Misplaced Pages

Galena Group

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Ordovician ( / ɔːr d ə ˈ v ɪ ʃ i . ə n , - d oʊ -, - ˈ v ɪ ʃ ən / or-də- VISH -ee-ən, -⁠doh-, -⁠ VISH -ən ) is a geologic period and system , the second of six periods of the Paleozoic Era , and the second of twelve periods of the Phanerozoic Eon . The Ordovician spans 41.6 million years from the end of the Cambrian Period 485.4 Ma (million years ago) to the start of the Silurian Period 443.8 Ma.

#182817

107-758: The Galena Group or Galena Limestone refers to a sedimentary sequence of Ordovician limestone that was deposited atop the Decorah Shale . It is part of the Ordovician stratigraphy of the Upper Midwestern United States. It was deposited in a calm marine environment, and is fossiliferous. This article about a specific stratigraphic formation in the United States is a stub . You can help Misplaced Pages by expanding it . Ordovician The Ordovician, named after

214-600: A dense rock equivalent volume of as much as 1,140 cubic kilometres (270 cu mi). Remarkably, this appears to have had little impact on life. There was vigorous tectonic activity along northwest margin of Gondwana during the Floian, 478 Ma, recorded in the Central Iberian Zone of Spain. The activity reached as far as Turkey by the end of Ordovician. The opposite margin of Gondwana, in Australia, faced

321-603: A biogeographic affinity with Gondwana, and the Alborz margin of Gondwana was linked biogeographically to South China. Southeast Asia's fauna also maintained strong affinities to Gondwana's. North China was biogeographically connected to Laurentia and the Argentinian margin of Gondwana. A Celtic biogeographic province also existed, separate from the Laurentian and Baltican ones. However, tropical articulate brachiopods had

428-468: A burst of volcanic activity that deposited new silicate rocks, which draw CO 2 out of the air as they erode. Another possibility is that bryophytes and lichens, which colonized land in the middle to late Ordovician, may have increased weathering enough to draw down CO 2 levels. The drop in CO 2 selectively affected the shallow seas where most organisms lived. It has also been suggested that shielding of

535-590: A deep embayment between Siberia and the Central Mongolian terranes . Most of the terranes of central Asia were part of an equatorial archipelago whose geometry is poorly constrained by the available evidence. The period was one of extensive, widespread tectonism and volcanism. However, orogenesis (mountain-building) was not primarily due to continent-continent collisions. Instead, mountains arose along active continental margins during accretion of arc terranes or ribbon microcontinents. Accretion of new crust

642-607: A distinct band around the Earth, and that the breakup of the parent body may have formed a ring system for a period of about 40 million years, with frequent falling debris causing these craters. The Ordovician was a time of calcite sea geochemistry in which low-magnesium calcite was the primary inorganic marine precipitate of calcium carbonate . Carbonate hardgrounds were thus very common, along with calcitic ooids , calcitic cements, and invertebrate faunas with dominantly calcitic skeletons. Biogenic aragonite , like that composing

749-597: A formal proposal to the ICS for the establishment of the Anthropocene Series/Epoch. Nevertheless, the definition of the Anthropocene as a geologic time period rather than a geologic event remains controversial and difficult. An international working group of the ICS on pre-Cryogenian chronostratigraphic subdivision have outlined a template to improve the pre-Cryogenian geologic time scale based on

856-464: A given landmass were severely affected. Tropical lifeforms were hit particularly hard in the first wave of extinction, while cool-water species were hit worst in the second pulse. Those species able to adapt to the changing conditions survived to fill the ecological niches left by the extinctions. For example, there is evidence the oceans became more deeply oxygenated during the glaciation, allowing unusual benthic organisms (Hirnantian fauna) to colonize

963-635: A machine-readable Resource Description Framework / Web Ontology Language representation of the time scale, which is available through the Commission for the Management and Application of Geoscience Information GeoSciML project as a service and at a SPARQL end-point. Some other planets and satellites in the Solar System have sufficiently rigid structures to have preserved records of their own histories, for example, Venus , Mars and

1070-403: A manner allows for the use of global, standardised nomenclature. The International Chronostratigraphic Chart represents this ongoing effort. Several key principles are used to determine the relative relationships of rocks and thus their chronostratigraphic position. The law of superposition that states that in undeformed stratigraphic sequences the oldest strata will lie at the bottom of

1177-634: A more cosmopolitan distribution , with less diversity on different continents. During the Middle Ordovician, beta diversity began a significant decline as marine taxa began to disperse widely across space. Faunas become less provincial later in the Ordovician, partly due to the narrowing of the Iapetus Ocean, though they were still distinguishable into the late Ordovician. Trilobites in particular were rich and diverse, and experienced rapid diversification in many regions. Trilobites in

SECTION 10

#1732787793183

1284-529: A rock that cuts across another rock must be younger than the rock it cuts across. The law of included fragments that states small fragments of one type of rock that are embedded in a second type of rock must have formed first, and were included when the second rock was forming. The relationships of unconformities which are geologic features representing a gap in the geologic record. Unconformities are formed during periods of erosion or non-deposition, indicating non-continuous sediment deposition. Observing

1391-541: A set of island arcs. The accretion of these arcs to the eastern margin of Gondwana was responsible for the Benambran Orogeny of eastern Australia. Subduction also took place along what is now Argentina (Famatinian Orogeny) at 450 Ma. This involved significant back arc rifting. The interior of Gondwana was tectonically quiet until the Triassic . Towards the end of the period, Gondwana began to drift across

1498-419: A specific interval of geologic time, and only this time span. Eonothem, erathem, system, series, subseries, stage, and substage are the hierarchical chronostratigraphic units. A geochronologic unit is a subdivision of geologic time. It is a numeric representation of an intangible property (time). These units are arranged in a hierarchy: eon, era, period, epoch, subepoch, age, and subage. Geochronology

1605-678: A system of their own. The Ordovician received international approval in 1960 (forty years after Lapworth's death), when it was adopted as an official period of the Paleozoic Era by the International Geological Congress . Life continued to flourish during the Ordovician as it had in the earlier Cambrian Period, although the end of the period was marked by the Ordovician–Silurian extinction events . Invertebrates, namely molluscs and arthropods , dominated

1712-547: A system/series (early/middle/late); however, the International Commission on Stratigraphy advocates for all new series and subseries to be named for a geographic feature in the vicinity of its stratotype or type locality . The name of stages should also be derived from a geographic feature in the locality of its stratotype or type locality. Informally, the time before the Cambrian is often referred to as

1819-458: A wider sense, correlating strata across national and continental boundaries based on their similarity to each other. Many of the names below erathem/era rank in use on the modern ICC/GTS were determined during the early to mid-19th century. During the 19th century, the debate regarding Earth's age was renewed, with geologists estimating ages based on denudation rates and sedimentary thicknesses or ocean chemistry, and physicists determining ages for

1926-467: Is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (a scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists , paleontologists , geophysicists , geochemists , and paleoclimatologists ) to describe the timing and relationships of events in geologic history. The time scale has been developed through

2033-549: Is an internationally agreed-upon reference point on a stratigraphic section that defines the lower boundaries of stages on the geologic time scale. (Recently this has been used to define the base of a system) A Global Standard Stratigraphic Age (GSSA) is a numeric-only, chronologic reference point used to define the base of geochronologic units prior to the Cryogenian. These points are arbitrarily defined. They are used where GSSPs have not yet been established. Research

2140-439: Is divided into chronostratigraphic units and their corresponding geochronologic units. The subdivisions Early and Late are used as the geochronologic equivalents of the chronostratigraphic Lower and Upper , e.g., Early Triassic Period (geochronologic unit) is used in place of Lower Triassic System (chronostratigraphic unit). Rocks representing a given chronostratigraphic unit are that chronostratigraphic unit, and

2247-566: Is less frequent) remains unchanged. For example, in early 2022, the boundary between the Ediacaran and Cambrian periods (geochronologic units) was revised from 541 Ma to 538.8 Ma but the rock definition of the boundary (GSSP) at the base of the Cambrian, and thus the boundary between the Ediacaran and Cambrian systems (chronostratigraphic units) has not been changed; rather, the absolute age has merely been refined. Chronostratigraphy

SECTION 20

#1732787793183

2354-489: Is marked by a sudden abundance of hard substrate trace fossils such as Trypanites , Palaeosabella , Petroxestes and Osprioneides . Bioerosion became an important process, particularly in the thick calcitic skeletons of corals, bryozoans and brachiopods, and on the extensive carbonate hardgrounds that appear in abundance at this time. Green algae were common in the Late Cambrian (perhaps earlier) and in

2461-596: Is ongoing to define GSSPs for the base of all units that are currently defined by GSSAs. The standard international units of the geologic time scale are published by the International Commission on Stratigraphy on the International Chronostratigraphic Chart; however, regional terms are still in use in some areas. The numeric values on the International Chronostratigrahpic Chart are represented by

2568-457: Is still a useful concept. The principle of lateral continuity that states layers of sediments extend laterally in all directions until either thinning out or being cut off by a different rock layer, i.e. they are laterally continuous. Layers do not extend indefinitely; their limits are controlled by the amount and type of sediment in a sedimentary basin , and the geometry of that basin. The principle of cross-cutting relationships that states

2675-502: Is the element of stratigraphy that deals with the relation between rock bodies and the relative measurement of geological time. It is the process where distinct strata between defined stratigraphic horizons are assigned to represent a relative interval of geologic time. A chronostratigraphic unit is a body of rock, layered or unlayered, that is defined between specified stratigraphic horizons which represent specified intervals of geologic time. They include all rocks representative of

2782-405: Is the scientific branch of geology that aims to determine the age of rocks, fossils, and sediments either through absolute (e.g., radiometric dating ) or relative means (e.g., stratigraphic position , paleomagnetism , stable isotope ratios ). Geochronometry is the field of geochronology that numerically quantifies geologic time. A Global Boundary Stratotype Section and Point (GSSP)

2889-634: Is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC) that are used to define divisions of geologic time. The chronostratigraphic divisions are in turn used to define geochronologic units. The geologic time scale is a way of representing deep time based on events that have occurred throughout Earth's history , a time span of about 4.54 ± 0.05 Ga (4.54 billion years). It chronologically organises strata, and subsequently time, by observing fundamental changes in stratigraphy that correspond to major geological or paleontological events. For example,

2996-618: The Anthropocene is a proposed epoch/series for the most recent time in Earth's history. While still informal, it is a widely used term to denote the present geologic time interval, in which many conditions and processes on Earth are profoundly altered by human impact. As of April 2022 the Anthropocene has not been ratified by the ICS; however, in May 2019 the Anthropocene Working Group voted in favour of submitting

3103-539: The Brothers of Purity , who wrote on the processes of stratification over the passage of time in their treatises . Their work likely inspired that of the 11th-century Persian polymath Avicenna (Ibn Sînâ, 980–1037) who wrote in The Book of Healing (1027) on the concept of stratification and superposition, pre-dating Nicolas Steno by more than six centuries. Avicenna also recognised fossils as "petrifications of

3210-518: The Cambrian , reef -forming corals appeared in the early Ordovician, including the earliest known octocorals , corresponding to an increase in the stability of carbonate and thus a new abundance of calcifying animals. Brachiopods surged in diversity, adapting to almost every type of marine environment. Even after GOBE, there is evidence suggesting that Ordovician brachiopods maintained elevated rates of speciation. Molluscs , which appeared during

3317-659: The Cretaceous–Paleogene extinction event , marks the lower boundary of the Paleogene System/Period and thus the boundary between the Cretaceous and Paleogene systems/periods. For divisions prior to the Cryogenian , arbitrary numeric boundary definitions ( Global Standard Stratigraphic Ages , GSSAs) are used to divide geologic time. Proposals have been made to better reconcile these divisions with

Galena Group - Misplaced Pages Continue

3424-536: The Precambrian or pre-Cambrian (Supereon). While a modern geological time scale was not formulated until 1911 by Arthur Holmes , the broader concept that rocks and time are related can be traced back to (at least) the philosophers of Ancient Greece . Xenophanes of Colophon (c. 570–487  BCE ) observed rock beds with fossils of shells located above the sea-level, viewed them as once living organisms, and used this to imply an unstable relationship in which

3531-766: The Rheic Ocean between Gondwana and Avalonia. Avalonia collided with Baltica towards the end of Ordovician. Other geographic features of the Ordovician world included the Tornquist Sea , which separated Avalonia from Baltica; the Aegir Ocean, which separated Baltica from Siberia; and an oceanic area between Siberia, Baltica, and Gondwana which expanded to become the Paleoasian Ocean in Carboniferous time. The Mongol-Okhotsk Ocean formed

3638-657: The Welsh tribe of the Ordovices , was defined by Charles Lapworth in 1879 to resolve a dispute between followers of Adam Sedgwick and Roderick Murchison , who were placing the same rock beds in North Wales in the Cambrian and Silurian systems, respectively. Lapworth recognized that the fossil fauna in the disputed strata were different from those of either the Cambrian or the Silurian systems, and placed them in

3745-539: The endocerid cephalopods died out completely, except for possible rare Silurian forms. The Ordovician–Silurian extinction events may have been caused by an ice age that occurred at the end of the Ordovician Period, due to the expansion of the first terrestrial plants , as the end of the Late Ordovician was one of the coldest times in the last 600 million years of Earth's history. On the whole,

3852-404: The Cambrian or even the Ediacaran , became common and varied, especially bivalves , gastropods , and nautiloid cephalopods. Cephalopods diversified from shallow marine tropical environments to dominate almost all marine environments. Graptolites, which evolved in the preceding Cambrian period, thrived in the oceans. This includes the distinctive Nemagraptus gracilis graptolite fauna, which

3959-472: The Cambrian were succeeded by those that dominated the rest of the Paleozoic, such as articulate brachiopods, cephalopods , and crinoids . Articulate brachiopods, in particular, largely replaced trilobites in shelf communities. Their success epitomizes the greatly increased diversity of carbonate shell-secreting organisms in the Ordovician compared to the Cambrian. Ordovician geography had its effect on

4066-691: The Commission on Stratigraphy (applied in 1965) to become a member commission of IUGS led to the founding of the ICS. One of the primary objectives of the ICS is "the establishment, publication and revision of the ICS International Chronostratigraphic Chart which is the standard, reference global Geological Time Scale to include the ratified Commission decisions". Following on from Holmes, several A Geological Time Scale books were published in 1982, 1989, 2004, 2008, 2012, 2016, and 2020. However, since 2013,

4173-967: The Dapingian and the early Darriwilian. The Llanvirn corresponds to the late Darriwilian. The Caradoc covers the Sandbian and the first half of the Katian. The Ashgill represents the second half of the Katian, plus the Hirnantian . The Ashgill Epoch, the last epoch of the British Ordovician, is made of four ages: the Hirnantian Age, the Rawtheyan Age, the Cautleyan Age, and the Pusgillian Age. These ages make up

4280-848: The Early Eocene Climatic Optimum. Carbon dioxide levels were very high at the Ordovician period's beginning. By the late Early Ordovician, the Earth cooled, giving way to a more temperate climate in the Middle Ordovician, with the Earth likely entering the Early Palaeozoic Ice Age during the Sandbian, and possibly as early as the Darriwilian or even the Floian. The Dapingian and Sandbian saw major humidification events evidenced by trace metal concentrations in Baltoscandia from this time. Evidence suggests that global temperatures rose briefly in

4387-532: The Early Ordovician, leveling off somewhat during the middle of the period. Locally, some regressions occurred, but the sea level rise continued in the beginning of the Late Ordovician. Sea levels fell steadily due to the cooling temperatures for about 3 million years leading up to the Hirnantian glaciation. During this icy stage, sea level seems to have risen and dropped somewhat. Despite much study,

Galena Group - Misplaced Pages Continue

4494-474: The Earth's Moon . Dominantly fluid planets, such as the giant planets , do not comparably preserve their history. Apart from the Late Heavy Bombardment , events on other planets probably had little direct influence on the Earth, and events on Earth had correspondingly little effect on those planets. Construction of a time scale that links the planets is, therefore, of only limited relevance to

4601-529: The Earth's time scale, except in a Solar System context. The existence, timing, and terrestrial effects of the Late Heavy Bombardment are still a matter of debate. The geologic history of Earth's Moon has been divided into a time scale based on geomorphological markers, namely impact cratering , volcanism , and erosion . This process of dividing the Moon's history in this manner means that

4708-559: The Great Ordovician Biodiversification Event) was no less remarkable; marine faunal genera increased fourfold, resulting in 12% of all known Phanerozoic marine fauna. Several animals also went through a miniaturization process, becoming much smaller than their Cambrian counterparts. Another change in the fauna was the strong increase in filter-feeding organisms. The trilobite, inarticulate brachiopod, archaeocyathid , and eocrinoid faunas of

4815-507: The Hirnantian glaciation. As with North America and Europe , Gondwana was largely covered with shallow seas during the Ordovician. Shallow clear waters over continental shelves encouraged the growth of organisms that deposit calcium carbonates in their shells and hard parts. The Panthalassic Ocean covered much of the Northern Hemisphere , and other minor oceans included Proto-Tethys , Paleo-Tethys , Khanty Ocean , which

4922-450: The ICS has taken responsibility for producing and distributing the ICC citing the commercial nature, independent creation, and lack of oversight by the ICS on the prior published GTS versions (GTS books prior to 2013) although these versions were published in close association with the ICS. Subsequent Geologic Time Scale books (2016 and 2020 ) are commercial publications with no oversight from

5029-404: The ICS, and do not entirely conform to the chart produced by the ICS. The ICS produced GTS charts are versioned (year/month) beginning at v2013/01. At least one new version is published each year incorporating any changes ratified by the ICS since the prior version. The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to

5136-415: The ICS. While some regional terms are still in use, the table of geologic time conforms to the nomenclature , ages, and colour codes set forth by the International Commission on Stratigraphy in the official International Chronostratigraphic Chart. The International Commission on Stratigraphy also provide an online interactive version of this chart. The interactive version is based on a service delivering

5243-402: The Late Ordovician argues that the mass extinction was a single protracted episode lasting several hundred thousand years, with abrupt changes in water depth and sedimentation rate producing two pulses of last occurrences of species. Geologic Time Scale The geologic time scale or geological time scale ( GTS ) is a representation of time based on the rock record of Earth . It

5350-469: The Ordovician of Wisconsin have been found with an age of about 460 million years ago, a time when the land flora most likely only consisted of plants similar to non-vascular bryophytes . Though stromatolites had declined from their peak in the Proterozoic, they continued to exist in localised settings. The Ordovician came to a close in a series of extinction events that, taken together, comprise

5457-421: The Ordovician were very different from their predecessors in the Cambrian. Many trilobites developed bizarre spines and nodules to defend against predators such as primitive eurypterids and nautiloids while other trilobites such as Aeglina prisca evolved to become swimming forms. Some trilobites even developed shovel-like snouts for ploughing through muddy sea bottoms. Another unusual clade of trilobites known as

SECTION 50

#1732787793183

5564-582: The Ordovician, when at least two volcanic island arcs collided with Laurentia to form the Appalachian Mountains . Laurentia was otherwise tectonically stable. An island arc accreted to South China during the period, while subduction along north China (Sulinheer) resulted in the emplacement of ophiolites. The ash fall of the Millburg/Big Bentonite bed, at about 454 Ma, was the largest in the last 590 million years. This had

5671-428: The Ordovician. The ice age was possibly not long-lasting. Oxygen isotopes in fossil brachiopods show its duration may have been only 0.5 to 1.5 million years. Other researchers (Page et al.) estimate more temperate conditions did not return until the late Silurian. The late Ordovician glaciation event was preceded by a fall in atmospheric carbon dioxide (from 7000 ppm to 4400 ppm). The dip may have been caused by

5778-557: The Ordovician. Terrestrial plants probably evolved from green algae, first appearing as tiny non- vascular forms resembling liverworts , in the middle to late Ordovician. Fossil spores found in Ordovician sedimentary rock are typical of bryophytes. Among the first land fungi may have been arbuscular mycorrhiza fungi ( Glomerales ), playing a crucial role in facilitating the colonization of land by plants through mycorrhizal symbiosis , which makes mineral nutrients available to plant cells; such fossilized fungal hyphae and spores from

5885-613: The South Pole. This contributed to the Hibernian glaciation and the associated extinction event. The Ordovician meteor event is a proposed shower of meteors that occurred during the Middle Ordovician Epoch, about 467.5 ± 0.28 million years ago, due to the break-up of the L chondrite parent body. It is not associated with any major extinction event. A 2024 study found that craters from this event cluster in

5992-564: The Wuliuan, exploded in diversity during the Tremadocian, quickly becoming globally widespread. Several groups of endobiotic symbionts appeared in the Ordovician. In the Early Ordovician, trilobites were joined by many new types of organisms, including tabulate corals, strophomenid , rhynchonellid , and many new orthid brachiopods, bryozoans, planktonic graptolites and conodonts, and many types of molluscs and echinoderms, including

6099-529: The bodies of plants and animals", with the 13th-century Dominican bishop Albertus Magnus (c. 1200–1280) extending this into a theory of a petrifying fluid. These works appeared to have little influence on scholars in Medieval Europe who looked to the Bible to explain the origins of fossils and sea-level changes, often attributing these to the ' Deluge ', including Ristoro d'Arezzo in 1282. It

6206-569: The cooling of the Earth or the Sun using basic thermodynamics or orbital physics. These estimations varied from 15,000 million years to 0.075 million years depending on method and author, but the estimations of Lord Kelvin and Clarence King were held in high regard at the time due to their pre-eminence in physics and geology. All of these early geochronometric determinations would later prove to be incorrect. The discovery of radioactive decay by Henri Becquerel , Marie Curie , and Pierre Curie laid

6313-775: The corresponding geochronologic unit sharing the same name with a change to the suffix (e.g. Phanerozoic Eonothem becomes the Phanerozoic Eon). Names of erathems in the Phanerozoic were chosen to reflect major changes in the history of life on Earth: Paleozoic (old life), Mesozoic (middle life), and Cenozoic (new life). Names of systems are diverse in origin, with some indicating chronologic position (e.g., Paleogene), while others are named for lithology (e.g., Cretaceous), geography (e.g., Permian ), or are tribal (e.g., Ordovician ) in origin. Most currently recognised series and subseries are named for their position within

6420-456: The depths. These organisms were cosmopolitan in distribution and present at most latitudes. At the end of the second event, melting glaciers caused the sea level to rise and stabilise once more. The rebound of life's diversity with the permanent re-flooding of continental shelves at the onset of the Silurian saw increased biodiversity within the surviving Orders. Recovery was characterized by an unusual number of "Lazarus taxa", disappearing during

6527-473: The details remain unresolved. In particular, some researches interpret the fluctuations in sea level as pre-Hibernian glaciation, but sedimentary evidence of glaciation is lacking until the end of the period. There is evidence of glaciers during the Hirnantian on the land we now know as Africa and South America, which were near the South Pole at the time, facilitating the formation of the ice caps of

SECTION 60

#1732787793183

6634-457: The developments in mass spectrometry pioneered by Francis William Aston , Arthur Jeffrey Dempster , and Alfred O. C. Nier during the early to mid- 20th century would finally allow for the accurate determination of radiometric ages, with Holmes publishing several revisions to his geological time-scale with his final version in 1960. The establishment of the IUGS in 1961 and acceptance of

6741-404: The different layers of stone unless they had been upon the shore and had been covered over by earth newly thrown up by the sea which then became petrified? And if the above-mentioned Deluge had carried them to these places from the sea, you would find the shells at the edge of one layer of rock only, not at the edge of many where may be counted the winters of the years during which the sea multiplied

6848-422: The diversity of fauna; Ordovician invertebrates displayed a very high degree of provincialism. The widely separated continents of Laurentia and Baltica, then positioned close to the tropics and boasting many shallow seas rich in life, developed distinct trilobite faunas from the trilobite fauna of Gondwana, and Gondwana developed distinct fauna in its tropical and temperature zones. The Tien Shan terrane maintained

6955-559: The early Katian (Boda Event), depositing bioherms and radiating fauna across Europe. The early Katian also witnessed yet another humidification event. Further cooling during the Hirnantian, at the end of the Ordovician, led to the Late Ordovician glaciation . The Ordovician saw the highest sea levels of the Paleozoic, and the low relief of the continents led to many shelf deposits being formed under hundreds of metres of water. The sea level rose more or less continuously throughout

7062-425: The extinction and reappearing well into the Silurian, which suggests that the taxa survived in small numbers in refugia . An alternate extinction hypothesis suggested that a ten-second gamma-ray burst could have destroyed the ozone layer and exposed terrestrial and marine surface-dwelling life to deadly ultraviolet radiation and initiated global cooling. Recent work considering the sequence stratigraphy of

7169-543: The fauna that emerged in the Ordovician were the template for the remainder of the Palaeozoic. The fauna was dominated by tiered communities of suspension feeders, mainly with short food chains. The ecological system reached a new grade of complexity far beyond that of the Cambrian fauna, which has persisted until the present day. Though less famous than the Cambrian explosion , the Ordovician radiation (also known as

7276-578: The first rugose corals appeared. The planktonic graptolites remained diverse, with the Diplograptina making their appearance. One of the earliest known armoured agnathan (" ostracoderm ") vertebrates, Arandaspis , dates from the Middle Ordovician. During the Middle Ordovician there was a large increase in the intensity and diversity of bioeroding organisms. This is known as the Ordovician Bioerosion Revolution. It

7383-414: The foundational principles of determining the correlation of strata relative to geologic time. Over the course of the 18th-century geologists realised that: The apparent, earliest formal division of the geologic record with respect to time was introduced during the era of Biblical models by Thomas Burnet who applied a two-fold terminology to mountains by identifying " montes primarii " for rock formed at

7490-401: The geologic time scale of Earth. This table is arranged with the most recent geologic periods at the top, and the oldest at the bottom. The height of each table entry does not correspond to the duration of each subdivision of time. As such, this table is not to scale and does not accurately represent the relative time-spans of each geochronologic unit. While the Phanerozoic Eon looks longer than

7597-502: The globe. At the start of the period, the continents of Laurentia (in present-day North America ), Siberia , and Baltica (present-day northern Europe) were separated from Gondwana by over 5,000 kilometres (3,100 mi) of ocean. These smaller continents were also sufficiently widely separated from each other to develop distinct communities of benthic organisms. The small continent of Avalonia had just rifted from Gondwana and began to move north towards Baltica and Laurentia, opening

7704-492: The ground work for radiometric dating, but the knowledge and tools required for accurate determination of radiometric ages would not be in place until the mid-1950s. Early attempts at determining ages of uranium minerals and rocks by Ernest Rutherford , Bertram Boltwood , Robert Strutt , and Arthur Holmes, would culminate in what are considered the first international geological time scales by Holmes in 1911 and 1913. The discovery of isotopes in 1913 by Frederick Soddy , and

7811-561: The layers of sand and mud brought down by the neighboring rivers and spread them over its shores. And if you wish to say that there must have been many deluges in order to produce these layers and the shells among them it would then become necessary for you to affirm that such a deluge took place every year. These views of da Vinci remained unpublished, and thus lacked influence at the time; however, questions of fossils and their significance were pursued and, while views against Genesis were not readily accepted and dissent from religious doctrine

7918-476: The oceans, with members of the latter group probably starting their establishment on land during this time, becoming fully established by the Devonian . The first land plants are known from this period. The Great Ordovician Biodiversification Event considerably increased the diversity of life. Fish , the world's first true vertebrates , continued to evolve, and those with jaws may have first appeared late in

8025-548: The ophiuroids ("brittle stars") and the first sea stars . Nevertheless, the arthropods remained abundant; all the Late Cambrian orders continued, and were joined by the new group Phacopida . The first evidence of land plants also appeared (see evolutionary history of life ). In the Middle Ordovician, the trilobite-dominated Early Ordovician communities were replaced by generally more mixed ecosystems, in which brachiopods, bryozoans, molluscs, cornulitids , tentaculitids and echinoderms all flourished, tabulate corals diversified and

8132-720: The period. About 100 times as many meteorites struck the Earth per year during the Ordovician compared with today in a period known as the Ordovician meteor event . It has been theorized that this increase in impacts may originate from a ring system that formed around Earth at the time. In 2008, the ICS erected a formal international system of subdivisions for the Ordovician Period and System. Pre-existing Baltoscandic, British, Siberian, North American, Australian, Chinese, Mediterranean and North- Gondwanan regional stratigraphic schemes are also used locally. The Ordovician Period in Britain

8239-408: The pertinent time span. As of April 2022 these proposed changes have not been accepted by the ICS. The proposed changes (changes from the current scale [v2023/09]) are italicised: Proposed pre-Cambrian timeline (GTS2012), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The following table summarises the major events and characteristics of the divisions making up

8346-452: The present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in the third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) First suggested in 2000,

8453-489: The principles of superposition, original horizontality, lateral continuity, and cross-cutting relationships. From this Steno reasoned that strata were laid down in succession and inferred relative time (in Steno's belief, time from Creation ). While Steno's principles were simple and attracted much attention, applying them proved challenging. These basic principles, albeit with improved and more nuanced interpretations, still form

8560-473: The rest, it merely spans ~539 million years (~12% of Earth's history), whilst the previous three eons collectively span ~3,461 million years (~76% of Earth's history). This bias toward the most recent eon is in part due to the relative lack of information about events that occurred during the first three eons compared to the current eon (the Phanerozoic). The use of subseries/subepochs has been ratified by

8667-630: The rock record to bring it in line with the post-Tonian geologic time scale. This work assessed the geologic history of the currently defined eons and eras of the pre-Cambrian, and the proposals in the "Geological Time Scale" books 2004, 2012, and 2020. Their recommend revisions of the pre-Cryogenian geologic time scale were (changes from the current scale [v2023/09] are italicised): Proposed pre-Cambrian timeline (Shield et al. 2021, ICS working group on pre-Cryogenian chronostratigraphy), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The book, Geologic Time Scale 2012,

8774-431: The rock record. Historically, regional geologic time scales were used due to the litho- and biostratigraphic differences around the world in time equivalent rocks. The ICS has long worked to reconcile conflicting terminology by standardising globally significant and identifiable stratigraphic horizons that can be used to define the lower boundaries of chronostratigraphic units. Defining chronostratigraphic units in such

8881-474: The sea had at times transgressed over the land and at other times had regressed . This view was shared by a few of Xenophanes's contemporaries and those that followed, including Aristotle (384–322 BCE) who (with additional observations) reasoned that the positions of land and sea had changed over long periods of time. The concept of deep time was also recognised by Chinese naturalist Shen Kuo (1031–1095) and Islamic scientist -philosophers, notably

8988-400: The sea level dropped, and the vast shallow intra-continental Ordovician seas withdrew, which eliminated many ecological niches. When they returned, they carried diminished founder populations that lacked many whole families of organisms. They then withdrew again with the next pulse of glaciation, eliminating biological diversity with each change. Species limited to a single epicontinental sea on

9095-426: The sea, and about 49% of genera of fauna disappeared forever; brachiopods and bryozoans were greatly reduced, along with many trilobite , conodont and graptolite families. The most commonly accepted theory is that these events were triggered by the onset of cold conditions in the late Katian, followed by an ice age , in the Hirnantian faunal stage, that ended the long, stable greenhouse conditions typical of

9202-512: The second largest of the five major extinction events in Earth's history in terms of percentage of genera that became extinct. The only larger one was the Permian–Triassic extinction event . The extinctions occurred approximately 447–444 million years ago and mark the boundary between the Ordovician and the following Silurian Period. At that time all complex multicellular organisms lived in

9309-445: The sequence, while newer material stacks upon the surface. In practice, this means a younger rock will lie on top of an older rock unless there is evidence to suggest otherwise. The principle of original horizontality that states layers of sediments will originally be deposited horizontally under the action of gravity. However, it is now known that not all sedimentary layers are deposited purely horizontally, but this principle

9416-425: The shells of most molluscs , dissolved rapidly on the sea floor after death. Unlike Cambrian times, when calcite production was dominated by microbial and non-biological processes, animals (and macroalgae) became a dominant source of calcareous material in Ordovician deposits. The Early Ordovician climate was very hot, with intense greenhouse conditions and sea surface temperatures comparable to those during

9523-554: The study of rock layers and the observation of their relationships and identifying features such as lithologies , paleomagnetic properties, and fossils . The definition of standardised international units of geologic time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective

9630-492: The sun's rays from the proposed Ordovician ring system, which also caused the Ordovician meteor event , may have also led to the glaciation. As the southern supercontinent Gondwana drifted over the South Pole, ice caps formed on it, which have been detected in Upper Ordovician rock strata of North Africa and then-adjacent northeastern South America, which were south-polar locations at the time. As glaciers grew,

9737-548: The time during which the rocks were laid down, and the collection of rocks themselves (i.e., it was correct to say Tertiary rocks, and Tertiary Period). Only the Quaternary division is retained in the modern geologic time scale, while the Tertiary division was in use until the early 21st century. The Neptunism and Plutonism theories would compete into the early 19th century with a key driver for resolution of this debate being

9844-735: The time of the 'Deluge', and younger " monticulos secundarios" formed later from the debris of the " primarii" . Anton Moro (1687–1784) also used primary and secondary divisions for rock units but his mechanism was volcanic. In this early version of the Plutonism theory, the interior of Earth was seen as hot, and this drove the creation of primary igneous and metamorphic rocks and secondary rocks formed contorted and fossiliferous sediments. These primary and secondary divisions were expanded on by Giovanni Targioni Tozzetti (1712–1783) and Giovanni Arduino (1713–1795) to include tertiary and quaternary divisions. These divisions were used to describe both

9951-528: The time period from c. 450 Ma to c. 443 Ma. The Rawtheyan, the second last of the Ashgill ages, was from c. 449 Ma to c. 445 Ma. It is in the Katian Age of the ICS's Geologic Time Scale . During the Ordovician, the southern continents were assembled into Gondwana , which reached from north of the equator to the South Pole . The Panthalassic Ocean, centered in the northern hemisphere, covered over half

10058-573: The time scale boundaries do not imply fundamental changes in geological processes, unlike Earth's geologic time scale. Five geologic systems/periods ( Pre-Nectarian , Nectarian , Imbrian , Eratosthenian , Copernican ), with the Imbrian divided into two series/epochs (Early and Late) were defined in the latest Lunar geologic time scale. The Moon is unique in the Solar System in that it is the only other body from which humans have rock samples with

10165-606: The time they were laid down in is the geochronologic unit, e.g., the rocks that represent the Silurian System are the Silurian System and they were deposited during the Silurian Period. This definition means the numeric age of a geochronologic unit can be changed (and is more often subject to change) when refined by geochronometry while the equivalent chronostratigraphic unit (the revision of which

10272-399: The trinucleids developed a broad pitted margin around their head shields. Some trilobites such as Asaphus kowalewski evolved long eyestalks to assist in detecting predators whereas other trilobite eyes in contrast disappeared completely. Molecular clock analyses suggest that early arachnids started living on land by the end of the Ordovician. Although solitary corals date back to at least

10379-426: The type and relationships of unconformities in strata allows geologist to understand the relative timing the strata. The principle of faunal succession (where applicable) that states rock strata contain distinctive sets of fossils that succeed each other vertically in a specific and reliable order. This allows for a correlation of strata even when the horizon between them is not continuous. The geologic time scale

10486-555: The unit Ma (megaannum, for 'million years '). For example, 201.4 ± 0.2 Ma, the lower boundary of the Jurassic Period, is defined as 201,400,000 years old with an uncertainty of 200,000 years. Other SI prefix units commonly used by geologists are Ga (gigaannum, billion years), and ka (kiloannum, thousand years), with the latter often represented in calibrated units ( before present ). The names of geologic time units are defined for chronostratigraphic units with

10593-533: The work of James Hutton (1726–1797), in particular his Theory of the Earth , first presented before the Royal Society of Edinburgh in 1785. Hutton's theory would later become known as uniformitarianism , popularised by John Playfair (1748–1819) and later Charles Lyell (1797–1875) in his Principles of Geology . Their theories strongly contested the 6,000 year age of the Earth as suggested determined by James Ussher via Biblical chronology that

10700-429: Was accepted at the time by western religion. Instead, using geological evidence, they contested Earth to be much older, cementing the concept of deep time. During the early 19th century William Smith , Georges Cuvier , Jean d'Omalius d'Halloy , and Alexandre Brongniart pioneered the systematic division of rocks by stratigraphy and fossil assemblages. These geologists began to use the local names given to rock units in

10807-537: Was closed off by the Late Ordovician, Iapetus Ocean , and the new Rheic Ocean . For most of the Late Ordovician life continued to flourish, but at and near the end of the period there were mass-extinction events that seriously affected conodonts and planktonic forms like graptolites . The trilobites Agnostida and Ptychopariida completely died out, and the Asaphida were much reduced. Brachiopods , bryozoans and echinoderms were also heavily affected, and

10914-554: Was distributed widely during peak sea levels in the Sandbian. Some new cystoids and crinoids appeared. It was long thought that the first true vertebrates (fish — Ostracoderms ) appeared in the Ordovician, but recent discoveries in China reveal that they probably originated in the Early Cambrian . The first gnathostome (jawed fish) may have appeared in the Late Ordovician epoch. Chitinozoans, which first appeared late in

11021-415: Was in some places unwise, scholars such as Girolamo Fracastoro shared da Vinci's views, and found the attribution of fossils to the 'Deluge' absurd. Niels Stensen, more commonly known as Nicolas Steno (1638–1686), is credited with establishing four of the guiding principles of stratigraphy. In De solido intra solidum naturaliter contento dissertationis prodromus Steno states: Respectively, these are

11128-495: Was limited to the Iapetus margin of Laurentia; elsewhere, the pattern was of rifting in back-arc basins followed by remerger. This reflected episodic switching from extension to compression. The initiation of new subduction reflected a global reorganization of tectonic plates centered on the amalgamation of Gondwana. The Taconic orogeny , a major mountain-building episode, was well under way in Cambrian times. This continued into

11235-548: Was not until the Italian Renaissance when Leonardo da Vinci (1452–1519) would reinvigorate the relationships between stratification, relative sea-level change, and time, denouncing attribution of fossils to the 'Deluge': Of the stupidity and ignorance of those who imagine that these creatures were carried to such places distant from the sea by the Deluge...Why do we find so many fragments and whole shells between

11342-485: Was the last commercial publication of an international chronostratigraphic chart that was closely associated with the ICS. It included a proposal to substantially revise the pre-Cryogenian time scale to reflect important events such as the formation of the Solar System and the Great Oxidation Event , among others, while at the same time maintaining most of the previous chronostratigraphic nomenclature for

11449-532: Was traditionally broken into Early (Tremadocian and Arenig ), Middle ( Llanvirn (subdivided into Abereiddian and Llandeilian) and Llandeilo ) and Late ( Caradoc and Ashgill) epochs. The corresponding rocks of the Ordovician System are referred to as coming from the Lower, Middle, or Upper part of the column. The Tremadoc corresponds to the ICS's Tremadocian. The Arenig corresponds to the Floian, all of

#182817