148-528: The Air-Sol Moyenne Portée ("Medium-Range Air-to-Surface") or ASMP is a French nuclear-armed air-launched cruise missile manufactured by MBDA France . In French nuclear doctrine, it serves what is referred to as a "pre-strategic" deterrence role. It is intended to be the ultimate " warning shot " prior to the full-scale employment of the strategic nuclear weapons arming the Triomphant-class ballistic missile submarines. The missile's development
296-410: A hohlraum or radiation case. The "George" shot of Operation Greenhouse of 9 May 1951 tested the basic concept for the first time on a very small scale. As the first successful (uncontrolled) release of nuclear fusion energy, which made up a small fraction of the 225 kt (940 TJ ) total yield, it raised expectations to a near certainty that the concept would work. On 1 November 1952,
444-549: A scramjet -powered hypersonic cruise missile , were confirmed to have already begun in 2014. The ASN4G will be carried by the Rafale F5 fighter and its successor; the requirement is for a missile range much greater than 1,000 kilometres (600 mi). The ASN4G is being developed by MBDA France in cooperation with the ONERA . Thermonuclear weapon A thermonuclear weapon , fusion weapon or hydrogen bomb ( H bomb )
592-736: A secondary section that consists of fusion fuel . The energy released by the primary compresses the secondary through the process of radiation implosion , at which point it is heated and undergoes nuclear fusion . This process could be continued, with energy from the secondary igniting a third fusion stage; the Soviet Union's AN602 " Tsar Bomba " is thought to have been a three-stage fission-fusion-fusion device. Theoretically by continuing this process thermonuclear weapons with arbitrarily high yield could be constructed. This contrasts with fission weapons, which are limited in yield because only so much fission fuel can be amassed in one place before
740-520: A 90 million degree plasma for a record time of six minutes. This is a tokamak style reactor which is the same style as the upcoming ITER reactor. The release of energy with the fusion of light elements is due to the interplay of two opposing forces: the nuclear force , a manifestation of the strong interaction , which holds protons and neutrons tightly together in the atomic nucleus ; and the Coulomb force , which causes positively charged protons in
888-430: A design could not produce thermonuclear weapons whose explosive yields could be made arbitrarily large (unlike U.S. designs at that time). The fusion layer wrapped around the fission core could only moderately multiply the fission energy (modern Teller–Ulam designs can multiply it 30-fold). Additionally, the whole fusion stage had to be imploded by conventional explosives, along with the fission core, substantially increasing
1036-498: A dozen megatons, which was generally considered enough to destroy even the most hardened practical targets (for example, a control facility such as the Cheyenne Mountain Complex ). Even such large bombs have been replaced by smaller yield nuclear bunker buster bombs. For destruction of cities and non-hardened targets, breaking the mass of a single missile payload down into smaller MIRV bombs in order to spread
1184-456: A few specific incidents outlined in a section below. The basic principle of the Teller–Ulam configuration is the idea that different parts of a thermonuclear weapon can be chained together in stages, with the detonation of each stage providing the energy to ignite the next stage. At a minimum, this implies a primary section that consists of an implosion-type fission bomb (a "trigger"), and
1332-451: A flux of neutrons. Hundreds of neutron generators are produced annually for use in the petroleum industry where they are used in measurement equipment for locating and mapping oil reserves. A number of attempts to recirculate the ions that "miss" collisions have been made over the years. One of the better-known attempts in the 1970s was Migma , which used a unique particle storage ring to capture ions into circular orbits and return them to
1480-453: A high-yield explosion. A W88 warhead manages to yield up to 475 kilotonnes of TNT (1,990 TJ) with a physics package 68.9 inches (1,750 mm) long, with a maximum diameter of 21.8 inches (550 mm), and by different estimates weighing in a range from 175 to 360 kilograms (386 to 794 lb). The smaller warhead allows more of them to fit onto a single missile and improves basic flight properties such as speed and range. The idea of
1628-494: A lab for nuclear fusion power production is completely impractical. Because nuclear reaction rates depend on density as well as temperature and most fusion schemes operate at relatively low densities, those methods are strongly dependent on higher temperatures. The fusion rate as a function of temperature (exp(− E / kT )), leads to the need to achieve temperatures in terrestrial reactors 10–100 times higher than in stellar interiors: T ≈ (0.1–1.0) × 10 K . In artificial fusion,
SECTION 10
#17327973847921776-488: A massive effort was mounted to re-invent the process. An impurity crucial to the properties of the old Fogbank was omitted during the new process. Only close analysis of new and old batches revealed the nature of that impurity. The manufacturing process used acetonitrile as a solvent , which led to at least three evacuations of the Fogbank plant in 2006. Widely used in the petroleum and pharmaceutical industries, acetonitrile
1924-416: A miniature Voitenko compressor , where a plane diaphragm was driven by the implosion wave into a secondary small spherical cavity that contained pure deuterium gas at one atmosphere. There are also electrostatic confinement fusion devices. These devices confine ions using electrostatic fields. The best known is the fusor . This device has a cathode inside an anode wire cage. Positive ions fly towards
2072-427: A more massive star undergoes a violent supernova at the end of its life, a process known as supernova nucleosynthesis . A substantial energy barrier of electrostatic forces must be overcome before fusion can occur. At large distances, two naked nuclei repel one another because of the repulsive electrostatic force between their positively charged protons. If two nuclei can be brought close enough together, however,
2220-416: A nucleus are identical to each other, the goal of distinguishing one from the other, such as which one is in the interior and which is on the surface, is in fact meaningless, and the inclusion of quantum mechanics is therefore necessary for proper calculations. The electrostatic force, on the other hand, is an inverse-square force , so a proton added to a nucleus will feel an electrostatic repulsion from all
2368-454: A nucleus have more neighboring nucleons than those on the surface. Since smaller nuclei have a larger surface-area-to-volume ratio, the binding energy per nucleon due to the nuclear force generally increases with the size of the nucleus but approaches a limiting value corresponding to that of a nucleus with a diameter of about four nucleons. It is important to keep in mind that nucleons are quantum objects . So, for example, since two neutrons in
2516-576: A possibility. It was first used in thermonuclear weapons with the W76 thermonuclear warhead and produced at a plant in the Y-12 Complex at Oak Ridge, Tennessee , for use in the W76. Production of Fogbank lapsed after the W76 production run ended. The W76 Life Extension Program required more Fogbank to be made. This was complicated by the fact that the original Fogbank's properties were not fully documented, so
2664-663: A range of about 500 kilometres (310 mi) at a speed of up to Mach 3 with the new Tête Nucléaire Aéroportée (TNA) 300 kt thermonuclear warhead . It entered service in October 2009 with the Mirage 2000NK3 of squadron EC 3/4 at Istres and in July 2010 with the Rafales of squadron EC 1/91 at Saint Dizier . 54 ASMP-A have been delivered to French Air and Space Force. The ASMPA-R (renovated) project, launched in 2016, will see
2812-471: A relatively small mass and a relatively large binding energy per nucleon . Fusion of nuclei lighter than these releases energy (an exothermic process), while the fusion of heavier nuclei results in energy retained by the product nucleons, and the resulting reaction is endothermic . The opposite is true for the reverse process, called nuclear fission . Nuclear fusion uses lighter elements, such as hydrogen and helium , which are in general more fusible; while
2960-422: A significant fraction of the fuel before it has dissipated. To achieve these extreme conditions, the initially cold fuel must be explosively compressed. Inertial confinement is used in the hydrogen bomb , where the driver is x-rays created by a fission bomb. Inertial confinement is also attempted in "controlled" nuclear fusion, where the driver is a laser , ion , or electron beam, or a Z-pinch . Another method
3108-525: A small amount of deuterium–tritium gas to enhance the fission yield. The first thermonuclear weapon detonation, where the vast majority of the yield comes from fusion, was the 1952 Ivy Mike test of a liquid deuterium-fusing device. While fusion bomb detonations were loosely considered for energy production , the possibility of controlled and sustained reactions remained the scientific focus for peaceful fusion power. Research into developing controlled fusion inside fusion reactors has been ongoing since
SECTION 20
#17327973847923256-530: A solar-core temperature of 14 million kelvin. The net result is the fusion of four protons into one alpha particle , with the release of two positrons and two neutrinos (which changes two of the protons into neutrons), and energy. In heavier stars, the CNO cycle and other processes are more important. As a star uses up a substantial fraction of its hydrogen, it begins to synthesize heavier elements. The heaviest elements are synthesized by fusion that occurs when
3404-424: A static fuel-infused target, known as beam–target fusion, or by accelerating two streams of ions towards each other, beam–beam fusion. The key problem with accelerator-based fusion (and with cold targets in general) is that fusion cross sections are many orders of magnitude lower than Coulomb interaction cross-sections. Therefore, the vast majority of ions expend their energy emitting bremsstrahlung radiation and
3552-485: A thermal barrier to keep the fusion fuel filler from becoming too hot, which would spoil the compression. If made of uranium , enriched uranium or plutonium, the tamper captures fast fusion neutrons and undergoes fission itself, increasing the overall explosive yield . Additionally, in most designs the radiation case is also constructed of a material that undergoes fission driven by fast thermonuclear neutrons. Such bombs are classified as two stage weapons. Fast fission of
3700-602: A thermonuclear fusion bomb ignited by a smaller fission bomb was first proposed by Enrico Fermi to his colleague Edward Teller when they were talking at Columbia University in September 1941, at the start of what would become the Manhattan Project . Teller spent much of the Manhattan Project attempting to figure out how to make the design work, preferring it over work on the atomic bomb, and over
3848-448: A toroidal reactor that theoretically will deliver ten times more fusion energy than the amount needed to heat plasma to the required temperatures are in development (see ITER ). The ITER facility is expected to finish its construction phase in 2025. It will start commissioning the reactor that same year and initiate plasma experiments in 2025, but is not expected to begin full deuterium–tritium fusion until 2035. Private companies pursuing
3996-406: A way that a helium nucleus, with its extremely tight binding, is one of the products. Using deuterium–tritium fuel, the resulting energy barrier is about 0.1 MeV. In comparison, the energy needed to remove an electron from hydrogen is 13.6 eV. The (intermediate) result of the fusion is an unstable He nucleus, which immediately ejects a neutron with 14.1 MeV. The recoil energy of
4144-760: Is a supersonic standoff missile powered by a liquid fuel ramjet . It flies at Mach 2 to Mach 3, with a range between 80 and 300 kilometres (50 and 190 mi) for the ASMP and 500 kilometres (310 mi) for the ASMP-A depending on flight profile. The ASMP uses the TN 81 warhead, which has a variable-yield of 100 to 300 kilotons of TNT (420 to 1,260 TJ). In 1991, 90 missiles and 80 warheads were reported to have been produced. By 2001, 60 of them were reported as operational. An upgraded version known as Air-Sol Moyenne Portée-Amélioré (ASMP-A) for (improved ASMP) has
4292-557: Is a second-generation nuclear weapon design . Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs , a more compact size, a lower mass, or a combination of these benefits. Characteristics of nuclear fusion reactions make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material such as uranium-235 ( U ) or plutonium-239 ( Pu ). The first full-scale thermonuclear test ( Ivy Mike )
4440-423: Is a technique using particle accelerators to achieve particle kinetic energies sufficient to induce light-ion fusion reactions. Accelerating light ions is relatively easy, and can be done in an efficient manner—requiring only a vacuum tube, a pair of electrodes, and a high-voltage transformer; fusion can be observed with as little as 10 kV between the electrodes. The system can be arranged to accelerate ions into
4588-664: Is expected to succeed the ASMP from 2035 onwards. ASMP entered service in May 1986, replacing the earlier free-fall AN-22 bomb on France's Dassault Mirage IV aircraft and the AN-52 bomb on Dassault Super Étendard . About 84 weapons are stockpiled. Carrier aircraft are the Dassault Mirage 2000N , Dassault Rafale and Super Étendard. The Mirage IVP carried the ASMP until retired in 1996. ASMP and ASMP-A are 5.38 metres (17.7 ft) long and weigh 860 kilograms (1,900 lb). It
Air-sol moyenne portée - Misplaced Pages Continue
4736-461: Is flammable and toxic. Y-12 is the sole producer of Fogbank. A simplified summary of the above explanation is: How exactly the energy is "transported" from the primary to the secondary has been the subject of some disagreement in the open press but is thought to be transmitted through the X-rays and gamma rays that are emitted from the fissioning primary . This energy is then used to compress
4884-433: Is how to confine the hot plasma. Due to the high temperature, the plasma cannot be in direct contact with any solid material, so it has to be located in a vacuum . Also, high temperatures imply high pressures. The plasma tends to expand immediately and some force is necessary to act against it. This force can take one of three forms: gravitation in stars, magnetic forces in magnetic confinement fusion reactors, or inertial as
5032-500: Is manifested as either the release or absorption of energy . This difference in mass arises due to the difference in nuclear binding energy between the atomic nuclei before and after the reaction. Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released . A nuclear fusion process that produces atomic nuclei lighter than iron-56 or nickel-62 will generally release energy. These elements have
5180-436: Is more stable, the iron isotope Fe is an order of magnitude more common. This is due to the fact that there is no easy way for stars to create Ni through the alpha process . An exception to this general trend is the helium-4 nucleus, whose binding energy is higher than that of lithium , the next heavier element. This is because protons and neutrons are fermions , which according to
5328-493: Is much larger than in chemical reactions , because the binding energy that holds a nucleus together is greater than the energy that holds electrons to a nucleus. For example, the ionization energy gained by adding an electron to a hydrogen nucleus is 13.6 eV —less than one-millionth of the 17.6 MeV released in the deuterium – tritium (D–T) reaction shown in the adjacent diagram. Fusion reactions have an energy density many times greater than nuclear fission ;
5476-487: Is omitted, by replacing the uranium tamper with one made of lead , for example, the overall explosive force is reduced by approximately half but the amount of fallout is relatively low. The neutron bomb is a hydrogen bomb with an intentionally thin tamper, allowing as many of the fast fusion neutrons as possible to escape. Current technical criticisms of the idea of "foam plasma pressure" focus on unclassified analysis from similar high energy physics fields that indicate that
5624-529: Is one order of magnitude greater than the higher proposed plasma pressures and nearly two orders of magnitude greater than calculated radiation pressure. No mechanism to avoid the absorption of energy into the radiation case wall and the secondary tamper has been suggested, making ablation apparently unavoidable. The other mechanisms appear to be unneeded. United States Department of Defense official declassification reports indicate that foamed plastic materials are or may be used in radiation case liners, and despite
5772-460: Is the stellar nucleosynthesis that powers stars , including the Sun. In the 20th century, it was recognized that the energy released from nuclear fusion reactions accounts for the longevity of stellar heat and light. The fusion of nuclei in a star, starting from its initial hydrogen and helium abundance, provides that energy and synthesizes new nuclei. Different reaction chains are involved, depending on
5920-515: Is the Soviet early Sloika design. In essence, the Teller–Ulam configuration relies on at least two instances of implosion occurring: first, the conventional (chemical) explosives in the primary would compress the fissile core, resulting in a fission explosion many times more powerful than that which chemical explosives could achieve alone (first stage). Second, the radiation from the fissioning of
6068-426: Is the fusion fuel, usually a form of lithium deuteride , which is used because it is easier to weaponize than liquefied tritium/deuterium gas. This dry fuel, when bombarded by neutrons, produces tritium, a heavy isotope of hydrogen that can undergo nuclear fusion, along with the deuterium present in the mixture. (See the article on nuclear fusion for a more detailed technical discussion of fusion reactions.) Inside
Air-sol moyenne portée - Misplaced Pages Continue
6216-446: Is the medium by which the outside pressure (force acting on the surface area of the secondary) is transferred to the mass of fusion fuel. The proposed tamper-pusher ablation mechanism posits that the outer layers of the thermonuclear secondary's tamper-pusher are heated so extremely by the primary's X-ray flux that they expand violently and ablate away (fly off). Because total momentum is conserved, this mass of high velocity ejecta impels
6364-416: Is the primary example). Such processes have resulted in a body of unclassified knowledge about nuclear bombs that is generally consistent with official unclassified information releases and related physics and is thought to be internally consistent, though there are some points of interpretation that are still considered open. The state of public knowledge about the Teller–Ulam design has been mostly shaped from
6512-552: Is thought to be a standard implosion method fission bomb, though likely with a core boosted by small amounts of fusion fuel (usually 1:1 deuterium : tritium gas) for extra efficiency; the fusion fuel releases excess neutrons when heated and compressed, inducing additional fission. When fired, the Pu or U core would be compressed to a smaller sphere by special layers of conventional high explosives arranged around it in an explosive lens pattern, initiating
6660-495: Is thought to have used multiple stages (including more than one tertiary fusion stage) in their 50 Mt (210 PJ) (100 Mt (420 PJ) in intended use) Tsar Bomba. The fissionable jacket could be replaced with lead, as was done with the Tsar Bomba. If any hydrogen bombs have been made from configurations other than those based on the Teller–Ulam design, the fact of it is not publicly known. A possible exception to this
6808-408: Is to merge two FRC's rotating in opposite directions, which is being actively studied by Helion Energy . Because these approaches all have ion energies well beyond the Coulomb barrier , they often suggest the use of alternative fuel cycles like p- B that are too difficult to attempt using conventional approaches. Muon-catalyzed fusion is a fusion process that occurs at ordinary temperatures. It
6956-407: Is to use conventional high explosive material to compress a fuel to fusion conditions. The UTIAS explosive-driven-implosion facility was used to produce stable, centred and focused hemispherical implosions to generate neutrons from D-D reactions. The simplest and most direct method proved to be in a predetonated stoichiometric mixture of deuterium - oxygen . The other successful method was using
7104-952: Is useful to perform an average over the distributions of the product of cross-section and velocity. This average is called the 'reactivity', denoted ⟨ σv ⟩ . The reaction rate (fusions per volume per time) is ⟨ σv ⟩ times the product of the reactant number densities: If a species of nuclei is reacting with a nucleus like itself, such as the DD reaction, then the product n 1 n 2 {\displaystyle n_{1}n_{2}} must be replaced by n 2 / 2 {\displaystyle n^{2}/2} . ⟨ σ v ⟩ {\displaystyle \langle \sigma v\rangle } increases from virtually zero at room temperatures up to meaningful magnitudes at temperatures of 10 – 100 keV. At these temperatures, well above typical ionization energies (13.6 eV in
7252-409: Is widely assumed to be beryllium , which fits that description and would also moderate the neutron flux from the primary. Some material to absorb and re-radiate the X-rays in a particular manner may also be used. Candidates for the "special material" are polystyrene and a substance called " Fogbank ", an unclassified codename. Fogbank's composition is classified, though aerogel has been suggested as
7400-542: The Lawson criterion , the energy of accidental collisions within the plasma is high enough to overcome the Coulomb barrier and the particles may fuse together. In a deuterium–tritium fusion reaction , for example, the energy necessary to overcome the Coulomb barrier is 0.1 MeV . Converting between energy and temperature shows that the 0.1 MeV barrier would be overcome at a temperature in excess of 1.2 billion kelvin . There are two effects that are needed to lower
7548-535: The Pauli exclusion principle cannot exist in the same nucleus in exactly the same state. Each proton or neutron's energy state in a nucleus can accommodate both a spin up particle and a spin down particle. Helium-4 has an anomalously large binding energy because its nucleus consists of two protons and two neutrons (it is a doubly magic nucleus), so all four of its nucleons can be in the ground state. Any additional nucleons would have to go into higher energy states. Indeed,
SECTION 50
#17327973847927696-479: The Polywell , MIX POPS and Marble concepts. At the temperatures and densities in stellar cores, the rates of fusion reactions are notoriously slow. For example, at solar core temperature ( T ≈ 15 MK) and density (160 g/cm ), the energy release rate is only 276 μW/cm —about a quarter of the volumetric rate at which a resting human body generates heat. Thus, reproduction of stellar core conditions in
7844-570: The Trident II SLBM, had a prolate primary (code-named Komodo ) and a spherical secondary (code-named Cursa ) inside a specially shaped radiation case (known as the "peanut" for its shape). The value of an egg-shaped primary lies apparently in the fact that a MIRV warhead is limited by the diameter of the primary: if an egg-shaped primary can be made to work properly, then the MIRV warhead can be made considerably smaller yet still deliver
7992-607: The United States Department of Energy announced that on 5 December 2022, they had successfully accomplished break-even fusion, "delivering 2.05 megajoules (MJ) of energy to the target, resulting in 3.15 MJ of fusion energy output." Prior to this breakthrough, controlled fusion reactions had been unable to produce break-even (self-sustaining) controlled fusion. The two most advanced approaches for it are magnetic confinement (toroid designs) and inertial confinement (laser designs). Workable designs for
8140-612: The W-80 the gas expansion velocity is roughly 410 km/s (41 cm/μs) and the implosion velocity 570 km/s (57 cm/μs). The pressure due to the ablating material is calculated to be 5.3 billion bars (530 trillion pascals ) in the Ivy Mike device and 64 billion bars (6.4 quadrillion pascals) in the W-80 device. Comparing the three mechanisms proposed, it can be seen that: The calculated ablation pressure
8288-547: The W47 warhead deployed on Polaris ballistic missile submarines , megaton-class warheads were as small as 18 inches (0.46 m) in diameter and 720 pounds (330 kg) in weight. Further innovation in miniaturizing warheads was accomplished by the mid-1970s, when versions of the Teller–Ulam design were created that could fit ten or more warheads on the end of a small MIRVed missile. The first Soviet fusion design, developed by Andrei Sakharov and Vitaly Ginzburg in 1949 (before
8436-410: The binding energy becomes negative and very heavy nuclei (all with more than 208 nucleons, corresponding to a diameter of about 6 nucleons) are not stable. The four most tightly bound nuclei, in decreasing order of binding energy per nucleon, are Ni , Fe , Fe , and Ni . Even though the nickel isotope , Ni ,
8584-558: The neutron flux from the primary to prematurely begin heating the secondary, weakening the compression enough to prevent any fusion. There is very little detailed information in the open literature about the mechanism of the interstage. One of the best sources is a simplified diagram of a British thermonuclear weapon similar to the American W80 warhead. It was released by Greenpeace in a report titled "Dual Use Nuclear Technology" . The major components and their arrangement are in
8732-408: The nuclear chain reaction that powers the conventional "atomic bomb". The secondary is usually shown as a column of fusion fuel and other components wrapped in many layers. Around the column is first a "pusher- tamper ", a heavy layer of uranium-238 ( U ) or lead that helps compress the fusion fuel (and, in the case of uranium, may eventually undergo fission itself). Inside this
8880-460: The secondary . The crucial detail of how the X-rays create the pressure is the main remaining disputed point in the unclassified press. There are three proposed theories: The radiation pressure exerted by the large quantity of X-ray photons inside the closed casing might be enough to compress the secondary. Electromagnetic radiation such as X-rays or light carries momentum and exerts a force on any surface it strikes. The pressure of radiation at
9028-523: The 1930s, with Los Alamos National Laboratory 's Scylla I device producing the first laboratory thermonuclear fusion in 1958, but the technology is still in its developmental phase. The US National Ignition Facility , which uses laser-driven inertial confinement fusion , was designed with a goal of break-even fusion; the first large-scale laser target experiments were performed in June 2009 and ignition experiments began in early 2011. On 13 December 2022,
SECTION 60
#17327973847929176-644: The British fusion bomb, with Sir William Penney in charge of the project. British knowledge on how to make a thermonuclear fusion bomb was rudimentary, and at the time the United States was not exchanging any nuclear knowledge because of the Atomic Energy Act of 1946 . The United Kingdom had worked closely with the Americans on the Manhattan Project. British access to nuclear weapons information
9324-520: The Coulomb barrier completely. If they have nearly enough energy, they can tunnel through the remaining barrier. For these reasons fuel at lower temperatures will still undergo fusion events, at a lower rate. Thermonuclear fusion is one of the methods being researched in the attempts to produce fusion power . If thermonuclear fusion becomes favorable to use, it would significantly reduce the world's carbon footprint . Accelerator-based light-ion fusion
9472-526: The Soviet Union, United Kingdom, France, China and India. The thermonuclear Tsar Bomba was the most powerful bomb ever detonated. As thermonuclear weapons represent the most efficient design for weapon energy yield in weapons with yields above 50 kilotons of TNT (210 TJ), virtually all the nuclear weapons of this size deployed by the five nuclear-weapon states under the Non-Proliferation Treaty today are thermonuclear weapons using
9620-530: The Soviets had a working fission bomb), was dubbed the Sloika , after a Russian layer cake , and was not of the Teller–Ulam configuration. It used alternating layers of fissile material and lithium deuteride fusion fuel spiked with tritium (this was later dubbed Sakharov's "First Idea"). Though nuclear fusion might have been technically achievable, it did not have the scaling property of a "staged" weapon. Thus, such
9768-498: The Soviets searched for an alternative design. The "Second Idea", as Sakharov referred to it in his memoirs, was a previous proposal by Ginzburg in November 1948 to use lithium deuteride in the bomb, which would, in the course of being bombarded by neutrons, produce tritium and free deuterium. In late 1953 physicist Viktor Davidenko achieved the first breakthrough of staging the reactions. The next breakthrough of radiation implosion
9916-499: The Sun fuses 620 million metric tons of hydrogen and makes 616 million metric tons of helium each second. The fusion of lighter elements in stars releases energy and the mass that always accompanies it. For example, in the fusion of two hydrogen nuclei to form helium, 0.645% of the mass is carried away in the form of kinetic energy of an alpha particle or other forms of energy, such as electromagnetic radiation. It takes considerable energy to force nuclei to fuse, even those of
10064-673: The Teller–Ulam configuration was tested at full scale in the "Ivy Mike" shot at an island in the Enewetak Atoll , with a yield of 10.4 Mt (44 PJ ) (over 450 times more powerful than the bomb dropped on Nagasaki during World War II ). The device, dubbed the Sausage , used an extra-large fission bomb as a "trigger" and liquid deuterium—kept in its liquid state by 20 short tons (18 t ) of cryogenic equipment—as its fusion fuel, and weighed around 80 short tons (73 t ) altogether. The liquid deuterium fuel of Ivy Mike
10212-429: The Teller–Ulam design. Detailed knowledge of fission and fusion weapons is classified to some degree in virtually every industrialized country . In the United States, such knowledge can by default be classified as " Restricted Data ", even if it is created by persons who are not government employees or associated with weapons programs, in a legal doctrine known as " born secret " (though the constitutional standing of
10360-435: The U.S. and Soviets, achieving only approximately 300 kt (1,300 TJ). The second test Orange Herald was the modified fission bomb and produced 720 kt (3,000 TJ)—making it the largest fission explosion ever. At the time almost everyone (including the pilots of the plane that dropped it) thought that this was a fusion bomb. This bomb was put into service in 1958. A second prototype fusion bomb, Purple Granite ,
10508-493: The U.S. government has attempted to censor weapons information in the public press , with limited success. According to the New York Times , physicist Kenneth W. Ford defied government orders to remove classified information from his book Building the H Bomb: A Personal History . Ford claims he used only pre-existing information and even submitted a manuscript to the government, which wanted to remove entire sections of
10656-494: The X-ray energy impinging on its pusher/ tamper. This compresses the entire secondary stage and drives up the density of the plutonium spark plug. The density of the plutonium fuel rises to such an extent that the spark plug is driven into a supercritical state, and it begins a nuclear fission chain reaction . The fission products of this chain reaction heat the highly compressed (and thus super dense) thermonuclear fuel surrounding
10804-456: The actual temperature. One is the fact that temperature is the average kinetic energy, implying that some nuclei at this temperature would actually have much higher energy than 0.1 MeV, while others would be much lower. It is the nuclei in the high-energy tail of the velocity distribution that account for most of the fusion reactions. The other effect is quantum tunnelling . The nuclei do not actually have to have enough energy to overcome
10952-411: The amount of chemical explosives needed. The first Sloika design test, RDS-6s , was detonated in 1953 with a yield equivalent to 400 kt (1,700 TJ) ( 15%- 20% from fusion). Attempts to use a Sloika design to achieve megaton-range results proved unfeasible. After the United States tested the "Ivy Mike" thermonuclear device in November 1952, proving that a multimegaton bomb could be created,
11100-446: The book for concern that foreign states could use the information. Though large quantities of vague data have been officially released—and larger quantities of vague data have been unofficially leaked by former bomb designers—most public descriptions of nuclear weapon design details rely to some degree on speculation, reverse engineering from known information, or comparison with similar fields of physics ( inertial confinement fusion
11248-462: The cage, by generating the field using a non-neutral cloud. These include a plasma oscillating device, a Penning trap and the polywell . The technology is relatively immature, however, and many scientific and engineering questions remain. The most well known Inertial electrostatic confinement approach is the fusor . Starting in 1999, a number of amateurs have been able to do amateur fusion using these homemade devices. Other IEC devices include:
11396-481: The casing to a plasma, which then re-radiated radiation into the secondary's pusher, causing its surface to ablate and driving it inwards, compressing the secondary, igniting the sparkplug, and causing the fusion reaction. The general applicability of this principle is unclear. In 1999 a reporter for the San Jose Mercury News reported that the U.S. W88 nuclear warhead, a small MIRVed warhead used on
11544-440: The casing's circumference. The neutron guns are tilted so the neutron emitting end of each gun end is pointed towards the central axis of the bomb. Neutrons from each neutron gun pass through and are focused by the neutron focus lens towards the centre of primary in order to boost the initial fissioning of the plutonium. A " polystyrene Polarizer/Plasma Source" is also shown (see below). The first U.S. government document to mention
11692-472: The commercialization of nuclear fusion received $ 2.6 billion in private funding in 2021 alone, going to many notable startups including but not limited to Commonwealth Fusion Systems , Helion Energy Inc ., General Fusion , TAE Technologies Inc. and Zap Energy Inc. One of the most recent breakthroughs to date in maintaining a sustained fusion reaction occurred in France's WEST fusion reactor. It maintained
11840-412: The conditions needed for fusion, and the idea of staging or placing a separate thermonuclear component outside a fission primary component, and somehow using the primary to compress the secondary. Teller then realized that the gamma and X-ray radiation produced in the primary could transfer enough energy into the secondary to create a successful implosion and fusion burn, if the whole assembly was wrapped in
11988-449: The current advanced technical state. Thermonuclear fusion is the process of atomic nuclei combining or "fusing" using high temperatures to drive them close enough together for this to become possible. Such temperatures cause the matter to become a plasma and, if confined, fusion reactions may occur due to collisions with extreme thermal kinetic energies of the particles. There are two forms of thermonuclear fusion: uncontrolled , in which
12136-523: The danger of its accidentally becoming supercritical becomes too great. Surrounding the other components is a hohlraum or radiation case , a container that traps the first stage or primary's energy inside temporarily. The outside of this radiation case, which is also normally the outside casing of the bomb, is the only direct visual evidence publicly available of any thermonuclear bomb component's configuration. Numerous photographs of various thermonuclear bomb exteriors have been declassified. The primary
12284-416: The decision to go forward with the development of the new weapon. Teller and other U.S. physicists struggled to find a workable design. Stanislaw Ulam , a co-worker of Teller, made the first key conceptual leaps towards a workable fusion design. Ulam's two innovations that rendered the fusion bomb practical were that compression of the thermonuclear fuel before extreme heating was a practical path towards
12432-424: The diagram, though details are almost absent; what scattered details it does include likely have intentional omissions or inaccuracies. They are labeled "End-cap and Neutron Focus Lens" and "Reflector Wrap"; the former channels neutrons to the U / Pu Spark Plug while the latter refers to an X-ray reflector; typically a cylinder made of an X-ray opaque material such as uranium with
12580-403: The doctrine has been at times called into question; see United States v. Progressive, Inc. ). Born secret is rarely invoked for cases of private speculation. The official policy of the United States Department of Energy has been not to acknowledge the leaking of design information, as such acknowledgment would potentially validate the information as accurate. In a small number of prior cases,
12728-414: The effects of that absorbed energy led to the third mechanism: ablation . The outer casing of the secondary assembly is called the "tamper-pusher". The purpose of a tamper in an implosion bomb is to delay the expansion of the reacting fuel supply (which is very hot dense plasma) until the fuel is fully consumed and the explosion runs to completion. The same tamper material serves also as a pusher in that it
12876-404: The electrostatic repulsion can be overcome by the quantum effect in which nuclei can tunnel through coulomb forces. When a nucleon such as a proton or neutron is added to a nucleus, the nuclear force attracts it to all the other nucleons of the nucleus (if the atom is small enough), but primarily to its immediate neighbors due to the short range of the force. The nucleons in the interior of
13024-512: The energy of the explosions into a "pancake" area is far more efficient in terms of area-destruction per unit of bomb energy. This also applies to single bombs deliverable by cruise missile or other system, such as a bomber, resulting in most operational warheads in the U.S. program having yields of less than 500 kt (2,100 TJ). In his 1995 book Dark Sun: The Making of the Hydrogen Bomb , author Richard Rhodes describes in detail
13172-415: The extra energy from the net attraction of particles. For larger nuclei , however, no energy is released, because the nuclear force is short-range and cannot act across larger nuclei. Fusion powers stars and produces virtually all elements in a process called nucleosynthesis . The Sun is a main-sequence star, and, as such, generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core,
13320-519: The far more powerful Super. The debate covered matters that were alternatively strategic, pragmatic, and moral. In their Report of the General Advisory Committee, Robert Oppenheimer and colleagues concluded that "[t]he extreme danger to mankind inherent in the proposal [to develop thermonuclear weapons] wholly outweighs any military advantage." Despite the objections raised, on 31 January 1950, President Harry S. Truman made
13468-436: The fissioning of the final natural uranium tamper, something that could not normally be achieved without the neutron flux provided by the fusion reactions in secondary or tertiary stages. Such designs are suggested to be capable of being scaled up to an arbitrary large yield (with apparently as many fusion stages as desired), potentially to the level of a " doomsday device ." However, usually such weapons were not more than
13616-516: The fusion reaction may occur before the plasma starts to expand, so the plasma's inertia is keeping the material together. One force capable of confining the fuel well enough to satisfy the Lawson criterion is gravity . The mass needed, however, is so great that gravitational confinement is only found in stars —the least massive stars capable of sustained fusion are red dwarfs , while brown dwarfs are able to fuse deuterium and lithium if they are of sufficient mass. In stars heavy enough , after
13764-504: The gap between the Neutron Focus Lens (in the center) and the outer casing near the primary. It separates the primary from the secondary and performs the same function as the previous reflector. There are about six neutron guns (seen here from Sandia National Laboratories ) each protruding through the outer edge of the reflector with one end in each section; all are clamped to the carriage and arranged more or less evenly around
13912-402: The heavier elements, such as uranium , thorium and plutonium , are more fissionable. The extreme astrophysical event of a supernova can produce enough energy to fuse nuclei into elements heavier than iron. American chemist William Draper Harkins was the first to propose the concept of nuclear fusion in 1915. Then in 1921, Arthur Eddington suggested hydrogen–helium fusion could be
14060-453: The helium-4 nucleus is so tightly bound that it is commonly treated as a single quantum mechanical particle in nuclear physics, namely, the alpha particle . The situation is similar if two nuclei are brought together. As they approach each other, all the protons in one nucleus repel all the protons in the other. Not until the two nuclei actually come close enough for long enough so the strong attractive nuclear force can take over and overcome
14208-458: The hydrogen case), the fusion reactants exist in a plasma state. The significance of ⟨ σ v ⟩ {\displaystyle \langle \sigma v\rangle } as a function of temperature in a device with a particular energy confinement time is found by considering the Lawson criterion . This is an extremely challenging barrier to overcome on Earth, which explains why fusion research has taken many years to reach
14356-462: The intensities seen in everyday life, such as sunlight striking a surface, is usually imperceptible, but at the extreme intensities found in a thermonuclear bomb the pressure is enormous. For two thermonuclear bombs for which the general size and primary characteristics are well understood, the Ivy Mike test bomb and the modern W-80 cruise missile warhead variant of the W-61 design, the radiation pressure
14504-420: The internal components of the "Ivy Mike" Sausage device, based on information obtained from extensive interviews with the scientists and engineers who assembled it. According to Rhodes, the actual mechanism for the compression of the secondary was a combination of the radiation pressure, foam plasma pressure, and tamper-pusher ablation theories; the radiation from the primary heated the polyethylene foam lining of
14652-504: The interstage was only recently released to the public promoting the 2004 initiation of the Reliable Replacement Warhead (RRW) Program. A graphic includes blurbs describing the potential advantage of a RRW on a part-by-part level, with the interstage blurb saying a new design would replace "toxic, brittle material" and "expensive 'special' material... [that require] unique facilities". The "toxic, brittle material"
14800-403: The ionization of atoms of the target. Devices referred to as sealed-tube neutron generators are particularly relevant to this discussion. These small devices are miniature particle accelerators filled with deuterium and tritium gas in an arrangement that allows ions of those nuclei to be accelerated against hydride targets, also containing deuterium and tritium, where fusion takes place, releasing
14948-581: The last year of the project he was assigned exclusively to the task. However once World War II ended, there was little impetus to devote many resources to the Super , as it was then known. The first atomic bomb test by the Soviet Union in August 1949 came earlier than expected by Americans, and over the next several months there was an intense debate within the U.S. government, military, and scientific communities regarding whether to proceed with development of
15096-415: The layer of fuel is the " spark plug ", a hollow column of fissile material ( Pu or U ) often boosted by deuterium gas. The spark plug, when compressed, can undergo nuclear fission (because of the shape, it is not a critical mass without compression). The tertiary, if one is present, would be set below the secondary and probably be made of the same materials. Separating
15244-471: The lightest element, hydrogen . When accelerated to high enough speeds, nuclei can overcome this electrostatic repulsion and be brought close enough such that the attractive nuclear force is greater than the repulsive Coulomb force. The strong force grows rapidly once the nuclei are close enough, and the fusing nucleons can essentially "fall" into each other and the result is fusion; this is an exothermic process . Energy released in most nuclear reactions
15392-432: The low direct plasma pressure they may be of use in delaying the ablation until energy has distributed evenly and a sufficient fraction has reached the secondary's tamper/pusher. Richard Rhodes ' book Dark Sun stated that a 1-inch-thick (25 mm) layer of plastic foam was fixed to the lead liner of the inside of the Ivy Mike steel casing using copper nails. Rhodes quotes several designers of that bomb explaining that
15540-520: The mass of the star (and therefore the pressure and temperature in its core). Around 1920, Arthur Eddington anticipated the discovery and mechanism of nuclear fusion processes in stars, in his paper The Internal Constitution of the Stars . At that time, the source of stellar energy was unknown; Eddington correctly speculated that the source was fusion of hydrogen into helium, liberating enormous energy according to Einstein's equation E = mc . This
15688-645: The missile's range extended and a new 300kt thermonuclear warhead added. First flight test occurred in December 2021 and the second in March 2022. After entering operational service, it was first fired by the French Air and Space Force as part of the French nuclear exercise "Operation Durandal" in May 2024. Studies for the successor to the ASMP missile, currently known as ASN4G (Air-Sol Nucléaire de 4ème Génération),
15836-417: The negative inner cage, and are heated by the electric field in the process. If they miss the inner cage they can collide and fuse. Ions typically hit the cathode, however, creating prohibitory high conduction losses. Also, fusion rates in fusors are very low due to competing physical effects, such as energy loss in the form of light radiation. Designs have been proposed to avoid the problems associated with
15984-419: The nucleus to repel each other. Lighter nuclei (nuclei smaller than iron and nickel) are sufficiently small and proton-poor to allow the nuclear force to overcome the Coulomb force. This is because the nucleus is sufficiently small that all nucleons feel the short-range attractive force at least as strongly as they feel the infinite-range Coulomb repulsion. Building up nuclei from lighter nuclei by fusion releases
16132-406: The other protons in the nucleus. The electrostatic energy per nucleon due to the electrostatic force thus increases without limit as nuclei atomic number grows. The net result of the opposing electrostatic and strong nuclear forces is that the binding energy per nucleon generally increases with increasing size, up to the elements iron and nickel , and then decreases for heavier nuclei. Eventually,
16280-410: The outer parts of the stars over long periods of time, by absorbing energy from fusion in the inside of the star, by absorbing neutrons that are emitted from the fusion process. All of the elements heavier than iron have some potential energy to release, in theory. At the extremely heavy end of element production, these heavier elements can produce energy in the process of being split again back toward
16428-424: The outer radiation case, with the components coming to a thermal equilibrium , and the effects of that thermal energy are then analyzed. The energy is mostly deposited within about one X-ray optical thickness of the tamper/pusher outer surface, and the temperature of that layer can then be calculated. The velocity at which the surface then expands outwards is calculated and, from a basic Newtonian momentum balance,
16576-438: The plastic foam layer inside the outer case is to delay ablation and thus recoil of the outer case: if the foam were not there, metal would ablate from the inside of the outer case with a large impulse, causing the casing to recoil outwards rapidly. The purpose of the casing is to contain the explosion for as long as possible, allowing as much X-ray ablation of the metallic surface of the secondary stage as possible, so it compresses
16724-413: The pressure produced by such a plasma would only be a small multiplier of the basic photon pressure within the radiation case, and also that the known foam materials intrinsically have a very low absorption efficiency of the gamma ray and X-ray radiation from the primary. Most of the energy produced would be absorbed by either the walls of the radiation case or the tamper around the secondary. Analyzing
16872-519: The primary and secondary assemblies placed within an enclosure called a radiation case, which confines the X-ray energy and resists its outward pressure. The distance separating the two assemblies ensures that debris fragments from the fission primary (which move much more slowly than X-ray photons ) cannot disassemble the secondary before the fusion explosion runs to completion. The secondary fusion stage—consisting of outer pusher/ tamper , fusion fuel filler and central plutonium spark plug—is imploded by
17020-442: The primary and secondary at either end. It does not reflect like a mirror; instead, it gets heated to a high temperature by the X-ray flux from the primary, then it emits more evenly spread X-rays that travel to the secondary, causing what is known as radiation implosion . In Ivy Mike , gold was used as a coating over the uranium to enhance the blackbody effect. Next comes the "Reflector/Neutron Gun Carriage". The reflector seals
17168-424: The primary fuel is not constrained to be protons and higher temperatures can be used, so reactions with larger cross-sections are chosen. Another concern is the production of neutrons, which activate the reactor structure radiologically, but also have the advantages of allowing volumetric extraction of the fusion energy and tritium breeding. Reactions that release no neutrons are referred to as aneutronic . To be
17316-435: The primary source of stellar energy. Quantum tunneling was discovered by Friedrich Hund in 1927, and shortly afterwards Robert Atkinson and Fritz Houtermans used the measured masses of light elements to demonstrate that large amounts of energy could be released by fusing small nuclei. Building on the early experiments in artificial nuclear transmutation by Patrick Blackett , laboratory fusion of hydrogen isotopes
17464-425: The primary would be used to compress and ignite the secondary fusion stage, resulting in a fusion explosion many times more powerful than the fission explosion alone. This chain of compression could conceivably be continued with an arbitrary number of tertiary fusion stages, each igniting more fusion fuel in the next stage although this is debated. Finally, efficient bombs (but not so-called neutron bombs ) end with
17612-448: The pure element or in modern weapons lithium deuteride . For this reason, thermonuclear weapons are often colloquially called hydrogen bombs or H-bombs . A fusion explosion begins with the detonation of the fission primary stage. Its temperature soars past 100 million kelvin , causing it to glow intensely with thermal ("soft") X-rays . These X-rays flood the void (the "radiation channel" often filled with polystyrene foam ) between
17760-431: The reaction area. Theoretical calculations made during funding reviews pointed out that the system would have significant difficulty scaling up to contain enough fusion fuel to be relevant as a power source. In the 1990s, a new arrangement using a field-reversed configuration (FRC) as the storage system was proposed by Norman Rostoker and continues to be studied by TAE Technologies as of 2021 . A closely related approach
17908-553: The reactions produce far greater energy per unit of mass even though individual fission reactions are generally much more energetic than individual fusion ones, which are themselves millions of times more energetic than chemical reactions. Only direct conversion of mass into energy , such as that caused by the annihilatory collision of matter and antimatter , is more energetic per unit of mass than nuclear fusion. (The complete conversion of one gram of matter would release 9 × 10 joules of energy.) An important fusion process
18056-411: The remaining He nucleus is 3.5 MeV, so the total energy liberated is 17.6 MeV. This is many times more than what was needed to overcome the energy barrier. The reaction cross section (σ) is a measure of the probability of a fusion reaction as a function of the relative velocity of the two reactant nuclei. If the reactants have a distribution of velocities, e.g. a thermal distribution, then it
18204-417: The repulsive electrostatic force. This can also be described as the nuclei overcoming the so-called Coulomb barrier . The kinetic energy to achieve this can be lower than the barrier itself because of quantum tunneling. The Coulomb barrier is smallest for isotopes of hydrogen, as their nuclei contain only a single positive charge. A diproton is not stable, so neutrons must also be involved, ideally in such
18352-418: The rest of the tamper-pusher to recoil inwards with tremendous force, crushing the fusion fuel and the spark plug. The tamper-pusher is built robustly enough to insulate the fusion fuel from the extreme heat outside; otherwise, the compression would be spoiled. Rough calculations for the basic ablation effect are relatively simple: the energy from the primary is distributed evenly onto all of the surfaces within
18500-465: The resulting energy is released in an uncontrolled manner, as it is in thermonuclear weapons ("hydrogen bombs") and in most stars ; and controlled , where the fusion reactions take place in an environment allowing some or all of the energy released to be harnessed for constructive purposes. Temperature is a measure of the average kinetic energy of particles, so by heating the material it will gain energy. After reaching sufficient temperature, given by
18648-450: The secondary efficiently, maximizing the fusion yield. Plastic foam has a low density, so causes a smaller impulse when it ablates than metal does. Possible variations to the weapon design have been proposed: Most bombs do not apparently have tertiary "stages"—that is, third compression stage(s), which are additional fusion stages compressed by a previous fusion stage. The fissioning of the last blanket of uranium, which provides about half
18796-422: The secondary from the primary is the interstage . The fissioning primary produces four types of energy: 1) expanding hot gases from high explosive charges that implode the primary; 2) superheated plasma that was originally the bomb's fissile material and its tamper; 3) the electromagnetic radiation ; and 4) the neutrons from the primary's nuclear detonation. The interstage is responsible for accurately modulating
18944-594: The secondary stages by radiation implosion. Because of these difficulties, in 1955 Prime Minister Anthony Eden agreed to a secret plan, whereby if the Aldermaston scientists failed or were greatly delayed in developing the fusion bomb, it would be replaced by an extremely large fission bomb. In 1957 the Operation Grapple tests were carried out. The first test, Green Granite, was a prototype fusion bomb that failed to produce equivalent yields compared to
19092-421: The size of iron, in the process of nuclear fission . Nuclear fission thus releases energy that has been stored, sometimes billions of years before, during stellar nucleosynthesis . Electrically charged particles (such as fuel ions) will follow magnetic field lines (see Guiding centre ). The fusion fuel can therefore be trapped using a strong magnetic field. A variety of magnetic configurations exist, including
19240-418: The spark plug to around 300 million kelvin, igniting fusion reactions between fusion fuel nuclei. In modern weapons fueled by lithium deuteride, the fissioning plutonium spark plug also emits free neutrons that collide with lithium nuclei and supply the tritium component of the thermonuclear fuel. The secondary's relatively massive tamper (which resists outward expansion as the explosion proceeds) also serves as
19388-608: The supply of hydrogen is exhausted in their cores, their cores (or a shell around the core) start fusing helium to carbon . In the most massive stars (at least 8–11 solar masses ), the process is continued until some of their energy is produced by fusing lighter elements to iron . As iron has one of the highest binding energies , reactions producing heavier elements are generally endothermic . Therefore, significant amounts of heavier elements are not formed during stable periods of massive star evolution, but are formed in supernova explosions . Some lighter stars also form these elements in
19536-407: The tamper and radiation case is the main contribution to the total yield and is the dominant process that produces radioactive fission product fallout . Before Ivy Mike, Operation Greenhouse in 1951 was the first American nuclear test series to test principles that led to the development of thermonuclear weapons. Sufficient fission was achieved to boost the associated fusion device, and enough
19684-410: The toroidal geometries of tokamaks and stellarators and open-ended mirror confinement systems. A third confinement principle is to apply a rapid pulse of energy to a large part of the surface of a pellet of fusion fuel, causing it to simultaneously "implode" and heat to very high pressure and temperature. If the fuel is dense enough and hot enough, the fusion reaction rate will be high enough to burn
19832-404: The transfer of energy from the primary to the secondary. It must direct the hot gases, plasma, electromagnetic radiation and neutrons toward the right place at the right time. Less than optimal interstage designs have resulted in the secondary failing to work entirely on multiple shots, known as a " fissile fizzle ". The Castle Koon shot of Operation Castle is a good example; a small flaw allowed
19980-412: The velocity at which the rest of the tamper implodes inwards. Applying the more detailed form of those calculations to the Ivy Mike device yields vaporized pusher gas expansion velocity of 290 kilometres per second (29 cm/μs) and an implosion velocity of perhaps 400 km/s (40 cm/μs) if + 3 ⁄ 4 of the total tamper/pusher mass is ablated off, the most energy efficient proportion. For
20128-404: The weapon (with the foam) would be as follows: This would complete the fission-fusion-fission sequence. Fusion, unlike fission, is relatively "clean"—it releases energy but no harmful radioactive products or large amounts of nuclear fallout . The fission reactions though, especially the last fission reactions, release a tremendous amount of fission products and fallout. If the last fission stage
20276-500: The yield in large bombs, does not count as a "stage" in this terminology. The U.S. tested three-stage bombs in several explosions during Operation Redwing but is thought to have fielded only one such tertiary model, i.e., a bomb in which a fission stage, followed by a fusion stage, finally compresses yet another fusion stage. This U.S. design was the heavy but highly efficient (i.e., nuclear weapon yield per unit bomb weight) 25 Mt (100 PJ) B41 nuclear bomb . The Soviet Union
20424-469: Was a particularly remarkable development since at that time fusion and thermonuclear energy had not yet been discovered, nor even that stars are largely composed of hydrogen (see metallicity ). Eddington's paper reasoned that: All of these speculations were proven correct in the following decades. The primary source of solar energy, and that of similar size stars, is the fusion of hydrogen to form helium (the proton–proton chain reaction), which occurs at
20572-424: Was accomplished by Mark Oliphant in 1932. In the remainder of that decade, the theory of the main cycle of nuclear fusion in stars was worked out by Hans Bethe . Research into fusion for military purposes began in the early 1940s as part of the Manhattan Project . The first artificial thermonuclear fusion reaction occurred during the 1951 Greenhouse Item test of the first boosted fission weapon , which uses
20720-486: Was calculated to be 73 × 10 ^ bar (7.3 TPa ) for the Ivy Mike design and 1,400 × 10 ^ bar (140 TPa ) for the W-80. Foam plasma pressure is the concept that Chuck Hansen introduced during the Progressive case, based on research that located declassified documents listing special foams as liner components within the radiation case of thermonuclear weapons. The sequence of firing
20868-451: Was carried out by the United States in 1952, and the concept has since been employed by most of the world's nuclear powers in the design of their weapons. Modern fusion weapons essentially consist of two main components: a nuclear fission primary stage (fueled by U or Pu ) and a separate nuclear fusion secondary stage containing thermonuclear fuel: heavy isotopes of hydrogen ( deuterium and tritium ) as
21016-415: Was cut off by the United States at one point due to concerns about Soviet espionage. Full cooperation was not reestablished until an agreement governing the handling of secret information and other issues was signed. However, the British were allowed to observe the U.S. Castle tests and used sampling aircraft in the mushroom clouds , providing them with clear, direct evidence of the compression produced in
21164-549: Was discovered and developed by Sakharov and Yakov Zel'dovich in early 1954. Sakharov's "Third Idea", as the Teller–Ulam design was known in the USSR, was tested in the shot " RDS-37 " in November 1955 with a yield of 1.6 Mt (6.7 PJ). The Soviets demonstrated the power of the staging concept in October 1961, when they detonated the massive and unwieldy Tsar Bomba. It was the largest nuclear weapon developed and tested by any country. In 1954 work began at Aldermaston to develop
21312-509: Was impractical for a deployable weapon, and the next advance was to use a solid lithium deuteride fusion fuel instead. In 1954 this was tested in the " Castle Bravo " shot (the device was code-named Shrimp ), which had a yield of 15 Mt (63 PJ ) (2.5 times expected) and is the largest U.S. bomb ever tested. Efforts shifted towards developing miniaturized Teller–Ulam weapons that could fit into intercontinental ballistic missiles and submarine-launched ballistic missiles . By 1960, with
21460-463: Was learned to achieve a full-scale device within a year. The design of all modern thermonuclear weapons in the United States is known as the Teller–Ulam configuration for its two chief contributors, Edward Teller and Stanisław Ulam , who developed it in 1951 for the United States, with certain concepts developed with the contribution of physicist John von Neumann . Similar devices were developed by
21608-430: Was studied in detail by Steven Jones in the early 1980s. Net energy production from this reaction has been unsuccessful because of the high energy required to create muons , their short 2.2 μs half-life , and the high chance that a muon will bind to the new alpha particle and thus stop catalyzing fusion. Some other confinement principles have been investigated. The key problem in achieving thermonuclear fusion
21756-551: Was undertaken by Aérospatiale 's missile systems division, whose assets are now part of MBDA . The ASMP entered service in May 1986. The development of an upgraded version, the ASMP-A, was launched in 1997 and service entry occurred in 2009. In 2016, yet another modernization program, the ASMPA-R, was launched. The first firing test of the ASMPA-R took place in December 2021 and the second in March 2022. The ASN4G air-launched hypersonic cruise missile, under development as of 2014,
21904-404: Was used in the third test, but only produced approximately 150 kt (630 TJ). Nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei , usually deuterium and tritium (hydrogen isotopes ), combine to form one or more different atomic nuclei and subatomic particles ( neutrons or protons ). The difference in mass between the reactants and products
#791208