Misplaced Pages

Canadian Hydrographic Service

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Canadian Hydrographic Service ( CHS ) is part of the federal department of Fisheries and Oceans Canada and is Canada 's authoritative hydrographic office . The CHS represents Canada in the International Hydrographic Organization (IHO) .

#185814

62-1201: The CHS is administratively part of Fisheries and Oceans Canada's Oceans and Ecosystems Science Sector. According to mandated obligations of the Oceans Act and the Canada Shipping Act , the CHS is led by the Hydrographer General of Canada who is responsible for gathering, managing, transforming and disseminating bathymetric, hydrographic and nautical data and information into paper and electronic nautical charts, as well as publications and “hydrospatial” (blue geospatial) data and services, including updating services of: broadcast Navigational Warnings and/or Notices to Mariners; and, other publications, data and services of: Tide & Current Tables; water levels observations in near-real time, real-time and forecasting; Sailing Directions and hydrospatial dynamic data, products and services primarily for safe and efficient navigation in Canadian waters and much more. CHS

124-408: A moving map display , or recorded or used by some other system, such as a vehicle guidance system. Although usually not formed explicitly in the receiver processing, the conceptual time differences of arrival (TDOAs) define the measurement geometry. Each TDOA corresponds to a hyperboloid of revolution (see Multilateration ). The line connecting the two satellites involved (and its extensions) forms

186-556: A civilian scientific organization under the federal government's Department of Fisheries and Oceans (DFO) Science Sector. Most of the survey vessels employed by CHS are nominally crewed and operated by the Canadian Coast Guard , also part of DFO. CHS also works in collaboration with the Royal Canadian Navy and other ships and vessels of opportunity from other international hydrographic offices, primarily

248-705: A deliberate error introduced into the GPS data that military receivers could correct for. As civilian GPS usage grew, there was increasing pressure to remove this error. The SA system was temporarily disabled during the Gulf War , as a shortage of military GPS units meant that many US soldiers were using civilian GPS units sent from home. In the 1990s, Differential GPS systems from the US Coast Guard , Federal Aviation Administration , and similar agencies in other countries began to broadcast local GPS corrections, reducing

310-450: A directive making GPS freely available for civilian use, once it was sufficiently developed, as a common good. The first Block II satellite was launched on February 14, 1989, and the 24th satellite was launched in 1994. The GPS program cost at this point, not including the cost of the user equipment but including the costs of the satellite launches, has been estimated at US$ 5 billion (equivalent to $ 10 billion in 2023). Initially,

372-517: A full complement of 24 satellites in 2027. The GPS project was launched in the United States in 1973 to overcome the limitations of previous navigation systems, combining ideas from several predecessors, including classified engineering design studies from the 1960s. The U.S. Department of Defense developed the system, which originally used 24 satellites, for use by the United States military, and became fully operational in 1993. Civilian use

434-429: A liaison. The U.S. Department of Defense is required by law to "maintain a Standard Positioning Service (as defined in the federal radio navigation plan and the standard positioning service signal specification) that will be available on a continuous, worldwide basis" and "develop measures to prevent hostile use of GPS and its augmentations without unduly disrupting or degrading civilian uses". USA-203 from Block IIR-M

496-563: A manageable level to permit accurate navigation. During Labor Day weekend in 1973, a meeting of about twelve military officers at the Pentagon discussed the creation of a Defense Navigation Satellite System (DNSS) . It was at this meeting that the real synthesis that became GPS was created. Later that year, the DNSS program was named Navstar. Navstar is often erroneously considered an acronym for "NAVigation System using Timing And Ranging" but

558-461: A minimum, four satellites must be in view of the receiver for it to compute four unknown quantities (three position coordinates and the deviation of its own clock from satellite time). Each GPS satellite continually broadcasts a signal ( carrier wave with modulation ) that includes: Conceptually, the receiver measures the TOAs (according to its own clock) of four satellite signals. From the TOAs and

620-431: A receiver start-up situation. Most receivers have a track algorithm , sometimes called a tracker , that combines sets of satellite measurements collected at different times—in effect, taking advantage of the fact that successive receiver positions are usually close to each other. After a set of measurements are processed, the tracker predicts the receiver location corresponding to the next set of satellite measurements. When

682-650: Is a satellite-based radio navigation system owned by the United States Space Force and operated by Mission Delta 31 . It is one of the global navigation satellite systems (GNSS) that provide geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephone or Internet reception, though these technologies can enhance

SECTION 10

#1732772352186

744-403: Is also involved in the successful implementation of new technologies such as: autonomous hydrographic vehicles (surface, underwater, airborne and/or micro-satellites); Maritime Autonomous Surface Ships (MASS); and many more in the context of the emerging hydrographic and hydrospatial artificial intelligence within hydrospatial. Unlike most nations, CHS is not part of Canada's navy , but is rather

806-527: Is owned and operated by the United States government as a national resource. The Department of Defense is the steward of GPS. The Interagency GPS Executive Board (IGEB) oversaw GPS policy matters from 1996 to 2004. After that, the National Space-Based Positioning, Navigation and Timing Executive Committee was established by presidential directive in 2004 to advise and coordinate federal departments and agencies on matters concerning

868-1251: Is responsible for leading and coordinating the Government of Canada's implementation of a Marine Spatial (Hydrospatial) Data Infrastructure (MSDI) as a key oceans and freshwater component of the Canadian Geospatial Data Infrastructure (CGDI). MSDI compatible and interoperable globally within the directions and framework of the United Nations Global Geospatial Information Management ( UN-GGIM ). Feeding and guiding future needs and requirements, such as standard near real-time and real-time Hydrographic and Hydrospatial Dynamic Products, for safe and efficient navigation, and serve new technologies such as Maritime Autonomous Surface Ships (MASS); in close collaboration with Natural Resources Canada's (NRCan) Mapping and Earth Observation (CCMEO) Branch colleagues. Prior to Confederation , responsibilities for hydrographic survey and chart production in British North America rested with

930-808: Is unhealthy For a more complete list, see List of GPS satellites On February 10, 1993, the National Aeronautic Association selected the GPS Team as winners of the 1992 Robert J. Collier Trophy , the US's most prestigious aviation award. This team combines researchers from the Naval Research Laboratory, the U.S. Air Force, the Aerospace Corporation , Rockwell International Corporation, and IBM Federal Systems Company. The citation honors them "for

992-542: The Canadian Arctic Archipelago in support of ships carrying logistics and construction material. CHS is one of the only hydrographic offices in the world with the capability to undertake Arctic surveying, frequently operating in waters that are frozen between 10 and 12 months of the year. CHS has migrated from single-beam sonar to becoming a major user of multi-beam echo-sounder sonar systems coupled with GPS to achieve improved survey accuracies. CHS

1054-503: The Doppler effect , they could pinpoint where the satellite was along its orbit. The Director of the APL gave them access to their UNIVAC I computer to perform the heavy calculations required. Early the next year, Frank McClure, the deputy director of the APL, asked Guier and Weiffenbach to investigate the inverse problem: pinpointing the user's location, given the satellite's. (At the time,

1116-670: The Royal Navy . In 1882, the loss of the steamship SS Asia on an uncharted shoal in Georgian Bay resulted in 150 fatalities and was Canada's worst maritime disaster at the time. On August 13, 1883, the Dominion government established the Georgian Bay Survey which was empowered by legislation with the responsibility to survey and chart navigable waters of Georgian Bay and Lake Huron . Surveying and charting

1178-504: The navigation equations gives the position of the receiver along with the difference between the time kept by the receiver's on-board clock and the true time-of-day, thereby eliminating the need for a more precise and possibly impractical receiver based clock. Applications for GPS such as time transfer , traffic signal timing, and synchronization of cell phone base stations , make use of this cheap and highly accurate timing. Some GPS applications use this time for display, or, other than for

1240-524: The Earth's center) and the offset of the receiver clock relative to the GPS time are computed simultaneously, using the navigation equations to process the TOFs. The receiver's Earth-centered solution location is usually converted to latitude , longitude and height relative to an ellipsoidal Earth model. The height may then be further converted to height relative to the geoid , which is essentially mean sea level. These coordinates may be displayed, such as on

1302-664: The GPS and related systems. The executive committee is chaired jointly by the Deputy Secretaries of Defense and Transportation. Its membership includes equivalent-level officials from the Departments of State, Commerce, and Homeland Security, the Joint Chiefs of Staff and NASA . Components of the executive office of the president participate as observers to the executive committee, and the FCC chairman participates as

SECTION 20

#1732772352186

1364-668: The GPS service, including new signals for civil use and increased accuracy and integrity for all users, all the while maintaining compatibility with existing GPS equipment. Modernization of the satellite system has been an ongoing initiative by the U.S. Department of Defense through a series of satellite acquisitions to meet the growing needs of the military, civilians, and the commercial market. As of early 2015, high-quality Standard Positioning Service (SPS) GPS receivers provided horizontal accuracy of better than 3.5 meters (11 ft), although many factors such as receiver and antenna quality and atmospheric issues can affect this accuracy. GPS

1426-740: The Global Positioning System (GPS) its 60th Anniversary Award, nominated by IAF member, the American Institute for Aeronautics and Astronautics (AIAA). The IAF Honors and Awards Committee recognized the uniqueness of the GPS program and the exemplary role it has played in building international collaboration for the benefit of humanity. On December 6, 2018, Gladys West was inducted into the Air Force Space and Missile Pioneers Hall of Fame in recognition of her work on an extremely accurate geodetic Earth model, which

1488-480: The Navy TRANSIT system were too slow for the high speeds of Air Force operation. The Naval Research Laboratory (NRL) continued making advances with their Timation (Time Navigation) satellites, first launched in 1967, second launched in 1969, with the third in 1974 carrying the first atomic clock into orbit and the fourth launched in 1977. Another important predecessor to GPS came from a different branch of

1550-582: The Navy was developing the submarine-launched Polaris missile, which required them to know the submarine's location.) This led them and APL to develop the TRANSIT system. In 1959, ARPA (renamed DARPA in 1972) also played a role in TRANSIT. TRANSIT was first successfully tested in 1960. It used a constellation of five satellites and could provide a navigational fix approximately once per hour. In 1967,

1612-604: The SLBM situation. In 1960, the Air Force proposed a radio-navigation system called MOSAIC (MObile System for Accurate ICBM Control) that was essentially a 3-D LORAN System. A follow-on study, Project 57, was performed in 1963 and it was "in this study that the GPS concept was born". That same year, the concept was pursued as Project 621B, which had "many of the attributes that you now see in GPS" and promised increased accuracy for U.S. Air Force bombers as well as ICBMs. Updates from

1674-524: The TOTs, the receiver forms four time of flight (TOF) values, which are (given the speed of light) approximately equivalent to receiver-satellite ranges plus time difference between the receiver and GPS satellites multiplied by speed of light, which are called pseudo-ranges. The receiver then computes its three-dimensional position and clock deviation from the four TOFs. In practice the receiver position (in three dimensional Cartesian coordinates with origin at

1736-607: The U.S. Navy developed the Timation satellite, which proved the feasibility of placing accurate clocks in space, a technology required for GPS. In the 1970s, the ground-based OMEGA navigation system, based on phase comparison of signal transmission from pairs of stations, became the first worldwide radio navigation system. Limitations of these systems drove the need for a more universal navigation solution with greater accuracy. Although there were wide needs for accurate navigation in military and civilian sectors, almost none of those

1798-442: The U.S. Secretary of Defense, William Perry , in view of the widespread growth of differential GPS services by private industry to improve civilian accuracy. Moreover, the U.S. military was developing technologies to deny GPS service to potential adversaries on a regional basis. Selective Availability was removed from the GPS architecture beginning with GPS-III. Since its deployment, the U.S. has implemented several improvements to

1860-704: The US Office of Coast Survey (OCS) of the National Ocean Service (NOS) of the National Oceanic and Atmospheric Administration (NOAA) and other academic and industry partners. The incumbent of the Director General of CHS position is also called the " Hydrographer General of Canada" to reflect the important liability associated with the responsibilities coming from the previous original title, "Dominion Hydrographer," which dates to

1922-416: The US government announced that the next generation of GPS satellites would not include the feature at all. Advances in technology and new demands on the existing system have now led to efforts to modernize the GPS and implement the next generation of GPS Block III satellites and Next Generation Operational Control System (OCX) which was authorized by the U.S. Congress in 2000. When Selective Availability

Canadian Hydrographic Service - Misplaced Pages Continue

1984-512: The United States military. In 1964, the United States Army orbited its first Sequential Collation of Range ( SECOR ) satellite used for geodetic surveying. The SECOR system included three ground-based transmitters at known locations that would send signals to the satellite transponder in orbit. A fourth ground-based station, at an undetermined position, could then use those signals to fix its location precisely. The last SECOR satellite

2046-451: The axis of the hyperboloid. The receiver is located at the point where three hyperboloids intersect. It is sometimes incorrectly said that the user location is at the intersection of three spheres. While simpler to visualize, this is the case only if the receiver has a clock synchronized with the satellite clocks (i.e., the receiver measures true ranges to the satellites rather than range differences). There are marked performance benefits to

2108-648: The clocks on GPS satellites, as observed by those on Earth, run 38 microseconds faster per day than those on the Earth. The design of GPS corrects for this difference; because without doing so, GPS calculated positions would accumulate errors of up to 10 kilometers per day (6 mi/d). When the Soviet Union launched its first artificial satellite ( Sputnik 1 ) in 1957, two American physicists, William Guier and George Weiffenbach, at Johns Hopkins University 's Applied Physics Laboratory (APL) monitored its radio transmissions. Within hours they realized that, because of

2170-496: The distance from the satellite to the ground station. With the distance information collected from multiple ground stations, the location coordinates of any satellite at any time can be calculated with great precision. Each GPS satellite carries an accurate record of its own position and time, and broadcasts that data continuously. Based on data received from multiple GPS satellites , an end user's GPS receiver can calculate its own four-dimensional position in spacetime ; However, at

2232-451: The distance traveled between two position measurements drops below or near the random error of position measurement. GPS units can use measurements of the Doppler shift of the signals received to compute velocity accurately. More advanced navigation systems use additional sensors like a compass or an inertial navigation system to complement GPS. GPS requires four or more satellites to be visible for accurate navigation. The solution of

2294-598: The earliest days of hydrographic surveying in Canada. Oceans Act (Canada) Too Many Requests If you report this error to the Wikimedia System Administrators, please include the details below. Request from 172.68.168.226 via cp1108 cp1108, Varnish XID 194050370 Upstream caches: cp1108 int Error: 429, Too Many Requests at Thu, 28 Nov 2024 05:39:12 GMT GPS The Global Positioning System ( GPS ), originally Navstar GPS ,

2356-407: The effect of both SA degradation and atmospheric effects (that military receivers also corrected for). The U.S. military had also developed methods to perform local GPS jamming, meaning that the ability to globally degrade the system was no longer necessary. As a result, United States President Bill Clinton signed a bill ordering that Selective Availability be disabled on May 1, 2000; and, in 2007 ,

2418-587: The geo-spatial technology industry. CHS demonstrates international leadership in influencing, contributing, developing and adopting: hydrographic standards (S-100); crowd-sourced bathymetry (CSB); satellite-derived bathymetry (SDB); GEneral Bathymetric Charts of the Oceans (GEBCO) and the Seabed2030 project; autonomous hydrographic surface vehicles (AHSV); and the implementation of a Marine Spatial (Hydrospatial) Data Infrastructure (MSDI) as an Hydrospatial Office. CHS

2480-407: The highest-quality signal was reserved for military use, and the signal available for civilian use was intentionally degraded, in a policy known as Selective Availability . This changed on May 1, 2000, with U.S. President Bill Clinton signing a policy directive to turn off Selective Availability to provide the same accuracy to civilians that was afforded to the military. The directive was proposed by

2542-543: The most significant development for safe and efficient navigation and surveillance of air and spacecraft since the introduction of radio navigation 50 years ago". Two GPS developers received the National Academy of Engineering Charles Stark Draper Prize for 2003: GPS developer Roger L. Easton received the National Medal of Technology on February 13, 2006. Francis X. Kane (Col. USAF, ret.)

Canadian Hydrographic Service - Misplaced Pages Continue

2604-440: The new measurements are collected, the receiver uses a weighting scheme to combine the new measurements with the tracker prediction. In general, a tracker can (a) improve receiver position and time accuracy, (b) reject bad measurements, and (c) estimate receiver speed and direction. The disadvantage of a tracker is that changes in speed or direction can be computed only with a delay, and that derived direction becomes inaccurate when

2666-487: The nuclear triad, also had requirements for a more accurate and reliable navigation system. The U.S. Navy and U.S. Air Force were developing their own technologies in parallel to solve what was essentially the same problem. To increase the survivability of ICBMs, there was a proposal to use mobile launch platforms (comparable to the Soviet SS-24 and SS-25 ) and so the need to fix the launch position had similarity to

2728-524: The precision needed for GPS. The design of GPS is based partly on similar ground-based radio-navigation systems, such as LORAN and the Decca Navigator System , developed in the early 1940s. In 1955, Friedwardt Winterberg proposed a test of general relativity —detecting time slowing in a strong gravitational field using accurate atomic clocks placed in orbit inside artificial satellites. Special and general relativity predicted that

2790-652: The reason for the ultra-secrecy at that time. The nuclear triad consisted of the United States Navy's submarine-launched ballistic missiles (SLBMs) along with United States Air Force (USAF) strategic bombers and intercontinental ballistic missiles (ICBMs). Considered vital to the nuclear deterrence posture, accurate determination of the SLBM launch position was a force multiplier . Precise navigation would enable United States ballistic missile submarines to get an accurate fix of their positions before they launched their SLBMs. The USAF, with two thirds of

2852-408: The reference atomic clocks at the ground control stations; any drift of the clocks aboard the satellites from the reference time maintained on the ground stations is corrected regularly. Since the speed of radio waves ( speed of light ) is constant and independent of the satellite speed, the time delay between when the satellite transmits a signal and the ground station receives it is proportional to

2914-404: The usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls, and maintains the GPS system, it is freely accessible to anyone with a GPS receiver. The GPS project was started by the U.S. Department of Defense in 1973. The first prototype spacecraft

2976-403: The user carrying a clock synchronized with the satellites. Foremost is that only three satellites are needed to compute a position solution. If it were an essential part of the GPS concept that all users needed to carry a synchronized clock, a smaller number of satellites could be deployed, but the cost and complexity of the user equipment would increase. The description above is representative of

3038-629: The world's longest coastline (243,792 kilometres) as well as 6.55 million square kilometres of continental shelf and territorial waters (second largest in the world), including extensive inland waterways such as the St. Lawrence Seaway , CHS maintains a world-record inventory of more than 1,000 published charts. As such, the organization was an early adopter of single-beam sonar, radio-navigation positioning systems, and computer processing and storage. The joint Canada-U.S. DEW Line also necessitated innovative surveying techniques throughout remote northern areas in

3100-579: Was allowed from the 1980s. Roger L. Easton of the Naval Research Laboratory , Ivan A. Getting of The Aerospace Corporation , and Bradford Parkinson of the Applied Physics Laboratory are credited with inventing it. The work of Gladys West on the creation of the mathematical geodetic Earth model is credited as instrumental in the development of computational techniques for detecting satellite positions with

3162-496: Was also one of the first organizations in the world to develop airborne LiDAR technology, with the LARSEN-500 sensor being used for remote Arctic surveys. Survey data processing software provided by companies such as CARIS and Helical Systems, as well as the development of Oracle Spatial database storage, are spin-offs from research developments at CHS, and are now used throughout the world by other Hydrographic Offices and in

SECTION 50

#1732772352186

3224-698: Was commissioned for use on the Atlantic coast. In 1928, the organization was renamed to the Canadian Hydrographic Service . Responsibility was extended on March 31, 1949, with the entry of Newfoundland into Confederation, with CHS taking over surveys and charting around the island of Newfoundland and the coast of Labrador from the Royal Navy. CHS is a world leader in the adoption of hydrographic survey technology, as well as in research and development. With responsibility for charting

3286-420: Was concerned with the curving of the paths of radio waves ( atmospheric refraction ) traversing the ionosphere from NavSTAR satellites. After Korean Air Lines Flight 007 , a Boeing 747 carrying 269 people, was shot down by a Soviet interceptor aircraft after straying in prohibited airspace because of navigational errors, in the vicinity of Sakhalin and Moneron Islands , President Ronald Reagan issued

3348-490: Was destroyed in a launch failure). The effect of the ionosphere on radio transmission was investigated in a geophysics laboratory of Air Force Cambridge Research Laboratory , renamed to Air Force Geophysical Research Lab (AFGRL) in 1974. AFGRL developed the Klobuchar model for computing ionospheric corrections to GPS location. Of note is work done by Australian space scientist Elizabeth Essex-Cohen at AFGRL in 1974. She

3410-703: Was discontinued, GPS was accurate to about 5 meters (16 ft). GPS receivers that use the L5 band have much higher accuracy of 30 centimeters (12 in), while those for high-end applications such as engineering and land surveying are accurate to within 2 cm ( 3 ⁄ 4  in) and can even provide sub-millimeter accuracy with long-term measurements. Consumer devices such as smartphones can be accurate to 4.9 m (16 ft) or better when used with assistive services like Wi-Fi positioning . As of July 2023 , 18 GPS satellites broadcast L5 signals, which are considered pre-operational prior to being broadcast by

3472-700: Was extended to Canada's Pacific coast in 1891, tidal and current metering nationwide began in 1893, surveying and charting extended to the Maritimes by 1905, and water level gauging of the Great Lakes began in 1912. In 1904, a Privy Council order renamed the Georgian Bay Survey to the Hydrographic Survey of Canada with some modified responsibilities. In 1913 one of Canada's most famous hydrographic survey vessels, CSS Acadia

3534-625: Was inducted into the U.S. Air Force Space and Missile Pioneers Hall of Fame at Lackland A.F.B., San Antonio, Texas, March 2, 2010, for his role in space technology development and the engineering design concept of GPS conducted as part of Project 621B. In 1998, GPS technology was inducted into the Space Foundation Space Technology Hall of Fame . On October 4, 2011, the International Astronautical Federation (IAF) awarded

3596-626: Was launched in 1969. With these parallel developments in the 1960s, it was realized that a superior system could be developed by synthesizing the best technologies from 621B, Transit, Timation, and SECOR in a multi-service program. Satellite orbital position errors, induced by variations in the gravity field and radar refraction among others, had to be resolved. A team led by Harold L. Jury of Pan Am Aerospace Division in Florida from 1970 to 1973, used real-time data assimilation and recursive estimation to do so, reducing systematic and residual errors to

3658-453: Was launched in 1978 and the full constellation of 24 satellites became operational in 1993. After Korean Air Lines Flight 007 was shot down when it mistakenly entered Soviet airspace, President Ronald Reagan announced that the GPS system would be made available for civilian use as of September 16, 1983; however, initially this civilian use was limited to an average accuracy of 100 meters (330 ft) by use of Selective Availability (SA),

3720-549: Was never considered as such by the GPS Joint Program Office (TRW may have once advocated for a different navigational system that used that acronym). With the individual satellites being associated with the name Navstar (as with the predecessors Transit and Timation), a more fully encompassing name was used to identify the constellation of Navstar satellites, Navstar-GPS . Ten " Block I " prototype satellites were launched between 1978 and 1985 (an additional unit

3782-530: Was seen as justification for the billions of dollars it would cost in research, development, deployment, and operation of a constellation of navigation satellites. During the Cold War arms race , the nuclear threat to the existence of the United States was the one need that did justify this cost in the view of the United States Congress. This deterrent effect is why GPS was funded. It is also

SECTION 60

#1732772352186

3844-529: Was ultimately used to determine the orbit of the GPS constellation. On February 12, 2019, four founding members of the project were awarded the Queen Elizabeth Prize for Engineering with the chair of the awarding board stating: "Engineering is the foundation of civilisation; ...They've re-written, in a major way, the infrastructure of our world." The GPS satellites carry very stable atomic clocks that are synchronized with one another and with

#185814