The Biscayne Aquifer , named after Biscayne Bay , is a surficial aquifer . It is a shallow layer of highly permeable limestone under a portion of South Florida . The area it underlies includes Broward County , Miami-Dade County , Monroe County , and Palm Beach County , a total of about 4,000 square miles (10,000 km).
95-462: The water-absorbing layers of rock underlying south Florida divide into three layers. The Biscayne Aquifer is closest to the surface and because of this it directly interacts with natural and man-made bodies of surface water, such as streams, lakes, canals and reservoirs. The ground water and the aquifer currently are managed as an integrated water system. Because the top part of the Biscayne aquifer
190-455: A Mohs hardness of 2 to 4, dense limestone can have a crushing strength of up to 180 MPa . For comparison, concrete typically has a crushing strength of about 40 MPa. Although limestones show little variability in mineral composition, they show great diversity in texture. However, most limestone consists of sand-sized grains in a carbonate mud matrix. Because limestones are often of biological origin and are usually composed of sediment that
285-463: A bloom of cyanobacteria or microalgae . However, stable isotope ratios in modern carbonate mud appear to be inconsistent with either of these mechanisms, and abrasion of carbonate grains in high-energy environments has been put forward as a third possibility. Formation of limestone has likely been dominated by biological processes throughout the Phanerozoic , the last 540 million years of
380-434: A carbonate rock outcrop can be estimated in the field by etching the surface with dilute hydrochloric acid. This etches away the calcite and aragonite, leaving behind any silica or dolomite grains. The latter can be identified by their rhombohedral shape. Crystals of calcite, quartz , dolomite or barite may line small cavities ( vugs ) in the rock. Vugs are a form of secondary porosity, formed in existing limestone by
475-616: A central quartz grain or carbonate mineral fragment. These likely form by direct precipitation of calcium carbonate onto the ooid. Pisoliths are similar to ooids, but they are larger than 2 mm in diameter and tend to be more irregular in shape. Limestone composed mostly of ooids is called an oolite or sometimes an oolitic limestone . Ooids form in high-energy environments, such as the Bahama platform, and oolites typically show crossbedding and other features associated with deposition in strong currents. Oncoliths resemble ooids but show
570-449: A change in environment that increases the solubility of calcite. Dense, massive limestone is sometimes described as "marble". For example, the famous Portoro "marble" of Italy is actually a dense black limestone. True marble is produced by recrystallization of limestone during regional metamorphism that accompanies the mountain building process ( orogeny ). It is distinguished from dense limestone by its coarse crystalline texture and
665-949: A composition reflecting the organisms that produced them and the environment in which they were produced. Low-magnesium calcite skeletal grains are typical of articulate brachiopods , planktonic (free-floating) foraminifera, and coccoliths . High-magnesium calcite skeletal grains are typical of benthic (bottom-dwelling) foraminifera, echinoderms , and coralline algae . Aragonite skeletal grains are typical of molluscs , calcareous green algae , stromatoporoids , corals , and tube worms . The skeletal grains also reflect specific geological periods and environments. For example, coral grains are more common in high-energy environments (characterized by strong currents and turbulence) while bryozoan grains are more common in low-energy environments (characterized by quiet water). Ooids (sometimes called ooliths) are sand-sized grains (less than 2mm in diameter) consisting of one or more layers of calcite or aragonite around
760-630: A confining layer, often made up of clay. The confining layer might offer some protection from surface contamination. If the distinction between confined and unconfined is not clear geologically (i.e., if it is not known if a clear confining layer exists, or if the geology is more complex, e.g., a fractured bedrock aquifer), the value of storativity returned from an aquifer test can be used to determine it (although aquifer tests in unconfined aquifers should be interpreted differently than confined ones). Confined aquifers have very low storativity values (much less than 0.01, and as little as 10 ), which means that
855-412: A considerable fraction of the limestone bed. At depths greater than 1 km (0.62 miles), burial cementation completes the lithification process. Burial cementation does not produce stylolites. When overlying beds are eroded, bringing limestone closer to the surface, the final stage of diagenesis takes place. This produces secondary porosity as some of the cement is dissolved by rainwater infiltrating
950-483: A drop of dilute hydrochloric acid is dropped on it. Dolomite is also soft but reacts only feebly with dilute hydrochloric acid, and it usually weathers to a characteristic dull yellow-brown color due to the presence of ferrous iron. This is released and oxidized as the dolomite weathers. Impurities (such as clay , sand, organic remains, iron oxide , and other materials) will cause limestones to exhibit different colors, especially with weathered surfaces. The makeup of
1045-637: A few million years, as this is the most stable form of calcium carbonate. Ancient carbonate formations of the Precambrian and Paleozoic contain abundant dolomite, but limestone dominates the carbonate beds of the Mesozoic and Cenozoic . Modern dolomite is quite rare. There is evidence that, while the modern ocean favors precipitation of aragonite, the oceans of the Paleozoic and middle to late Cenozoic favored precipitation of calcite. This may indicate
SECTION 10
#17327693365241140-455: A few thousand years. As rainwater mixes with groundwater, aragonite and high-magnesium calcite are converted to low-calcium calcite. Cementing of thick carbonate deposits by rainwater may commence even before the retreat of the sea, as rainwater can infiltrate over 100 km (60 miles) into sediments beneath the continental shelf. As carbonate sediments are increasingly deeply buried under younger sediments, chemical and mechanical compaction of
1235-490: A high percentage of the mineral dolomite , CaMg(CO 3 ) 2 . Magnesian limestone is an obsolete and poorly-defined term used variously for dolomite, for limestone containing significant dolomite ( dolomitic limestone ), or for any other limestone containing a significant percentage of magnesium . Most limestone was formed in shallow marine environments, such as continental shelves or platforms , though smaller amounts were formed in many other environments. Much dolomite
1330-435: A limestone sample except in thin section and are less common in ancient limestones, possibly because compaction of carbonate sediments disrupts them. Limeclasts are fragments of existing limestone or partially lithified carbonate sediments. Intraclasts are limeclasts that originate close to where they are deposited in limestone, while extraclasts come from outside the depositional area. Intraclasts include grapestone , which
1425-471: A lower Mg/Ca ratio in the ocean water of those times. This magnesium depletion may be a consequence of more rapid sea floor spreading , which removes magnesium from ocean water. The modern ocean and the ocean of the Mesozoic have been described as "aragonite seas". Most limestone was formed in shallow marine environments, such as continental shelves or platforms . Such environments form only about 5% of
1520-525: A lower diversity of organisms and a greater fraction of silica and clay minerals characteristic of marls . The Green River Formation is an example of a prominent freshwater sedimentary formation containing numerous limestone beds. Freshwater limestone is typically micritic. Fossils of charophyte (stonewort), a form of freshwater green algae, are characteristic of these environments, where the charophytes produce and trap carbonates. Limestones may also form in evaporite depositional environments . Calcite
1615-523: A mechanism for dolomitization, with one 2004 review paper describing it bluntly as "a myth". Ordinary seawater is capable of converting calcite to dolomite, if the seawater is regularly flushed through the rock, as by the ebb and flow of tides (tidal pumping). Once dolomitization begins, it proceeds rapidly, so that there is very little carbonate rock containing mixed calcite and dolomite. Carbonate rock tends to be either almost all calcite/aragonite or almost all dolomite. About 20% to 25% of sedimentary rock
1710-403: A million cubic kilometers of "low salinity" water that could be economically processed into potable water . The reserves formed when ocean levels were lower and rainwater made its way into the ground in land areas that were not submerged until the ice age ended 20,000 years ago. The volume is estimated to be 100 times the amount of water extracted from other aquifers since 1900. An aquitard
1805-448: A plausible source of mud. Another possibility is direct precipitation from the water. A phenomenon known as whitings occurs in shallow waters, in which white streaks containing dispersed micrite appear on the surface of the water. It is uncertain whether this is freshly precipitated aragonite or simply material stirred up from the bottom, but there is some evidence that whitings are caused by biological precipitation of aragonite as part of
1900-449: A radial rather than layered internal structure, indicating that they were formed by algae in a normal marine environment. Peloids are structureless grains of microcrystalline carbonate likely produced by a variety of processes. Many are thought to be fecal pellets produced by marine organisms. Others may be produced by endolithic (boring) algae or other microorganisms or through breakdown of mollusc shells. They are difficult to see in
1995-442: A rock unit of low porosity is highly fractured, it can also make a good aquifer (via fissure flow), provided the rock has a hydraulic conductivity sufficient to facilitate movement of water. Challenges for using groundwater include: overdrafting (extracting groundwater beyond the equilibrium yield of the aquifer), groundwater-related subsidence of land, groundwater becoming saline, groundwater pollution . Aquifer depletion
SECTION 20
#17327693365242090-440: A two-dimensional slice of the aquifer) appear to be layers of alternating coarse and fine materials. Coarse materials, because of the high energy needed to move them, tend to be found nearer the source (mountain fronts or rivers), whereas the fine-grained material will make it farther from the source (to the flatter parts of the basin or overbank areas—sometimes called the pressure area). Since there are less fine-grained deposits near
2185-416: A well in a fracture trace or intersection of fracture traces increases the likelihood to encounter good water production. Voids in karst aquifers can be large enough to cause destructive collapse or subsidence of the ground surface that can initiate a catastrophic release of contaminants. Groundwater flow rate in karst aquifers is much more rapid than in porous aquifers as shown in the accompanying image to
2280-587: Is a problem in some areas, especially in northern Africa , where one example is the Great Manmade River project of Libya . However, new methods of groundwater management such as artificial recharge and injection of surface waters during seasonal wet periods has extended the life of many freshwater aquifers, especially in the United States. The Great Artesian Basin situated in Australia
2375-427: Is a solid, impermeable area underlying or overlying an aquifer, the pressure of which could lead to the formation of a confined aquifer. The classification of aquifers is as follows: Saturated versus unsaturated; aquifers versus aquitards; confined versus unconfined; isotropic versus anisotropic; porous, karst, or fractured; transboundary aquifer. Groundwater from aquifers can be sustainably harvested by humans through
2470-554: Is a zone within the Earth that restricts the flow of groundwater from one aquifer to another. An aquitard can sometimes, if completely impermeable, be called an aquiclude or aquifuge . Aquitards are composed of layers of either clay or non-porous rock with low hydraulic conductivity . Groundwater can be found at nearly every point in the Earth's shallow subsurface to some degree, although aquifers do not necessarily contain fresh water . The Earth's crust can be divided into two regions:
2565-560: Is also favored on the seaward margin of shelves and platforms, where there is upwelling deep ocean water rich in nutrients that increase organic productivity. Reefs are common here, but when lacking, ooid shoals are found instead. Finer sediments are deposited close to shore. The lack of deep sea limestones is due in part to rapid subduction of oceanic crust, but is more a result of dissolution of calcium carbonate at depth. The solubility of calcium carbonate increases with pressure and even more with higher concentrations of carbon dioxide, which
2660-482: Is an uncommon mineral in limestone, and siderite or other carbonate minerals are rare. However, the calcite in limestone often contains a few percent of magnesium . Calcite in limestone is divided into low-magnesium and high-magnesium calcite, with the dividing line placed at a composition of 4% magnesium. High-magnesium calcite retains the calcite mineral structure, which is distinct from dolomite. Aragonite does not usually contain significant magnesium. Most limestone
2755-432: Is an underground layer of water -bearing material, consisting of permeable or fractured rock, or of unconsolidated materials ( gravel , sand , or silt ). Aquifers vary greatly in their characteristics. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology . Related terms include aquitard , which is a bed of low permeability along an aquifer, and aquiclude (or aquifuge ), which
2850-1019: Is arguably the largest groundwater aquifer in the world (over 1.7 million km or 0.66 million sq mi). It plays a large part in water supplies for Queensland, and some remote parts of South Australia. Discontinuous sand bodies at the base of the McMurray Formation in the Athabasca Oil Sands region of northeastern Alberta , Canada, are commonly referred to as the Basal Water Sand (BWS) aquifers . Saturated with water, they are confined beneath impermeable bitumen -saturated sands that are exploited to recover bitumen for synthetic crude oil production. Where they are deep-lying and recharge occurs from underlying Devonian formations they are saline, and where they are shallow and recharged by surface water they are non-saline. The BWS typically pose problems for
2945-402: Is carbonate rock, and most of this is limestone. Limestone is found in sedimentary sequences as old as 2.7 billion years. However, the compositions of carbonate rocks show an uneven distribution in time in the geologic record. About 95% of modern carbonates are composed of high-magnesium calcite and aragonite. The aragonite needles in carbonate mud are converted to low-magnesium calcite within
Biscayne Aquifer - Misplaced Pages Continue
3040-474: Is clusters of peloids cemented together by organic material or mineral cement. Extraclasts are uncommon, are usually accompanied by other clastic sediments, and indicate deposition in a tectonically active area or as part of a turbidity current . The grains of most limestones are embedded in a matrix of carbonate mud. This is typically the largest fraction of an ancient carbonate rock. Mud consisting of individual crystals less than 5 μm (0.20 mils) in length
3135-416: Is commonly white to gray in color. Limestone that is unusually rich in organic matter can be almost black in color, while traces of iron or manganese can give limestone an off-white to yellow to red color. The density of limestone depends on its porosity, which varies from 0.1% for the densest limestone to 40% for chalk. The density correspondingly ranges from 1.5 to 2.7 g/cm . Although relatively soft, with
3230-501: Is considered to be a high rate for porous aquifers, as illustrated by the water slowly seeping from sandstone in the accompanying image to the left. Porosity is important, but, alone , it does not determine a rock's ability to act as an aquifer. Areas of the Deccan Traps (a basaltic lava) in west central India are good examples of rock formations with high porosity but low permeability, which makes them poor aquifers. Similarly,
3325-420: Is controlled largely by the amount of dissolved carbon dioxide ( CO 2 ) in the water. This is summarized in the reaction: Increases in temperature or decreases in pressure tend to reduce the amount of dissolved CO 2 and precipitate CaCO 3 . Reduction in salinity also reduces the solubility of CaCO 3 , by several orders of magnitude for fresh water versus seawater. Near-surface water of
3420-545: Is converted to low-magnesium calcite. Diagenesis is the likely origin of pisoliths , concentrically layered particles ranging from 1 to 10 mm (0.039 to 0.394 inches) in diameter found in some limestones. Pisoliths superficially resemble ooids but have no nucleus of foreign matter, fit together tightly, and show other signs that they formed after the original deposition of the sediments. Silicification occurs early in diagenesis, at low pH and temperature, and contributes to fossil preservation. Silicification takes place through
3515-503: Is deposited close to where it formed, classification of limestone is usually based on its grain type and mud content. Most grains in limestone are skeletal fragments of marine organisms such as coral or foraminifera . These organisms secrete structures made of aragonite or calcite, and leave these structures behind when they die. Other carbonate grains composing limestones are ooids , peloids , and limeclasts ( intraclasts and extraclasts [ ca ] ). Skeletal grains have
3610-460: Is described as coquinite . Chalk is a soft, earthy, fine-textured limestone composed of the tests of planktonic microorganisms such as foraminifera, while marl is an earthy mixture of carbonates and silicate sediments. Limestone forms when calcite or aragonite precipitate out of water containing dissolved calcium, which can take place through both biological and nonbiological processes. The solubility of calcium carbonate ( CaCO 3 )
3705-617: Is described as micrite . In fresh carbonate mud, micrite is mostly small aragonite needles, which may precipitate directly from seawater, be secreted by algae, or be produced by abrasion of carbonate grains in a high-energy environment. This is converted to calcite within a few million years of deposition. Further recrystallization of micrite produces microspar , with grains from 5 to 15 μm (0.20 to 0.59 mils) in diameter. Limestone often contains larger crystals of calcite, ranging in size from 0.02 to 0.1 mm (0.79 to 3.94 mils), that are described as sparry calcite or sparite . Sparite
3800-462: Is distinguished from micrite by a grain size of over 20 μm (0.79 mils) and because sparite stands out under a hand lens or in thin section as white or transparent crystals. Sparite is distinguished from carbonate grains by its lack of internal structure and its characteristic crystal shapes. Geologists are careful to distinguish between sparite deposited as cement and sparite formed by recrystallization of micrite or carbonate grains. Sparite cement
3895-657: Is full because of tremendous recharge from a number of area streams, rivers and lakes . The primary risk to this resource is human development over the recharge areas. Limestone Limestone ( calcium carbonate CaCO 3 ) is a type of carbonate sedimentary rock which is the main source of the material lime . It is composed mostly of the minerals calcite and aragonite , which are different crystal forms of CaCO 3 . Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as
Biscayne Aquifer - Misplaced Pages Continue
3990-421: Is held in place by surface adhesive forces and it rises above the water table (the zero- gauge-pressure isobar ) by capillary action to saturate a small zone above the phreatic surface (the capillary fringe ) at less than atmospheric pressure. This is termed tension saturation and is not the same as saturation on a water-content basis. Water content in a capillary fringe decreases with increasing distance from
4085-560: Is one of the first minerals to precipitate in marine evaporites. Most limestone is formed by the activities of living organisms near reefs, but the organisms responsible for reef formation have changed over geologic time. For example, stromatolites are mound-shaped structures in ancient limestones, interpreted as colonies of cyanobacteria that accumulated carbonate sediments, but stromatolites are rare in younger limestones. Organisms precipitate limestone both directly as part of their skeletons, and indirectly by removing carbon dioxide from
4180-473: Is otherwise chemically fairly pure, with clastic sediments (mainly fine-grained quartz and clay minerals ) making up less than 5% to 10% of the composition. Organic matter typically makes up around 0.2% of a limestone and rarely exceeds 1%. Limestone often contains variable amounts of silica in the form of chert or siliceous skeletal fragments (such as sponge spicules, diatoms , or radiolarians ). Fossils are also common in limestone. Limestone
4275-472: Is produced by decaying organic matter settling into the deep ocean that is not removed by photosynthesis in the dark depths. As a result, there is a fairly sharp transition from water saturated with calcium carbonate to water unsaturated with calcium carbonate, the lysocline , which occurs at the calcite compensation depth of 4,000 to 7,000 m (13,000 to 23,000 feet). Below this depth, foraminifera tests and other skeletal particles rapidly dissolve, and
4370-466: Is secondary dolomite, formed by chemical alteration of limestone. Limestone is exposed over large regions of the Earth's surface, and because limestone is slightly soluble in rainwater, these exposures often are eroded to become karst landscapes. Most cave systems are found in limestone bedrock. Limestone has numerous uses: as a chemical feedstock for the production of lime used for cement (an essential component of concrete ), as aggregate for
4465-419: Is the level to which water will rise in a large-diameter pipe (e.g., a well) that goes down into the aquifer and is open to the atmosphere. Aquifers are typically saturated regions of the subsurface that produce an economically feasible quantity of water to a well or spring (e.g., sand and gravel or fractured bedrock often make good aquifer materials). An aquitard is a zone within the Earth that restricts
4560-512: Is the water table, this aquifer is known as an unconfined aquifer . Since it merges with the floor of Biscayne Bay and with the Atlantic Ocean , it is also a coastal aquifer. Both of these factors contribute to its potential contamination. Lowered water tables, primarily from over-pumping, could allow salt water intrusion without man-made interventions such as dam-like structures that control fresh and salt water levels in canals. Because
4655-427: The saturated zone or phreatic zone (e.g., aquifers, aquitards, etc.), where all available spaces are filled with water, and the unsaturated zone (also called the vadose zone ), where there are still pockets of air that contain some water, but can be filled with more water. Saturated means the pressure head of the water is greater than atmospheric pressure (it has a gauge pressure > 0). The definition of
4750-834: The Atlas Mountains in North Africa, the Lebanon and Anti-Lebanon ranges between Syria and Lebanon, the Jebel Akhdar in Oman, parts of the Sierra Nevada and neighboring ranges in the United States' Southwest , have shallow aquifers that are exploited for their water. Overexploitation can lead to the exceeding of the practical sustained yield; i.e., more water is taken out than can be replenished. Along
4845-615: The Guarani people , it covers 1,200,000 km (460,000 sq mi), with a volume of about 40,000 km (9,600 cu mi), a thickness of between 50 and 800 m (160 and 2,620 ft) and a maximum depth of about 1,800 m (5,900 ft). The Ogallala Aquifer of the central United States is one of the world's great aquifers, but in places it is being rapidly depleted by growing municipal use, and continuing agricultural use. This huge aquifer, which underlies portions of eight states, contains primarily fossil water from
SECTION 50
#17327693365244940-661: The depositional sedimentary environment and later natural cementation of the sand grains. The environment where a sand body was deposited controls the orientation of the sand grains, the horizontal and vertical variations, and the distribution of shale layers. Even thin shale layers are important barriers to groundwater flow. All these factors affect the porosity and permeability of sandy aquifers. Sandy deposits formed in shallow marine environments and in windblown sand dune environments have moderate to high permeability while sandy deposits formed in river environments have low to moderate permeability. Rainfall and snowmelt enter
5035-496: The Earth's history. Limestone may have been deposited by microorganisms in the Precambrian , prior to 540 million years ago, but inorganic processes were probably more important and likely took place in an ocean more highly oversaturated in calcium carbonate than the modern ocean. Diagenesis is the process in which sediments are compacted and turned into solid rock . During diagenesis of carbonate sediments, significant chemical and textural changes take place. For example, aragonite
5130-669: The United States accelerated in the late 1940s and continued at an almost steady linear rate through the end of the century. In addition to widely recognized environmental consequences, groundwater depletion also adversely impacts the long-term sustainability of groundwater supplies to help meet the Nation’s water needs." An example of a significant and sustainable carbonate aquifer is the Edwards Aquifer in central Texas . This carbonate aquifer has historically been providing high quality water for nearly 2 million people, and even today,
5225-430: The accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life. About 20% to 25% of sedimentary rock is carbonate rock, and most of this is limestone. The remaining carbonate rock is mostly dolomite , a closely related rock, which contains
5320-642: The aquifer is so close to the surface, it is extremely vulnerable to surface contaminants. A massive saltwater plume is radiating from the Turkey Point Nuclear Generating Station toward wellfields in the aquifer. The South Florida Water Management District controls an extensive system of canals and other control systems and pumping stations along with the Biscayne Aquifer, Lake Okeechobee and three other large water conservation areas as it monitors and controls
5415-421: The aquifer is storing water using the mechanisms of aquifer matrix expansion and the compressibility of water, which typically are both quite small quantities. Unconfined aquifers have storativities (typically called specific yield ) greater than 0.01 (1% of bulk volume); they release water from storage by the mechanism of actually draining the pores of the aquifer, releasing relatively large amounts of water (up to
5510-434: The base of roads, as white pigment or filler in products such as toothpaste or paint, as a soil conditioner , and as a popular decorative addition to rock gardens . Limestone formations contain about 30% of the world's petroleum reservoirs . Limestone is composed mostly of the minerals calcite and aragonite , which are different crystal forms of calcium carbonate ( CaCO 3 ). Dolomite , CaMg(CO 3 ) 2 ,
5605-657: The beds. This may include the formation of vugs , which are crystal-lined cavities within the limestone. Diagenesis may include conversion of limestone to dolomite by magnesium-rich fluids. There is considerable evidence of replacement of limestone by dolomite, including sharp replacement boundaries that cut across bedding. The process of dolomitization remains an area of active research, but possible mechanisms include exposure to concentrated brines in hot environments ( evaporative reflux ) or exposure to diluted seawater in delta or estuary environments ( Dorag dolomitization ). However, Dorag dolomitization has fallen into disfavor as
5700-409: The coastlines of certain countries, such as Libya and Israel, increased water usage associated with population growth has caused a lowering of the water table and the subsequent contamination of the groundwater with saltwater from the sea. In 2013 large freshwater aquifers were discovered under continental shelves off Australia, China, North America and South Africa. They contain an estimated half
5795-487: The complexity of karst aquifers. These conventional investigation methods need to be supplemented with dye traces , measurement of spring discharges, and analysis of water chemistry. U.S. Geological Survey dye tracing has determined that conventional groundwater models that assume a uniform distribution of porosity are not applicable for karst aquifers. Linear alignment of surface features such as straight stream segments and sinkholes develop along fracture traces . Locating
SECTION 60
#17327693365245890-526: The compound Kh and Kv values are different (see hydraulic transmissivity and hydraulic resistance ). When calculating flow to drains or flow to wells in an aquifer, the anisotropy is to be taken into account lest the resulting design of the drainage system may be faulty. To properly manage an aquifer its properties must be understood. Many properties must be known to predict how an aquifer will respond to rainfall, drought, pumping, and contamination . Considerations include where and how much water enters
5985-466: The depositional fabric of carbonate rocks. Dunham divides the rocks into four main groups based on relative proportions of coarser clastic particles, based on criteria such as whether the grains were originally in mutual contact, and therefore self-supporting, or whether the rock is characterized by the presence of frame builders and algal mats. Unlike the Folk scheme, Dunham deals with the original porosity of
6080-469: The deposits are highly porous, so that they have a spongelike texture, they are typically described as tufa . Secondary calcite deposited by supersaturated meteoric waters ( groundwater ) in caves is also sometimes described as travertine. This produces speleothems , such as stalagmites and stalactites . Coquina is a poorly consolidated limestone composed of abraded pieces of coral , shells , or other fossil debris. When better consolidated, it
6175-439: The drainable porosity of the aquifer material, or the minimum volumetric water content ). In isotropic aquifers or aquifer layers the hydraulic conductivity (K) is equal for flow in all directions, while in anisotropic conditions it differs, notably in horizontal (Kh) and vertical (Kv) sense. Semi-confined aquifers with one or more aquitards work as an anisotropic system, even when the separate layers are isotropic, because
6270-406: The earth's oceans are oversaturated with CaCO 3 by a factor of more than six. The failure of CaCO 3 to rapidly precipitate out of these waters is likely due to interference by dissolved magnesium ions with nucleation of calcite crystals, the necessary first step in precipitation. Precipitation of aragonite may be suppressed by the presence of naturally occurring organic phosphates in
6365-399: The first refers to the grains and the second to the cement. For example, a limestone consisting mainly of ooids, with a crystalline matrix, would be termed an oosparite. It is helpful to have a petrographic microscope when using the Folk scheme, because it is easier to determine the components present in each sample. Robert J. Dunham published his system for limestone in 1962. It focuses on
6460-557: The fissures. The enlarged fissures allow a larger quantity of water to enter which leads to a progressive enlargement of openings. Abundant small openings store a large quantity of water. The larger openings form a conduit system that drains the aquifer to springs. Characterization of karst aquifers requires field exploration to locate sinkholes, swallets , sinking streams , and springs in addition to studying geologic maps . Conventional hydrogeologic methods such as aquifer tests and potentiometric mapping are insufficient to characterize
6555-478: The flow of groundwater from one aquifer to another. A completely impermeable aquitard is called an aquiclude or aquifuge . Aquitards contain layers of either clay or non-porous rock with low hydraulic conductivity . In mountainous areas (or near rivers in mountainous areas), the main aquifers are typically unconsolidated alluvium , composed of mostly horizontal layers of materials deposited by water processes (rivers and streams), which in cross-section (looking at
6650-572: The formation of distinctive minerals from the silica and clay present in the original limestone. Two major classification schemes, the Folk and Dunham, are used for identifying the types of carbonate rocks collectively known as limestone. Robert L. Folk developed a classification system that places primary emphasis on the detailed composition of grains and interstitial material in carbonate rocks . Based on composition, there are three main components: allochems (grains), matrix (mostly micrite), and cement (sparite). The Folk system uses two-part names;
6745-429: The geologic record are called bioherms . Many are rich in fossils, but most lack any connected organic framework like that seen in modern reefs. The fossil remains are present as separate fragments embedded in ample mud matrix. Much of the sedimentation shows indications of occurring in the intertidal or supratidal zones, suggesting sediments rapidly fill available accommodation space in the shelf or platform. Deposition
6840-526: The groundwater from rainfall and snowmelt, how fast and in what direction the groundwater travels, and how much water leaves the ground as springs. Computer models can be used to test how accurately the understanding of the aquifer properties matches the actual aquifer performance. Environmental regulations require sites with potential sources of contamination to demonstrate that the hydrology has been characterized . Porous aquifers typically occur in sand and sandstone . Porous aquifer properties depend on
6935-610: The groundwater where the aquifer is near the surface. Groundwater flow directions can be determined from potentiometric surface maps of water levels in wells and springs. Aquifer tests and well tests can be used with Darcy's law flow equations to determine the ability of a porous aquifer to convey water. Analyzing this type of information over an area gives an indication how much water can be pumped without overdrafting and how contamination will travel. In porous aquifers groundwater flows as slow seepage in pores between sand grains. A groundwater flow rate of 1 foot per day (0.3 m/d)
7030-491: The left. For example, in the Barton Springs Edwards aquifer, dye traces measured the karst groundwater flow rates from 0.5 to 7 miles per day (0.8 to 11.3 km/d). The rapid groundwater flow rates make karst aquifers much more sensitive to groundwater contamination than porous aquifers. In the extreme case, groundwater may exist in underground rivers (e.g., caves underlying karst topography . If
7125-462: The micro-porous (Upper Cretaceous ) Chalk Group of south east England, although having a reasonably high porosity, has a low grain-to-grain permeability, with its good water-yielding characteristics mostly due to micro-fracturing and fissuring. Karst aquifers typically develop in limestone . Surface water containing natural carbonic acid moves down into small fissures in limestone. This carbonic acid gradually dissolves limestone thereby enlarging
7220-410: The ocean basins, but limestone is rarely preserved in continental slope and deep sea environments. The best environments for deposition are warm waters, which have both a high organic productivity and increased saturation of calcium carbonate due to lower concentrations of dissolved carbon dioxide. Modern limestone deposits are almost always in areas with very little silica-rich sedimentation, reflected in
7315-416: The phreatic surface. The capillary head depends on soil pore size. In sandy soils with larger pores, the head will be less than in clay soils with very small pores. The normal capillary rise in a clayey soil is less than 1.8 m (6 ft) but can range between 0.3 and 10 m (1 and 33 ft). The capillary rise of water in a small- diameter tube involves the same physical process. The water table
7410-426: The reaction: Fossils are often preserved in exquisite detail as chert. Cementing takes place rapidly in carbonate sediments, typically within less than a million years of deposition. Some cementing occurs while the sediments are still under water, forming hardgrounds . Cementing accelerates after the retreat of the sea from the depositional environment, as rainwater infiltrates the sediment beds, often within just
7505-402: The recovery of bitumen, whether by open-pit mining or by in situ methods such as steam-assisted gravity drainage (SAGD), and in some areas they are targets for waste-water injection. The Guarani Aquifer , located beneath the surface of Argentina , Brazil , Paraguay , and Uruguay , is one of the world's largest aquifer systems and is an important source of fresh water . Named after
7600-482: The relative purity of most limestones. Reef organisms are destroyed by muddy, brackish river water, and carbonate grains are ground down by much harder silicate grains. Unlike clastic sedimentary rock, limestone is produced almost entirely from sediments originating at or near the place of deposition. Limestone formations tend to show abrupt changes in thickness. Large moundlike features in a limestone formation are interpreted as ancient reefs , which when they appear in
7695-460: The rock. The Dunham scheme is more useful for hand samples because it is based on texture, not the grains in the sample. A revised classification was proposed by Wright (1992). It adds some diagenetic patterns to the classification scheme. Travertine is a term applied to calcium carbonate deposits formed in freshwater environments, particularly waterfalls , cascades and hot springs . Such deposits are typically massive, dense, and banded. When
7790-429: The same geologic unit may be confined in one area and unconfined in another. Unconfined aquifers are sometimes also called water table or phreatic aquifers, because their upper boundary is the water table or phreatic surface (see Biscayne Aquifer ). Typically (but not always) the shallowest aquifer at a given location is unconfined, meaning it does not have a confining layer (an aquitard or aquiclude) between it and
7885-479: The sediments increases. Chemical compaction takes place by pressure solution of the sediments. This process dissolves minerals from points of contact between grains and redeposits it in pore space, reducing the porosity of the limestone from an initial high value of 40% to 80% to less than 10%. Pressure solution produces distinctive stylolites , irregular surfaces within the limestone at which silica-rich sediments accumulate. These may reflect dissolution and loss of
7980-662: The sediments of the ocean floor abruptly transition from carbonate ooze rich in foraminifera and coccolith remains ( Globigerina ooze) to silicic mud lacking carbonates. In rare cases, turbidites or other silica-rich sediments bury and preserve benthic (deep ocean) carbonate deposits. Ancient benthic limestones are microcrystalline and are identified by their tectonic setting. Fossils typically are foraminifera and coccoliths. No pre-Jurassic benthic limestones are known, probably because carbonate-shelled plankton had not yet evolved. Limestones also form in freshwater environments. These limestones are not unlike marine limestone, but have
8075-425: The source, this is a place where aquifers are often unconfined (sometimes called the forebay area), or in hydraulic communication with the land surface. An unconfined aquifer has no impermeable barrier immediately above it, such that the water level can rise in response to recharge. A confined aquifer has an overlying impermeable barrier that prevents the water level in the aquifer from rising any higher. An aquifer in
8170-446: The storage and release of the water in the district. It must take into account the danger of salt water intrusion and monitor water demand while it manages surplus flood water and maintains water table levels and adequate water supplies. The Biscayne Aquifer supplies South Florida metropolitan area with its primary source of fresh water. This area includes most of south Florida (Miami-Dade, Monroe, and parts of Broward Counties) as well
8265-419: The surface are not only more likely to be used for water supply and irrigation, but are also more likely to be replenished by local rainfall. Although aquifers are sometimes characterized as "underground rivers or lakes," they are actually porous rock saturated with water. Many desert areas have limestone hills or mountains within them or close to them that can be exploited as groundwater resources. Part of
8360-420: The surface. The term "perched" refers to ground water accumulating above a low-permeability unit or strata, such as a clay layer. This term is generally used to refer to a small local area of ground water that occurs at an elevation higher than a regionally extensive aquifer. The difference between perched and unconfined aquifers is their size (perched is smaller). Confined aquifers are aquifers that are overlain by
8455-618: The time of the last glaciation . Annual recharge, in the more arid parts of the aquifer, is estimated to total only about 10 percent of annual withdrawals. According to a 2013 report by the United States Geological Survey (USGS), the depletion between 2001 and 2008, inclusive, is about 32 percent of the cumulative depletion during the entire 20th century. In the United States, the biggest users of water from aquifers include agricultural irrigation and oil and coal extraction. "Cumulative total groundwater depletion in
8550-443: The use of qanats leading to a well. This groundwater is a major source of fresh water for many regions, however can present a number of challenges such as overdrafting (extracting groundwater beyond the equilibrium yield of the aquifer), groundwater-related subsidence of land, and the salinization or pollution of the groundwater. Aquifers occur from near-surface to deeper than 9,000 metres (30,000 ft). Those closer to
8645-533: The water by photosynthesis and thereby decreasing the solubility of calcium carbonate. Limestone shows the same range of sedimentary structures found in other sedimentary rocks. However, finer structures, such as lamination , are often destroyed by the burrowing activities of organisms ( bioturbation ). Fine lamination is characteristic of limestone formed in playa lakes , which lack the burrowing organisms. Limestones also show distinctive features such as geopetal structures , which form when curved shells settle to
8740-410: The water table is the surface where the pressure head is equal to atmospheric pressure (where gauge pressure = 0). Unsaturated conditions occur above the water table where the pressure head is negative (absolute pressure can never be negative, but gauge pressure can) and the water that incompletely fills the pores of the aquifer material is under suction . The water content in the unsaturated zone
8835-553: The water. Although ooids likely form through purely inorganic processes, the bulk of CaCO 3 precipitation in the oceans is the result of biological activity. Much of this takes place on carbonate platforms . The origin of carbonate mud, and the processes by which it is converted to micrite, continue to be a subject of research. Modern carbonate mud is composed mostly of aragonite needles around 5 μm (0.20 mils) in length. Needles of this shape and composition are produced by calcareous algae such as Penicillus , making this
8930-416: Was likely deposited in pore space between grains, suggesting a high-energy depositional environment that removed carbonate mud. Recrystallized sparite is not diagnostic of depositional environment. Limestone outcrops are recognized in the field by their softness (calcite and aragonite both have a Mohs hardness of less than 4, well below common silicate minerals) and because limestone bubbles vigorously when
9025-471: Was other urban areas stretching from Homestead, Florida to Delray Beach, Florida . Further, water from the Biscayne Aquifer is piped to the Florida Keys . This article about a specific United States geological feature is a stub . You can help Misplaced Pages by expanding it . This water supply –related article is a stub . You can help Misplaced Pages by expanding it . Aquifer An aquifer
#523476