A diesel locomotive is a type of railway locomotive in which the power source is a diesel engine . Several types of diesel locomotives have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels . The most common are diesel–electric locomotives and diesel–hydraulic.
86-429: The EMD GL8 is an export diesel-electric locomotive introduced by General Motors Electro-Motive Division (EMD) in 1960. They have been designed as light locomotives with a low axle loading. Measuring 36 feet 2 inches over the end sills, they are equipped an EMD 8-567CR engine producing 875 hp (652 kW) for traction, driving four traction motors in either A1A-A1A or B-B flexicoil trucks . The EMD GA8
172-471: A consist respond in the same way to throttle position. Binary encoding also helps to minimize the number of trainlines (electrical connections) that are required to pass signals from unit to unit. For example, only four trainlines are required to encode all possible throttle positions if there are up to 14 stages of throttling. North American locomotives, such as those built by EMD or General Electric , have eight throttle positions or "notches" as well as
258-429: A "reverser" to allow them to operate bi-directionally. Many UK-built locomotives have a ten-position throttle. The power positions are often referred to by locomotive crews depending upon the throttle setting, such as "run 3" or "notch 3". In older locomotives, the throttle mechanism was ratcheted so that it was not possible to advance more than one power position at a time. The engine driver could not, for example, pull
344-555: A German inventor and mechanical engineer who invented the Diesel engine , which burns Diesel fuel ; both are named after him. Diesel was born at 38 Rue Notre Dame de Nazareth in Paris, France , in 1858 the second of three children of Elise (née Strobel) and Theodor Diesel. His parents were Bavarian immigrants living in Paris. Theodor Diesel, a bookbinder by trade, left his home town of Augsburg , Bavaria , in 1848. He met his wife,
430-609: A Rational Heat Motor ). However, the large size and poor power-to-weight ratio of early diesel engines made them unsuitable for propelling land-based vehicles. Therefore, the engine's potential as a railroad prime mover was not initially recognized. This changed as research and development reduced the size and weight of the engine. In 1906, Rudolf Diesel, Adolf Klose and the steam and diesel engine manufacturer Gebrüder Sulzer founded Diesel-Sulzer-Klose GmbH to manufacture diesel-powered locomotives. Sulzer had been manufacturing diesel engines since 1898. The Prussian State Railways ordered
516-638: A barrow. He attended a Protestant -French school and soon became interested in social questions and technology. Being a very good student, 12-year-old Diesel received the Société pour l'Instruction Elémentaire bronze medal and had plans to enter Ecole Primaire Supérieure in 1870. At the outbreak of the Franco-Prussian War the same year, his family were deported to England, settling in London, where Diesel attended an English-speaking school. Before
602-599: A daughter of a Nuremberg merchant, in Paris in 1855 and became a leather goods manufacturer there. Shortly after his birth, Diesel was given away to a Vincennes farmer family, where he spent his first nine months. When he was returned to his family, they moved into the flat 49 in the Rue de la Fontaine-au-Roi . At the time, the Diesel family suffered from financial difficulties, thus young Rudolf Diesel had to work in his father's workshop and deliver leather goods to customers using
688-592: A diesel locomotive from the company in 1909, and after test runs between Winterthur and Romanshorn , Switzerland, the diesel–mechanical locomotive was delivered in Berlin in September 1912. The world's first diesel-powered locomotive was operated in the summer of 1912 on the same line from Winterthur but was not a commercial success. During test runs in 1913 several problems were found. The outbreak of World War I in 1914 prevented all further trials. The locomotive weight
774-504: A diesel-driven charging circuit. ALCO acquired the McIntosh & Seymour Engine Company in 1929 and entered series production of 300 hp (220 kW) and 600 hp (450 kW) single-cab switcher units in 1931. ALCO would be the pre-eminent builder of switch engines through the mid-1930s and would adapt the basic switcher design to produce versatile and highly successful, albeit relatively low powered, road locomotives. GM, seeing
860-465: A flashover (also known as an arc fault ), which could result in immediate generator failure and, in some cases, start an engine room fire. Current North American practice is for four axles for high-speed passenger or "time" freight, or for six axles for lower-speed or "manifest" freight. The most modern units on "time" freight service tend to have six axles underneath the frame. Unlike those in "manifest" service, "time" freight units will have only four of
946-577: A major manufacturer of diesel engines for marine and stationary applications, in 1930. Supported by the General Motors Research Division, GM's Winton Engine Corporation sought to develop diesel engines suitable for high-speed mobile use. The first milestone in that effort was delivery in early 1934 of the Winton 201A, a two-stroke , mechanically aspirated , uniflow-scavenged , unit-injected diesel engine that could deliver
SECTION 10
#17327937071821032-920: A man floating in the Eastern Scheldt . The body was in such an advanced state of decomposition that it was unrecognisable, and they did not retain it aboard because of heavy weather. Instead, the crew retrieved personal items (pill case, wallet, I.D. card, pocketknife, eyeglass case) from the clothing of the dead man, and returned the body to the sea. On 13 October, these items were identified by Rudolf's son, Eugen Diesel, as belonging to his father. Five months later, in March 1914, Diesel’s wife, Martha, went missing in Germany. There are various theories to explain Diesel's death. Some, such as Diesel's biographers Grosser (1978) and Sittauer (1978) have argued that he died by suicide. Another line of thought suggests that he
1118-401: A nearly imperceptible start. The positioning of the reverser and movement of the throttle together is conceptually like shifting an automobile's automatic transmission into gear while the engine is idling. Rudolf Diesel Rudolf Christian Karl Diesel ( English: / ˈ d iː z əl ˌ - s əl / , German: [ˈdiːzl̩] ; 18 March 1858 – 29 September 1913) was
1204-421: A prototype diesel–electric locomotive for "special uses" (such as for runs where water for steam locomotives was scarce) using electrical equipment from Westinghouse Electric Company . Its twin-engine design was not successful, and the unit was scrapped after a short testing and demonstration period. Industry sources were beginning to suggest "the outstanding advantages of this new form of motive power". In 1929,
1290-486: A real prospect with existing diesel technology. Before diesel power could make inroads into mainline service, the limitations of diesel engines circa 1930 – low power-to-weight ratios and narrow output range – had to be overcome. A major effort to overcome those limitations was launched by General Motors after they moved into the diesel field with their acquisition of the Winton Engine Company ,
1376-527: A small Diesel engine was exhibited by the Otto company which, on the suggestion of the French Government, was run on arachide [peanut] oil, and operated so well that very few people were aware of the fact. The motor was built for ordinary oils, and without any modification was run on vegetable oil. I have recently repeated these experiments on a large scale with full success and entire confirmation of
1462-401: A steam engine. His work in engine design was driven by the goal of much higher efficiency ratios. As opposed to outside ignition applied against internal air and fuel mixture , air was compressed internally within the cylinder whilst heating, in order for the fuel to establish contact the air immediately before the compression period would end, thus igniting on its own. Therefore, the engine
1548-470: A very important replacement for the steam piston engine in many applications. Because the Diesel engine required a more robust construction than a gasoline engine, it saw limited use in aviation . However, the Diesel engine became widespread in many other applications, such as stationary engines , agricultural machines and off-highway machinery in general, submarines , ships, and much later, locomotives , trucks, and in modern automobiles. Diesel engines have
1634-527: Is a derivative designed for very light lines with extremely sharp curves using frame mounted traction motors and freight car trucks. Several countries have purchased GL8 locomotives. This diesel locomotive-related article is a stub . You can help Misplaced Pages by expanding it . Diesel-electric locomotive Early internal combustion locomotives and railcars used kerosene and gasoline as their fuel. Rudolf Diesel patented his first compression-ignition engine in 1898, and steady improvements to
1720-484: Is because clutches would need to be very large at these power levels and would not fit in a standard 2.5 m (8 ft 2 in)-wide locomotive frame, or would wear too quickly to be useful. The first successful diesel engines used diesel–electric transmissions , and by 1925 a small number of diesel locomotives of 600 hp (450 kW) were in service in the United States. In 1930, Armstrong Whitworth of
1806-533: Is better able to cope with overload conditions that often destroyed the older types of motors. A diesel–electric locomotive's power output is independent of road speed, as long as the unit's generator current and voltage limits are not exceeded. Therefore, the unit's ability to develop tractive effort (also referred to as drawbar pull or tractive force , which is what actually propels the train) will tend to inversely vary with speed within these limits. (See power curve below). Maintaining acceptable operating parameters
SECTION 20
#17327937071821892-502: Is generally limited to low-powered, low-speed shunting (switching) locomotives, lightweight multiple units and self-propelled railcars . The mechanical transmissions used for railroad propulsion are generally more complex and much more robust than standard-road versions. There is usually a fluid coupling interposed between the engine and gearbox, and the gearbox is often of the epicyclic (planetary) type to permit shifting while under load. Various systems have been devised to minimise
1978-414: Is the same as placing an automobile's transmission into neutral while the engine is running. To set the locomotive in motion, the reverser control handle is placed into the correct position (forward or reverse), the brake is released and the throttle is moved to the run 1 position (the first power notch). An experienced engine driver can accomplish these steps in a coordinated fashion that will result in
2064-656: The Burlington Route and Union Pacific used custom-built diesel " streamliners " to haul passengers, starting in late 1934. Burlington's Zephyr trainsets evolved from articulated three-car sets with 600 hp power cars in 1934 and early 1935, to the Denver Zephyr semi-articulated ten car trainsets pulled by cab-booster power sets introduced in late 1936. Union Pacific started diesel streamliner service between Chicago and Portland Oregon in June 1935, and in
2150-723: The Busch-Sulzer company in 1911. Only limited success was achieved in the early twentieth century with internal combustion engined railcars, due, in part, to difficulties with mechanical drive systems. General Electric (GE) entered the railcar market in the early twentieth century, as Thomas Edison possessed a patent on the electric locomotive, his design actually being a type of electrically propelled railcar. GE built its first electric locomotive prototype in 1895. However, high electrification costs caused GE to turn its attention to internal combustion power to provide electricity for electric railcars. Problems related to co-ordinating
2236-611: The Canadian National Railways became the first North American railway to use diesels in mainline service with two units, 9000 and 9001, from Westinghouse. However, these early diesels proved expensive and unreliable, with their high cost of acquisition relative to steam unable to be realized in operating cost savings as they were frequently out of service. It would be another five years before diesel–electric propulsion would be successfully used in mainline service, and nearly ten years before fully replacing steam became
2322-579: The Carnot cycle . In 1892, after working on this idea for several years, he considered his theory to be completed. In the same year, Diesel was given the German patent DRP 67207. In 1893, he published a treatise entitled Theory and Construction of a Rational Heat-engine to Replace the Steam Engine and The Combustion Engines Known Today , that he had been working on since early 1892. This treatise formed
2408-494: The DFH1 , began in 1964 following the construction of a prototype in 1959. In Japan, starting in the 1920s, some petrol–electric railcars were produced. The first diesel–electric traction and the first air-streamed vehicles on Japanese rails were the two DMU3s of class Kiha 43000 (キハ43000系). Japan's first series of diesel locomotives was class DD50 (国鉄DD50形), twin locomotives, developed since 1950 and in service since 1953. In 1914,
2494-488: The Società per le Strade Ferrate del Mediterrano in southern Italy in 1926, following trials in 1924–25. The six-cylinder two-stroke motor produced 440 horsepower (330 kW) at 500 rpm, driving four DC motors, one for each axle. These 44 tonnes (43 long tons; 49 short tons) locomotives with 45 km/h (28 mph) top speed proved quite successful. In 1924, two diesel–electric locomotives were taken in service by
2580-895: The Soviet railways , almost at the same time: In 1935, Krauss-Maffei , MAN and Voith built the first diesel–hydraulic locomotive, called V 140 , in Germany. Diesel–hydraulics became the mainstream in diesel locomotives in Germany since the German railways (DRG) were pleased with the performance of that engine. Serial production of diesel locomotives in Germany began after World War II. In many railway stations and industrial compounds, steam shunters had to be kept hot during many breaks between scattered short tasks. Therefore, diesel traction became economical for shunting before it became economical for hauling trains. The construction of diesel shunters began in 1920 in France, in 1925 in Denmark, in 1926 in
2666-667: The Vickers shipyard in Montreal and was responsible for a sudden acceleration in its ability to produce a successful Diesel engine for submarines. Given the limited evidence at hand, his disappearance and death remain unsolved. In 1950, Magokichi Yamaoka , the founder of Yanmar , the diesel engine manufacturer in Japan, visited West Germany and learned that there was no tomb or monument for Diesel. Yamaoka and people associated with Diesel began to make preparations to honour him. In 1957, on
EMD GL8 - Misplaced Pages Continue
2752-406: The electrification of the line in 1944. Afterwards, the company kept them in service as boosters until 1965. Fiat claims to have built the first Italian diesel–electric locomotive in 1922, but little detail is available. Several Fiat- TIBB Bo'Bo' diesel–locomotives were built for service on the 950 mm ( 3 ft 1 + 3 ⁄ 8 in ) narrow gauge Ferrovie Calabro Lucane and
2838-432: The 1,500 kW (2,000 hp) British Rail 10100 locomotive), though only few have proven successful (such as the 1,342 kW (1,800 hp) DSB Class MF ). In a diesel–electric locomotive , the diesel engine drives either an electrical DC generator (generally, less than 3,000 hp (2,200 kW) net for traction), or an electrical AC alternator-rectifier (generally 3,000 hp net or more for traction),
2924-459: The 1960s, the DC generator was replaced by an alternator using a diode bridge to convert its output to DC. This advance greatly improved locomotive reliability and decreased generator maintenance costs by elimination of the commutator and brushes in the generator. Elimination of the brushes and commutator, in turn, eliminated the possibility of a particularly destructive type of event referred to as
3010-523: The 1990s, starting with the Electro-Motive SD70MAC in 1993 and followed by General Electric's AC4400CW in 1994 and AC6000CW in 1995. The Trans-Australian Railway built 1912 to 1917 by Commonwealth Railways (CR) passes through 2,000 km of waterless (or salt watered) desert terrain unsuitable for steam locomotives. The original engineer Henry Deane envisaged diesel operation to overcome such problems. Some have suggested that
3096-600: The CR worked with the South Australian Railways to trial diesel traction. However, the technology was not developed enough to be reliable. As in Europe, the usage of internal combustion engines advanced more readily in self-propelled railcars than in locomotives: A diesel–mechanical locomotive uses a mechanical transmission in a fashion similar to that employed in most road vehicles. This type of transmission
3182-895: The Netherlands, and in 1927 in Germany. After a few years of testing, hundreds of units were produced within a decade. Diesel-powered or "oil-engined" railcars, generally diesel–mechanical, were developed by various European manufacturers in the 1930s, e.g. by William Beardmore and Company for the Canadian National Railways (the Beardmore Tornado engine was subsequently used in the R101 airship). Some of those series for regional traffic were begun with gasoline motors and then continued with diesel motors, such as Hungarian BC (The class code doesn't tell anything but "railmotor with 2nd and 3rd class seats".), 128 cars built 1926–1937, or German Wismar railbuses (57 cars 1932–1941). In France,
3268-566: The United Kingdom delivered two 1,200 hp (890 kW) locomotives using Sulzer -designed engines to Buenos Aires Great Southern Railway of Argentina. In 1933, diesel–electric technology developed by Maybach was used to propel the DRG Class SVT 877 , a high-speed intercity two-car set, and went into series production with other streamlined car sets in Germany starting in 1935. In the United States, diesel–electric propulsion
3354-712: The United States. He was inducted into the Automotive Hall of Fame in 1978. On the evening of 29 September 1913, Diesel boarded the Great Eastern Railway steamer SS Dresden in Antwerp on his way to a meeting of the Consolidated Diesel Manufacturing company in London. He took dinner on board the ship and then retired to his cabin at about 10 p.m., leaving word to be called the next morning at 6:15 a.m., but he
3440-499: The War Production Board put a halt to building new passenger equipment and gave naval uses priority for diesel engine production. During the petroleum crisis of 1942–43 , coal-fired steam had the advantage of not using fuel that was in critically short supply. EMD was later allowed to increase the production of its FT locomotives and ALCO-GE was allowed to produce a limited number of DL-109 road locomotives, but most in
3526-433: The axles connected to traction motors, with the other two as idler axles for weight distribution. In the late 1980s, the development of high-power variable-voltage/variable-frequency (VVVF) drives, or "traction inverters", allowed the use of polyphase AC traction motors, thereby also eliminating the motor commutator and brushes. The result is a more efficient and reliable drive that requires relatively little maintenance and
EMD GL8 - Misplaced Pages Continue
3612-400: The basis for his work on and development of the diesel engine. By summer 1893, Diesel had realised that his initial theory was erroneous, leading him to file another patent application for the corrected theory in 1893. Diesel understood thermodynamics and the theoretical and practical constraints on fuel efficiency. He knew that as much as 90% of the energy available in the fuel is wasted in
3698-441: The benefit of running more fuel-efficiently than any other internal combustion engines suited for motor vehicles, allowing more heat to be converted to mechanical work. Diesel was interested in using coal dust or vegetable oil as fuel, and in fact, his engine was run on peanut oil. Although these fuels were not better replacements, in 2008 the rise in fuel prices coupled with concerns about remaining petroleum reserves , led to
3784-722: The benefits of an electric locomotive without the railroad having to bear the sizeable expense of electrification. The unit successfully demonstrated, in switching and local freight and passenger service, on ten railroads and three industrial lines. Westinghouse Electric and Baldwin collaborated to build switching locomotives starting in 1929. However, the Great Depression curtailed demand for Westinghouse's electrical equipment, and they stopped building locomotives internally, opting to supply electrical parts instead. In June 1925, Baldwin Locomotive Works outshopped
3870-420: The break in transmission during gear changing, such as the S.S.S. (synchro-self-shifting) gearbox used by Hudswell Clarke . Diesel–mechanical propulsion is limited by the difficulty of building a reasonably sized transmission capable of coping with the power and torque required to move a heavy train. A number of attempts to use diesel–mechanical propulsion in high power applications have been made (for example,
3956-574: The combustion chamber, leading to a higher internal temperature, expanding at a higher rate and placing further pressure over the pistons that rotate the crankshaft towards a quicker rate. Biodiesel often composed of synthesis gas originating from waste cellulose gasification , as well as extraction of lipids from algae , most frequently used by consisting vegetable oils and algae together under methanol transesterification . Numerous firms have developed different techniques in order to achieve such. The first successful diesel engine Motor 250/400
4042-422: The design of diesel engines reduced their physical size and improved their power-to-weight ratios to a point where one could be mounted in a locomotive. Internal combustion engines only operate efficiently within a limited power band , and while low-power gasoline engines could be coupled to mechanical transmissions , the more powerful diesel engines required the development of new forms of transmission. This
4128-443: The engine governor and electrical or electronic components, including switchgear , rectifiers and other components, which control or modify the electrical supply to the traction motors. In the most elementary case, the generator may be directly connected to the motors with only very simple switchgear. Originally, the traction motors and generator were DC machines. Following the development of high-capacity silicon rectifiers in
4214-419: The engine and traction motor with a single lever; subsequent improvements were also patented by Lemp. Lemp's design solved the problem of overloading and damaging the traction motors with excessive electrical power at low speeds, and was the prototype for all internal combustion–electric drive control systems. In 1917–1918, GE produced three experimental diesel–electric locomotives using Lemp's control design,
4300-423: The engine driver operates the controls. When the throttle is in the idle position, the prime mover receives minimal fuel, causing it to idle at low RPM. In addition, the traction motors are not connected to the main generator and the generator's field windings are not excited (energized) – the generator does not produce electricity without excitation. Therefore, the locomotive will be in "neutral". Conceptually, this
4386-456: The first diesel railcar was Renault VH , 115 units produced 1933/34. In Italy, after six Gasoline cars since 1931, Fiat and Breda built a lot of diesel railmotors, more than 110 from 1933 to 1938 and 390 from 1940 to 1953, Class 772 known as Littorina , and Class ALn 900. In the 1930s, streamlined highspeed diesel railcars were developed in several countries: In 1945, a batch of 30 Baldwin diesel–electric locomotives, Baldwin 0-6-6-0 1000 ,
SECTION 50
#17327937071824472-480: The first known to be built in the United States. Following this development, the 1923 Kaufman Act banned steam locomotives from New York City, because of severe pollution problems. The response to this law was to electrify high-traffic rail lines. However, electrification was uneconomical to apply to lower-traffic areas. The first regular use of diesel–electric locomotives was in switching (shunter) applications, which were more forgiving than mainline applications of
4558-453: The following week. She discovered 20,000 German marks in cash (US$ 120,000 today) and financial statements indicating that their bank accounts were virtually empty. In a diary Diesel brought with him on the ship, for the date 29 September 1913, a cross was drawn, possibly indicating death. Ten days after he was last seen, the crew of the Dutch pilot boat Coertsen came upon the corpse of
4644-569: The following year would add Los Angeles, CA , Oakland, CA , and Denver, CO to the destinations of diesel streamliners out of Chicago. The Burlington and Union Pacific streamliners were built by the Budd Company and the Pullman-Standard Company , respectively, using the new Winton engines and power train systems designed by GM's Electro-Motive Corporation . EMC's experimental 1800 hp B-B locomotives of 1935 demonstrated
4730-406: The freight market including their own F series locomotives. GE subsequently dissolved its partnership with ALCO and would emerge as EMD's main competitor in the early 1960s, eventually taking the top position in the locomotive market from EMD. Early diesel–electric locomotives in the United States used direct current (DC) traction motors but alternating current (AC) motors came into widespread use in
4816-570: The limitations of contemporary diesel technology and where the idling economy of diesel relative to steam would be most beneficial. GE entered a collaboration with the American Locomotive Company (ALCO) and Ingersoll-Rand (the "AGEIR" consortium) in 1924 to produce a prototype 300 hp (220 kW) "boxcab" locomotive delivered in July 1925. This locomotive demonstrated that the diesel–electric power unit could provide many of
4902-431: The locomotive business were restricted to making switch engines and steam locomotives. In the early postwar era, EMD dominated the market for mainline locomotives with their E and F series locomotives. ALCO-GE in the late 1940s produced switchers and road-switchers that were successful in the short-haul market. However, EMD launched their GP series road-switcher locomotives in 1949, which displaced all other locomotives in
4988-581: The mid-1950s. Generally, diesel traction in Italy was of less importance than in other countries, as it was amongst the most advanced countries in the electrification of the main lines and as Italian geography makes freight transport by sea cheaper than rail transportation even on many domestic connections. Adolphus Busch purchased the American manufacturing rights for the diesel engine in 1898 but never applied this new form of power to transportation. He founded
5074-410: The more widespread use of vegetable oil and biodiesel . The primary fuel used in Diesel engines is the eponymous diesel fuel , derived from the refinement of crude oil . Diesel is safer to store than gasoline, because its flash point is approximately 79.4 °C (174.9 °F) higher, and it will not explode. In a book titled Diesel Engines for Land and Marine Work , Diesel said that "In 1900
5160-546: The multiple-unit control systems used for the cab/booster sets and the twin-engine format used with the later Zephyr power units. Both of those features would be used in EMC's later production model locomotives. The lightweight diesel streamliners of the mid-1930s demonstrated the advantages of diesel for passenger service with breakthrough schedule times, but diesel locomotive power would not fully come of age until regular series production of mainline diesel locomotives commenced and it
5246-939: The next examination date, he gained practical engineering experience at the Sulzer Brothers Machine Works in Winterthur , Switzerland. Diesel graduated in January 1880 with highest academic honours and returned to Paris, where he assisted Linde with the design and construction of a modern refrigeration and ice plant. Diesel became the director of the plant a year afterwards. In 1883, Diesel married Martha Flasche, and continued to work for Linde, gaining numerous patents in both Germany and France. In early 1890, Diesel moved to Berlin with his wife and children, Rudolf Jr, Heddy, and Eugen, to assume management of Linde's corporate research and development department and to join several other corporate boards. Since he
SECTION 60
#17327937071825332-617: The occasion of the 100th anniversary of Diesel's birth and the 60th anniversary of the diesel engine development, Yamaoka dedicated the Rudolf Diesel Memorial Garden ( Rudolf-Diesel-Gedächtnishain ) in Wittelsbacher Park in Augsburg , Bavaria, where Diesel had undertaken his early technical education and original engine development. After Diesel's death, his engine underwent much development and became
5418-481: The opportunity to test and develop his ideas. Diesel also received support from the Krupp firm. Diesel's design utilised compression ignition as opposed to using spark plugs similar to gas engines , with the ability to be run on biodiesel , if not petroleum -originating fuels. Compression engines are circa 30% more efficient over conventional gas burning engines, being mixed through forced compressed air within
5504-402: The output of which provides power to the traction motors that drive the locomotive. There is no mechanical connection between the diesel engine and the wheels. The important components of diesel–electric propulsion are the diesel engine (also known as the prime mover ), the main generator/alternator-rectifier, traction motors (usually with four or six axles), and a control system consisting of
5590-584: The performance and reliability of the new 567 model engine in passenger locomotives, EMC was eager to demonstrate diesel's viability in freight service. Following the successful 1939 tour of EMC's FT demonstrator freight locomotive set, the stage was set for dieselization of American railroads. In 1941, ALCO-GE introduced the RS-1 road-switcher that occupied its own market niche while EMD's F series locomotives were sought for mainline freight service. The US entry into World War II slowed conversion to diesel;
5676-484: The prime mover and electric motor were immediately encountered, primarily due to limitations of the Ward Leonard current control system that had been chosen. GE Rail was formed in 1907 and 112 years later, in 2019, was purchased by and merged with Wabtec . A significant breakthrough occurred in 1914, when Hermann Lemp , a GE electrical engineer, developed and patented a reliable control system that controlled
5762-450: The required performance for a fast, lightweight passenger train. The second milestone, and the one that got American railroads moving towards diesel, was the 1938 delivery of GM's Model 567 engine that was designed specifically for locomotive use, bringing a fivefold increase in life of some mechanical parts and showing its potential for meeting the rigors of freight service. Diesel–electric railroad locomotion entered mainline service when
5848-413: The strength of iron and steel cylinder heads. One exploded during a test run. He spent many months in a hospital, followed by health and eyesight problems. It was during this year that Diesel began conceptualising the idea of a diesel engine. Ever since attending lectures of von Linde, Diesel worked on designing an internal combustion engine that could approach the maximum theoretical thermal efficiency of
5934-405: The success of the custom streamliners, sought to expand the market for diesel power by producing standardized locomotives under their Electro-Motive Corporation . In 1936, EMC's new factory started production of switch engines. In 1937, the factory started producing their new E series streamlined passenger locomotives, which would be upgraded with more reliable purpose-built engines in 1938. Seeing
6020-432: The throttle from notch 2 to notch 4 without stopping at notch 3. This feature was intended to prevent rough train handling due to abrupt power increases caused by rapid throttle motion ("throttle stripping", an operating rules violation on many railroads). Modern locomotives no longer have this restriction, as their control systems are able to smoothly modulate power and avoid sudden changes in train loading regardless of how
6106-479: The throttle setting, as determined by the engine driver and the speed at which the prime mover is running (see Control theory ). Locomotive power output, and therefore speed, is typically controlled by the engine driver using a stepped or "notched" throttle that produces binary -like electrical signals corresponding to throttle position. This basic design lends itself well to multiple unit (MU) operation by producing discrete conditions that assure that all units in
6192-596: The top of his class in 1873, he enrolled at the newly founded Industrial School of Augsburg. Two years later, he received a merit scholarship from the Royal Bavarian Polytechnic of Munich , which he accepted against the wishes of his parents, who wanted him to begin working instead. One of Diesel's professors in Munich was Carl von Linde . Diesel was unable to graduate with his class in July 1879 because he fell ill with typhoid fever . While waiting for
6278-451: The use of an internal combustion engine in a railway locomotive is the prototype designed by William Dent Priestman , which was examined by William Thomson, 1st Baron Kelvin in 1888 who described it as a " Priestman oil engine mounted upon a truck which is worked on a temporary line of rails to show the adaptation of a petroleum engine for locomotive purposes." In 1894, a 20 hp (15 kW) two-axle machine built by Priestman Brothers
6364-660: The war's end, however, Diesel's mother sent 12-year-old Rudolf to Augsburg to live with his aunt and uncle, Barbara and Christoph Barnickel, to become fluent in German and to visit the Königliche Kreis-Gewerbeschule (Royal County Vocational College), where his uncle taught mathematics. He was enrolled at the Technische Hochschule (Tehnical High School). At the age of 14, Diesel wrote a letter to his parents saying that he intended to become an engineer. After finishing his basic education at
6450-672: The world's first functional diesel–electric railcars were produced for the Königlich-Sächsische Staatseisenbahnen ( Royal Saxon State Railways ) by Waggonfabrik Rastatt with electric equipment from Brown, Boveri & Cie and diesel engines from Swiss Sulzer AG . They were classified as DET 1 and DET 2 ( de.wiki ). Because of a shortage of petrol products during World War I, they remained unused for regular service in Germany. In 1922, they were sold to Swiss Compagnie du Chemin de fer Régional du Val-de-Travers , where they were used in regular service up to
6536-473: Was 95 tonnes and the power was 883 kW (1,184 hp) with a maximum speed of 100 km/h (62 mph). Small numbers of prototype diesel locomotives were produced in a number of countries through the mid-1920s. One of the first domestically developed Diesel vehicles of China was the Dongfeng DMU (东风), produced in 1958 by CSR Sifang . Series production of China's first Diesel locomotive class,
6622-527: Was brought to high-speed mainline passenger service in late 1934, largely through the research and development efforts of General Motors dating back to the late 1920s and advances in lightweight car body design by the Budd Company . The economic recovery from World War II hastened the widespread adoption of diesel locomotives in many countries. They offered greater flexibility and performance than steam locomotives , as well as substantially lower operating and maintenance costs. The earliest recorded example of
6708-688: Was delivered from the United States to the railways of the Soviet Union. In 1947, the London, Midland and Scottish Railway (LMS) introduced the first of a pair of 1,600 hp (1,200 kW) Co-Co diesel–electric locomotives (later British Rail Class D16/1 ) for regular use in the United Kingdom, although British manufacturers such as Armstrong Whitworth had been exporting diesel locomotives since 1930. Fleet deliveries to British Railways, of other designs such as Class 20 and Class 31, began in 1957. Series production of diesel locomotives in Italy began in
6794-573: Was murdered, given his refusal to grant the German forces the exclusive rights to using his invention; indeed, Diesel had boarded Dresden with the intent of meeting with representatives of the Royal Navy to discuss the possibility of powering British submarines by diesel engine. Another theory is that his apparent death was a ruse staged by the British government to cover his defection to the British cause, and that he then went to Canada, worked for
6880-477: Was never seen alive again. In the morning his cabin was empty and his bed had not been slept in, although his nightshirt was neatly laid out and his watch had been left where it could be seen from the bed. His hat and neatly folded overcoat were discovered beneath the afterdeck railing. Shortly after Diesel's disappearance, his wife Martha opened a bag that her husband had given to her just before his ill-fated voyage, with directions that it should not be opened until
6966-422: Was not allowed to use for his own purposes the patents he developed while an employee of Linde's, he expanded beyond the field of refrigeration. He first worked with steam, his research into thermal efficiency and fuel efficiency leading him to build a steam engine using ammonia vapor . During tests, however, the engine exploded and almost killed him. His research into high-compression cylinder pressures tested
7052-496: Was officially tested in 1897, featuring a 25 horsepower four-stroke , single vertical cylinder compression. Having just revolutionised the engine manufacturing industry, it became an immediate success, with royalties amassing great wealth for Diesel. The engine is currently on display at the German Technical Museum in Munich. Besides Germany, Diesel obtained patents for his design in other countries, including
7138-400: Was one of the principal design considerations that had to be solved in early diesel–electric locomotive development and, ultimately, led to the complex control systems in place on modern units. The prime mover's power output is primarily determined by its rotational speed ( RPM ) and fuel rate, which are regulated by a governor or similar mechanism. The governor is designed to react to both
7224-494: Was shown suitable for full-size passenger and freight service. Following their 1925 prototype, the AGEIR consortium produced 25 more units of 300 hp (220 kW) "60 ton" AGEIR boxcab switching locomotives between 1925 and 1928 for several New York City railroads, making them the first series-produced diesel locomotives. The consortium also produced seven twin-engine "100 ton" boxcabs and one hybrid trolley/battery unit with
7310-540: Was smaller and weighed less than most contemporary steam engines , not to mention the fact that further fuel sources weren't required. Fuel efficiency was measured 75% above the 10% theoretical efficiency for steam engines. In his engine, fuel was injected at the end of the compression stroke and was ignited by the high temperature resulting from the compression. From 1893 to 1897, Heinrich von Buz, director of Maschinenfabrik Augsburg in Augsburg, provided Rudolf Diesel
7396-737: Was used on the Hull Docks . In 1896, an oil-engined railway locomotive was built for the Royal Arsenal in Woolwich , England, using an engine designed by Herbert Akroyd Stuart . It was not a diesel, because it used a hot-bulb engine (also known as a semi-diesel), but it was the precursor of the diesel. Rudolf Diesel considered using his engine for powering locomotives in his 1893 book Theorie und Konstruktion eines rationellen Wärmemotors zum Ersatz der Dampfmaschine und der heute bekannten Verbrennungsmotoren ( Theory and Construction of
#181818