evidence, which led to the growth of forensic science . More recently, Andrew Z. Fire and Craig C. Mello received the 2006 Nobel Prize for discovering

SECTION 60

#1732801050518

4774-448: The human body, humans require smaller amounts of possibly 18 more. The 4 main classes of molecules in biochemistry (often called biomolecules ) are carbohydrates , lipids , proteins , and nucleic acids . Many biological molecules are polymers : in this terminology, monomers are relatively small macromolecules that are linked together to create large macromolecules known as polymers. When monomers are linked together to synthesize

4851-458: The liver are worn out. The pathway is a crucial reversal of glycolysis from pyruvate to glucose and can use many sources like amino acids, glycerol and Krebs Cycle . Large scale protein and fat catabolism usually occur when those suffer from starvation or certain endocrine disorders. The liver regenerates the glucose, using a process called gluconeogenesis . This process is not quite the opposite of glycolysis, and actually requires three times

4928-552: The phosphate groups the nucleotide substrates of PGK. It is known that in the absence of magnesium, no enzyme activity occurs. The bivalent metal assists the enzyme ligands in shielding the bound phosphate group's negative charges, allowing the nucleophilic attack to occur; this charge-stabilization is a typical characteristic of phosphotransfer reaction. It is theorized that the ion may also encourage domain closure when PGK has bound both substrates. Without either substrate bound, PGK exists in an "open" conformation . After both

5005-466: The phosphorylation of 3-PG, producing 1,3-BPG and ADP, as part of the reactions that regenerate ribulose-1,5-bisphosphate . PGK has been reported to exhibit thiol reductase activity on plasmin , leading to angiostatin formation, which inhibits angiogenesis and tumor growth. The enzyme was also shown to participate in DNA replication and repair in mammal cell nuclei . The human isozyme PGK2, which

5082-460: The protein. 3-phosphoglycerate (3-PG) binds to the N-terminal, while the nucleotide substrates, MgATP or MgADP, bind to the C-terminal domain of the enzyme. This extended two-domain structure is associated with large-scale 'hinge-bending' conformational changes, similar to those found in hexokinase . The two domains of the protein are separated by a cleft and linked by two alpha-helices . At

5159-410: The reaction between them. By lowering the activation energy , the enzyme speeds up that reaction by a rate of 10 or more; a reaction that would normally take over 3,000 years to complete spontaneously might take less than a second with an enzyme. The enzyme itself is not used up in the process and is free to catalyze the same reaction with a new set of substrates. Using various modifiers, the activity of

5236-413: The ring usually has 5 or 6 atoms. These forms are called furanoses and pyranoses , respectively—by analogy with furan and pyran , the simplest compounds with the same carbon-oxygen ring (although they lack the carbon-carbon double bonds of these two molecules). For example, the aldohexose glucose may form a hemiacetal linkage between the hydroxyl on carbon 1 and the oxygen on carbon 4, yielding

5313-559: The role of RNA interference (RNAi) in the silencing of gene expression . Around two dozen chemical elements are essential to various kinds of biological life . Most rare elements on Earth are not needed by life (exceptions being selenium and iodine ), while a few common ones ( aluminum and titanium ) are not used. Most organisms share element needs, but there are a few differences between plants and animals . For example, ocean algae use bromine , but land plants and animals do not seem to need any. All animals require sodium , but

5390-455: The structural diagram on the right) of acetyl-CoA is linked to the sulfhydryl substituent of the β-mercaptoethylamine group. This thioester linkage is a "high energy" bond, which is particularly reactive. Hydrolysis of the thioester bond is exergonic (−31.5 kJ/mol). CoA is acetylated to acetyl-CoA by the breakdown of carbohydrates through glycolysis and by the breakdown of fatty acids through β-oxidation . Acetyl-CoA then enters

5467-419: The structures, functions, and interactions of biological macromolecules such as proteins , nucleic acids , carbohydrates , and lipids . They provide the structure of cells and perform many of the functions associated with life. The chemistry of the cell also depends upon the reactions of small molecules and ions . These can be inorganic (for example, water and metal ions) or organic (for example,

5544-476: The study of structure). Some combinations of amino acids will tend to curl up in a coil called an α-helix or into a sheet called a β-sheet ; some α-helixes can be seen in the hemoglobin schematic above. Tertiary structure is the entire three-dimensional shape of the protein. This shape is determined by the sequence of amino acids. In fact, a single change can change the entire structure. The alpha chain of hemoglobin contains 146 amino acid residues; substitution of

5621-683: The sugar of each nucleotide bond with each other to form the backbone of the nucleic acid, while the sequence of nitrogenous bases stores the information. The most common nitrogenous bases are adenine , cytosine , guanine , thymine , and uracil . The nitrogenous bases of each strand of a nucleic acid will form hydrogen bonds with certain other nitrogenous bases in a complementary strand of nucleic acid. Adenine binds with thymine and uracil, thymine binds only with adenine, and cytosine and guanine can bind only with one another. Adenine, thymine, and uracil contain two hydrogen bonds, while hydrogen bonds formed between cytosine and guanine are three. Aside from

5698-420: The transfer of the phosphate group. The enzyme has a tendency to exist in the open conformation with short periods of closure and catalysis, which allow for rapid diffusion of substrate and products through the binding sites; the open conformation of PGK is more conformationally stable due to the exposure of a hydrophobic region of the protein upon domain closure. Magnesium ions are normally complexed to

5775-406: The triose and nucleotide substrates are bound to the N- and C-terminal domains, respectively, an extensive hinge-bending motion occurs, bringing the domains and their bound substrates into close proximity and leading to a "closed" conformation. Then, in the case of the forward glycolytic reaction, the beta-phosphate of ADP initiates a nucleophilic attack on the 1-phosphate of 1,3-BPG. The Lys219 on

5852-425: The waste product carbon dioxide , generating another reducing equivalent as NADH . The two molecules acetyl-CoA (from one molecule of glucose) then enter the citric acid cycle , producing two molecules of ATP, six more NADH molecules and two reduced (ubi)quinones (via FADH 2 as enzyme-bound cofactor), and releasing the remaining carbon atoms as carbon dioxide. The produced NADH and quinol molecules then feed into

5929-474: The α-keto acid skeleton, and then an amino group is added, often via transamination . The amino acids may then be linked together to form a protein. A similar process is used to break down proteins. It is first hydrolyzed into its component amino acids. Free ammonia (NH3), existing as the ammonium ion (NH4+) in blood, is toxic to life forms. A suitable method for excreting it must therefore exist. Different tactics have evolved in different animals, depending on

#517482