Misplaced Pages

Grand Junction Railroad Bridge

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#401598

109-952: The Grand Junction Railroad Bridge is a steel plate girder bridge carrying the Grand Junction Railroad over the Charles River in Boston , connecting the Boston University campus to Cambridgeport . In September 2009, the Commonwealth of Massachusetts finalized an agreement to purchase several CSX rail lines in eastern Massachusetts, including the Grand Junction tracks from the Beacon Park Yard in Allston, through Cambridge. The deal

218-403: A 30% increase in output simply from changing over to electric motors. Electrification enabled modern mass production, as with Thomas Edison's iron ore processing plant (about 1893) that could process 20,000 tons of ore per day with two shifts, each of five men. At that time it was still common to handle bulk materials with shovels, wheelbarrows and small narrow-gauge rail cars, and for comparison,

327-412: A BOS process is manufactured in one-twelfth the time. Today, electric arc furnaces (EAF) are a common method of reprocessing scrap metal to create new steel. They can also be used for converting pig iron to steel, but they use a lot of electrical energy (about 440 kWh per metric ton), and are thus generally only economical when there is a plentiful supply of cheap electricity. The steel industry

436-643: A backbone "main" assembly line. A diagram of a typical mass-production factory looks more like the skeleton of a fish than a single line. Vertical integration is a business practice that involves gaining complete control over a product's production, from raw materials to final assembly. In the age of mass production, this caused shipping and trade problems in that shipping systems were unable to transport huge volumes of finished automobiles (in Henry Ford's case) without causing damage, and also government policies imposed trade barriers on finished units. Ford built

545-585: A canal digger in previous decades typically handled five tons per 12-hour day. The biggest impact of early mass production was in manufacturing everyday items, such as at the Ball Brothers Glass Manufacturing Company , which electrified its mason jar plant in Muncie, Indiana , U.S., around 1900. The new automated process used glass-blowing machines to replace 210 craftsman glass blowers and helpers. A small electric truck

654-713: A carbon-intermediate steel by the 1st century AD. There is evidence that carbon steel was made in Western Tanzania by the ancestors of the Haya people as early as 2,000 years ago by a complex process of "pre-heating" allowing temperatures inside a furnace to reach 1300 to 1400 °C. Evidence of the earliest production of high carbon steel in South Asia is found in Kodumanal in Tamil Nadu ,

763-444: A change of volume. In this case, expansion occurs. Internal stresses from this expansion generally take the form of compression on the crystals of martensite and tension on the remaining ferrite, with a fair amount of shear on both constituents. If quenching is done improperly, the internal stresses can cause a part to shatter as it cools. At the very least, they cause internal work hardening and other microscopic imperfections. It

872-403: A company to produce a larger quantity of one product at a lower cost than using traditional, non-linear methods. However, mass production is inflexible because it is difficult to alter a design or production process after a production line is implemented. Also, all products produced on one production line will be identical or very similar, and introducing variety to satisfy individual tastes

981-535: A couple of hours, were highly successful: over 100,000 Nissen huts were produced during World War I alone, and they would go on to serve in other conflicts and inspire a number of similar designs. Following World War II, in the United States, William Levitt pioneered the building of standardized tract houses in 56 different locations around the country. These communities were dubbed Levittowns , and they were able to be constructed quickly and cheaply through

1090-428: A ferrite BCC crystal form, but at higher carbon content it takes a body-centred tetragonal (BCT) structure. There is no thermal activation energy for the transformation from austenite to martensite. There is no compositional change so the atoms generally retain their same neighbours. Martensite has a lower density (it expands during the cooling) than does austenite, so that the transformation between them results in

1199-445: A hard but brittle martensitic structure. The steel is then tempered, which is just a specialized type of annealing, to reduce brittleness. In this application the annealing (tempering) process transforms some of the martensite into cementite, or spheroidite and hence it reduces the internal stresses and defects. The result is a more ductile and fracture-resistant steel. When iron is smelted from its ore, it contains more carbon than

SECTION 10

#1732780684402

1308-463: A multiple head milling machine that could simultaneously machine 15 engine blocks held on a single fixture. All of these machine tools were arranged systematically in the production flow and some had special carriages for rolling heavy items into machining position. Production of the Ford Model T used 32,000 machine tools. The process of prefabrication, wherein parts are created separately from

1417-412: A narrow range of concentrations of mixtures of carbon and iron that make steel, several different metallurgical structures, with very different properties can form. Understanding such properties is essential to making quality steel. At room temperature , the most stable form of pure iron is the body-centred cubic (BCC) structure called alpha iron or α-iron. It is a fairly soft metal that can dissolve only

1526-534: A small concentration of carbon, no more than 0.005% at 0 °C (32 °F) and 0.021 wt% at 723 °C (1,333 °F). The inclusion of carbon in alpha iron is called ferrite . At 910 °C, pure iron transforms into a face-centred cubic (FCC) structure, called gamma iron or γ-iron. The inclusion of carbon in gamma iron is called austenite. The more open FCC structure of austenite can dissolve considerably more carbon, as much as 2.1%, (38 times that of ferrite) carbon at 1,148 °C (2,098 °F), which reflects

1635-513: A spindle cutting machine, which could produce multiple parts at the same time. Terry hired Silas Hoadley and Seth Thomas to work the Assembly line at the facilities. The Porter Contract was the first contract which called for mass production of clock movements in history. In 1815, Terry began mass-producing the first shelf clock. Chauncey Jerome , an apprentice of Eli Terry mass-produced up to 20,000 brass clocks annually in 1840 when he invented

1744-453: A steel's final rolling, it is heat treated for strength; however, this is relatively rare. Steel was known in antiquity and was produced in bloomeries and crucibles . The earliest known production of steel is seen in pieces of ironware excavated from an archaeological site in Anatolia ( Kaman-Kalehöyük ) which are nearly 4,000 years old, dating from 1800 BC. Wootz steel

1853-591: A system of process control which uses various instruments to measure variables such as temperature, pressure, volumetric and level, providing feedback. Bulk materials such as coal, ores, grains and wood chips are handled by belt, chain, slat, pneumatic or screw conveyors, bucket elevators and mobile equipment such as front-end loaders . Materials on pallets are handled with forklifts. Also used for handling heavy items like reels of paper, steel or machinery are electric overhead cranes , sometimes called bridge cranes because they span large factory bays. Mass production

1962-401: A tremendous amount of useless handling and hauling. The belt and line shaft were also tremendously wasteful – so wasteful indeed that no factory could be really large, for even the longest line shaft was small according to modern requirements. Also high speed tools were impossible under the old conditions – neither the pulleys nor the belts could stand modern speeds. Without high speed tools and

2071-480: A very large amount of trees. In order to speed up such efforts, fast propagation of trees may be useful. Some automated machines have been produced to allow for fast (vegetative) plant propagation . Also, for some plants that help to sequester carbon (such as seagrass ), techniques have been developed to help speed up the process . Mass production benefited from the development of materials such as inexpensive steel, high strength steel and plastics. Machining of metals

2180-607: A worker work on a whole product from start to finish. The emergence of mass production allowed supply to outstrip demand in many markets, forcing companies to seek new ways to become more competitive . Mass production ties into the idea of overconsumption and the idea that we as humans consume too much. Mass production of fluid matter typically involves piping with centrifugal pumps or screw conveyors (augers) to transfer raw materials or partially complete products between vessels. Fluid flow processes such as oil refining and bulk materials such as wood chips and pulp are automated using

2289-656: Is Jikji , printed in Korea in the year 1377. Johannes Gutenberg , through his invention of the printing press and production of the Gutenberg Bible , introduced movable type to Europe. Through this introduction, mass production in the European publishing industry was made commonplace, leading to a democratization of knowledge , increased literacy and education, and the beginnings of modern science . French artillery engineer Jean-Baptiste de Gribeauval introduced

SECTION 20

#1732780684402

2398-405: Is capital-intensive and energy-intensive, for it uses a high proportion of machinery and energy in relation to workers. It is also usually automated while total expenditure per unit of product is decreased. However, the machinery that is needed to set up a mass production line (such as robots and machine presses ) is so expensive that in order to attain profits there must be some assurance that

2507-672: Is continuously cast into long slabs, cut and shaped into bars and extrusions and heat treated to produce a final product. Today, approximately 96% of steel is continuously cast, while only 4% is produced as ingots. The ingots are then heated in a soaking pit and hot rolled into slabs, billets , or blooms . Slabs are hot or cold rolled into sheet metal or plates. Billets are hot or cold rolled into bars, rods, and wire. Blooms are hot or cold rolled into structural steel , such as I-beams and rails . In modern steel mills these processes often occur in one assembly line , with ore coming in and finished steel products coming out. Sometimes after

2616-448: Is a reduction of non-productive effort of all types. In craft production , the craftsman must bustle about a shop, getting parts and assembling them. He must locate and use many tools many times for varying tasks. In mass production, each worker repeats one or a few related tasks that use the same tool to perform identical or near-identical operations on a stream of products. The exact tool and parts are always at hand, having been moved down

2725-403: Is common for quench cracks to form when steel is water quenched, although they may not always be visible. There are many types of heat treating processes available to steel. The most common are annealing , quenching , and tempering . Annealing is the process of heating the steel to a sufficiently high temperature to relieve local internal stresses. It does not create a general softening of

2834-403: Is desirable. To become steel, it must be reprocessed to reduce the carbon to the correct amount, at which point other elements can be added. In the past, steel facilities would cast the raw steel product into ingots which would be stored until use in further refinement processes that resulted in the finished product. In modern facilities, the initial product is close to the final composition and

2943-453: Is distinguishable from wrought iron (now largely obsolete), which may contain a small amount of carbon but large amounts of slag . Iron is commonly found in the Earth's crust in the form of an ore , usually an iron oxide, such as magnetite or hematite . Iron is extracted from iron ore by removing the oxygen through its combination with a preferred chemical partner such as carbon which

3052-408: Is heat treated to contain both a ferritic and martensitic microstructure to produce a formable, high strength steel. Transformation Induced Plasticity (TRIP) steel involves special alloying and heat treatments to stabilize amounts of austenite at room temperature in normally austenite-free low-alloy ferritic steels. By applying strain, the austenite undergoes a phase transition to martensite without

3161-535: Is known as stainless steel . Tungsten slows the formation of cementite , keeping carbon in the iron matrix and allowing martensite to preferentially form at slower quench rates, resulting in high-speed steel . The addition of lead and sulphur decrease grain size, thereby making the steel easier to turn , but also more brittle and prone to corrosion. Such alloys are nevertheless frequently used for components such as nuts, bolts, and washers in applications where toughness and corrosion resistance are not paramount. For

3270-691: Is often considered an indicator of economic progress, because of the critical role played by steel in infrastructural and overall economic development . In 1980, there were more than 500,000 U.S. steelworkers. By 2000, the number of steelworkers had fallen to 224,000. The economic boom in China and India caused a massive increase in the demand for steel. Between 2000 and 2005, world steel demand increased by 6%. Since 2000, several Indian and Chinese steel firms have expanded to meet demand, such as Tata Steel (which bought Corus Group in 2007), Baosteel Group and Shagang Group . As of 2017 , though, ArcelorMittal

3379-514: Is one of the largest manufacturing industries in the world, but also one of the most energy and greenhouse gas emission intense industries, contributing 8% of global emissions. However, steel is also very reusable: it is one of the world's most-recycled materials, with a recycling rate of over 60% globally . The noun steel originates from the Proto-Germanic adjective * * stahliją or * * stakhlijan 'made of steel', which

Grand Junction Railroad Bridge - Misplaced Pages Continue

3488-463: Is one of the most commonly manufactured materials in the world. Steel is used in buildings, as concrete reinforcing rods, in bridges, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons. Iron is always the main element in steel, but many other elements may be present or added. Stainless steels , which are resistant to corrosion and oxidation , typically need an additional 11% chromium . Iron

3597-843: Is one of the three main production methods. The term mass production was popularized by a 1926 article in the Encyclopædia Britannica supplement that was written based on correspondence with Ford Motor Company . The New York Times used the term in the title of an article that appeared before the publication of the Britannica article. The idea of mass production is applied to many kinds of products: from fluids and particulates handled in bulk ( food , fuel , chemicals and mined minerals ), to clothing, textiles, parts and assemblies of parts ( household appliances and automobiles ). Some mass production techniques, such as standardized sizes and production lines, predate

3706-488: Is one of the world's most-recycled materials, with a recycling rate of over 60% globally; in the United States alone, over 82,000,000 metric tons (81,000,000 long tons; 90,000,000 short tons) were recycled in the year 2008, for an overall recycling rate of 83%. As more steel is produced than is scrapped, the amount of recycled raw materials is about 40% of the total of steel produced - in 2016, 1,628,000,000 tonnes (1.602 × 10 long tons; 1.795 × 10 short tons) of crude steel

3815-520: Is possible only by reducing iron's ductility. Steel was produced in bloomery furnaces for thousands of years, but its large-scale, industrial use began only after more efficient production methods were devised in the 17th century, with the introduction of the blast furnace and production of crucible steel . This was followed by the Bessemer process in England in the mid-19th century, and then by

3924-434: Is possible to make very high-carbon (and other alloy material) steels, but such are not common. Cast iron is not malleable even when hot, but it can be formed by casting as it has a lower melting point than steel and good castability properties. Certain compositions of cast iron, while retaining the economies of melting and casting, can be heat treated after casting to make malleable iron or ductile iron objects. Steel

4033-400: Is quite ductile , or soft and easily formed. In steel, small amounts of carbon, other elements, and inclusions within the iron act as hardening agents that prevent the movement of dislocations . The carbon in typical steel alloys may contribute up to 2.14% of its weight. Varying the amount of carbon and many other alloying elements, as well as controlling their chemical and physical makeup in

4142-457: Is related to * * stahlaz or * * stahliją 'standing firm'. The carbon content of steel is between 0.02% and 2.14% by weight for plain carbon steel ( iron - carbon alloys ). Too little carbon content leaves (pure) iron quite soft, ductile, and weak. Carbon contents higher than those of steel make a brittle alloy commonly called pig iron . Alloy steel is steel to which other alloying elements have been intentionally added to modify

4251-524: Is that while Taylor focused mostly on efficiency of the worker, Ford also substituted for labor by using machines, thoughtfully arranged, wherever possible. In 1807, Eli Terry was hired to produce 4,000 wooden movement clocks in the Porter Contract. At this time, the annual yield for wooden clocks did not exceed a few dozen on average. Terry developed a milling machine in 1795, in which he perfected Interchangeable parts . In 1807, Terry developed

4360-441: Is the base metal of steel. Depending on the temperature, it can take two crystalline forms (allotropic forms): body-centred cubic and face-centred cubic . The interaction of the allotropes of iron with the alloying elements, primarily carbon, gives steel and cast iron their range of unique properties. In pure iron, the crystal structure has relatively little resistance to the iron atoms slipping past one another, and so pure iron

4469-547: Is the world's largest steel producer . In 2005, the British Geological Survey stated China was the top steel producer with about one-third of the world share; Japan , Russia , and the United States were second, third, and fourth, respectively, according to the survey. The large production capacity of steel results also in a significant amount of carbon dioxide emissions inherent related to

Grand Junction Railroad Bridge - Misplaced Pages Continue

4578-498: Is then lost to the atmosphere as carbon dioxide. This process, known as smelting , was first applied to metals with lower melting points, such as tin , which melts at about 250 °C (482 °F), and copper , which melts at about 1,100 °C (2,010 °F), and the combination, bronze, which has a melting point lower than 1,083 °C (1,981 °F). In comparison, cast iron melts at about 1,375 °C (2,507 °F). Small quantities of iron were smelted in ancient times, in

4687-620: The Ford River Rouge Complex with the idea of making the company's own iron and steel in the same large factory site where parts and car assembly took place. River Rouge also generated its own electricity. Upstream vertical integration, such as to raw materials, is away from leading technology toward mature, low-return industries. Most companies chose to focus on their core business rather than vertical integration. This included buying parts from outside suppliers, who could often produce them as cheaply or cheaper. Standard Oil ,

4796-655: The Golconda area in Andhra Pradesh and Karnataka , regions of India , as well as in Samanalawewa and Dehigaha Alakanda, regions of Sri Lanka . This came to be known as wootz steel , produced in South India by about the sixth century BC and exported globally. The steel technology existed prior to 326 BC in the region as they are mentioned in literature of Sangam Tamil , Arabic, and Latin as

4905-560: The Henry Ford Company which was rebranded as Cadillac and later was awarded the Dewar Trophy in 1908 for creating interchangeable mass-produced precision engine parts, Henry Ford downplayed the role of Taylorism in the development of mass production at his company. However, Ford management performed time studies and experiments to mechanize their factory processes, focusing on minimizing worker movements. The difference

5014-517: The Industrial Revolution by many centuries; however, it was not until the introduction of machine tools and techniques to produce interchangeable parts were developed in the mid-19th century that modern mass production was possible. Mass production involves making many copies of products, very quickly, using assembly line techniques to send partially complete products to workers who each work on an individual step, rather than having

5123-664: The Portsmouth Block Mills in England to make ships' pulley blocks for the Royal Navy in the Napoleonic Wars . It was achieved in 1803 by Marc Isambard Brunel in cooperation with Henry Maudslay under the management of Sir Samuel Bentham . The first unmistakable examples of manufacturing operations carefully designed to reduce production costs by specialized labour and the use of machines appeared in

5232-591: The Venetian Arsenal produced nearly one ship every day in what was effectively the world's first factory , which at its height employed 16,000 people. The invention of movable type has allowed for documents such as books to be mass produced. The first movable type system was invented in China by Bi Sheng , during the reign of the Song dynasty , where it was used to, among other things, issue paper money . The oldest extant book produced using metal type

5341-599: The cementation process was described in a treatise published in Prague in 1574 and was in use in Nuremberg from 1601. A similar process for case hardening armour and files was described in a book published in Naples in 1589. The process was introduced to England in about 1614 and used to produce such steel by Sir Basil Brooke at Coalbrookdale during the 1610s. The raw material for this process were bars of iron. During

5450-607: The open-hearth furnace . With the invention of the Bessemer process, a new era of mass-produced steel began. Mild steel replaced wrought iron . The German states were the major steel producers in Europe in the 19th century. American steel production was centred in Pittsburgh , Bethlehem, Pennsylvania , and Cleveland until the late 20th century. Currently, world steel production is centered in China, which produced 54% of

5559-445: The 17th century, it was realized that the best steel came from oregrounds iron of a region north of Stockholm , Sweden. This was still the usual raw material source in the 19th century, almost as long as the process was used. Crucible steel is steel that has been melted in a crucible rather than having been forged , with the result that it is more homogeneous. Most previous furnaces could not reach high enough temperatures to melt

SECTION 50

#1732780684402

5668-419: The 17th century, the first step in European steel production has been the smelting of iron ore into pig iron in a blast furnace . Originally employing charcoal, modern methods use coke , which has proven more economical. In these processes, pig iron made from raw iron ore was refined (fined) in a finery forge to produce bar iron , which was then used in steel-making. The production of steel by

5777-480: The 18th century in England. The Navy was in a state of expansion that required 100,000 pulley blocks to be manufactured a year. Bentham had already achieved remarkable efficiency at the docks by introducing power-driven machinery and reorganising the dockyard system. Brunel, a pioneering engineer, and Maudslay, a pioneer of machine tool technology who had developed the first industrially practical screw-cutting lathe in 1800 which standardized screw thread sizes for

5886-455: The 20th century's definition of mass production appeared in a 1926 Encyclopædia Britannica supplement. The article was written based on correspondence with Ford Motor Company and is sometimes credited as the first use of the term. Electrification of factories began very gradually in the 1890s after the introduction of a practical DC motor by Frank J. Sprague and accelerated after the AC motor

5995-608: The Arabs from Persia, who took it from India. It was originally created from several different materials including various trace elements , apparently ultimately from the writings of Zosimos of Panopolis . In 327 BC, Alexander the Great was rewarded by the defeated King Porus , not with gold or silver but with 30 pounds of steel. A recent study has speculated that carbon nanotubes were included in its structure, which might explain some of its legendary qualities, though, given

6104-601: The Emperor's tomb is also believed to have been created through the use of standardized molds on an assembly line . In ancient Carthage , ships of war were mass-produced on a large scale at a moderate cost, allowing them to efficiently maintain their control of the Mediterranean . Many centuries later, the Republic of Venice would follow Carthage in producing ships with prefabricated parts on an assembly line:

6213-470: The Linz-Donawitz process of basic oxygen steelmaking (BOS), developed in 1952, and other oxygen steel making methods. Basic oxygen steelmaking is superior to previous steelmaking methods because the oxygen pumped into the furnace limited impurities, primarily nitrogen, that previously had entered from the air used, and because, with respect to the open hearth process, the same quantity of steel from

6322-499: The addition of heat. Twinning Induced Plasticity (TWIP) steel uses a specific type of strain to increase the effectiveness of work hardening on the alloy. Mass production Mass production , also known as flow production , series production , series manufacture , or continuous production , is the production of substantial amounts of standardized products in a constant flow, including and especially on assembly lines . Together with job production and batch production , it

6431-476: The armories designing and building many of their own. Some of the methods employed were a system of gauges for checking dimensions of the various parts and jigs and fixtures for guiding the machine tools and properly holding and aligning the work pieces. This system came to be known as armory practice or the American system of manufacturing , which spread throughout New England aided by skilled mechanics from

6540-894: The armories who were instrumental in transferring the technology to the sewing machines manufacturers and other industries such as machine tools, harvesting machines and bicycles. Singer Manufacturing Co. , at one time the largest sewing machine manufacturer, did not achieve interchangeable parts until the late 1880s, around the same time Cyrus McCormick adopted modern manufacturing practices in making harvesting machines . During World War II , The United States mass-produced many vehicles and weapons , such as ships (i.e. Liberty Ships , Higgins boats ), aircraft (i.e. North American P-51 Mustang , Consolidated B-24 Liberator , Boeing B-29 Superfortress ), jeeps (i.e. Willys MB ), trucks, tanks (i.e. M4 Sherman ) and M2 Browning and M1919 Browning machine guns . Many vehicles, transported by ships have been shipped in parts and later assembled on-site. For

6649-504: The assembly line consecutively. The worker spends little or no time retrieving and/or preparing materials and tools, and so the time taken to manufacture a product using mass production is shorter than when using traditional methods. The probability of human error and variation is also reduced, as tasks are predominantly carried out by machinery; error in operating such machinery has more far-reaching consequences. A reduction in labour costs, as well as an increased rate of production, enables

SECTION 60

#1732780684402

6758-436: The austenite grain boundaries until the percentage of carbon in the grains has decreased to the eutectoid composition (0.8% carbon), at which point the pearlite structure forms. For steels that have less than 0.8% carbon (hypoeutectoid), ferrite will first form within the grains until the remaining composition rises to 0.8% of carbon, at which point the pearlite structure will form. No large inclusions of cementite will form at

6867-471: The austenite is for it to precipitate out of solution as cementite , leaving behind a surrounding phase of BCC iron called ferrite with a small percentage of carbon in solution. The two, cementite and ferrite, precipitate simultaneously producing a layered structure called pearlite , named for its resemblance to mother of pearl . In a hypereutectoid composition (greater than 0.8% carbon), the carbon will first precipitate out as large inclusions of cementite at

6976-429: The blocks to ensure alignment throughout the process. One of the many advantages of this new method was the increase in labour productivity due to the less labour-intensive requirements of managing the machinery. Richard Beamish, assistant to Brunel's son and engineer, Isambard Kingdom Brunel , wrote: So that ten men, by the aid of this machinery, can accomplish with uniformity, celerity and ease, what formerly required

7085-494: The boundaries in hypoeutectoid steel. The above assumes that the cooling process is very slow, allowing enough time for the carbon to migrate. As the rate of cooling is increased the carbon will have less time to migrate to form carbide at the grain boundaries but will have increasingly large amounts of pearlite of a finer and finer structure within the grains; hence the carbide is more widely dispersed and acts to prevent slip of defects within those grains, resulting in hardening of

7194-521: The characteristics of steel. Common alloying elements include: manganese , nickel , chromium , molybdenum , boron , titanium , vanadium , tungsten , cobalt , and niobium . Additional elements, most frequently considered undesirable, are also important in steel: phosphorus , sulphur , silicon , and traces of oxygen , nitrogen , and copper . Plain carbon-iron alloys with a higher than 2.1% carbon content are known as cast iron . With modern steelmaking techniques such as powder metal forming, it

7303-407: The cheap 30-hour OG clock. The United States Department of War sponsored the development of interchangeable parts for guns produced at the arsenals at Springfield, Massachusetts and Harpers Ferry , Virginia (now West Virginia) in the early decades of the 19th century, finally achieving reliable interchangeability by about 1850. This period coincided with the development of machine tools , with

7412-422: The desired properties. Nickel and manganese in steel add to its tensile strength and make the austenite form of the iron-carbon solution more stable, chromium increases hardness and melting temperature, and vanadium also increases hardness while making it less prone to metal fatigue . To inhibit corrosion, at least 11% chromium can be added to steel so that a hard oxide forms on the metal surface; this

7521-456: The fashion industry, particularly in the realm of fibers and materials. The advent of synthetic fibers, such as polyester and nylon, revolutionized textile manufacturing by providing cost-effective alternatives to natural fibers. This shift enabled the rapid production of inexpensive clothing, contributing to the rise of fast fashion. This reliance on mass production has raised concerns about environmental sustainability and labor conditions, spurring

7630-413: The final steel (either as solute elements, or as precipitated phases), impedes the movement of the dislocations that make pure iron ductile, and thus controls and enhances its qualities. These qualities include the hardness , quenching behaviour , need for annealing , tempering behaviour , yield strength , and tensile strength of the resulting steel. The increase in steel's strength compared to pure iron

7739-502: The finer steels which they brought about, there could be nothing of what we call modern industry. Mass production was popularized in the late 1910s and 1920s by Henry Ford's Ford Motor Company , which introduced electric motors to the then-well-known technique of chain or sequential production. Ford also bought or designed and built special purpose machine tools and fixtures such as multiple spindle drill presses that could drill every hole on one side of an engine block in one operation and

7848-648: The finest steel in the world exported to the Roman, Egyptian, Chinese and Arab worlds at that time – what they called Seric Iron . A 200 BC Tamil trade guild in Tissamaharama , in the South East of Sri Lanka, brought with them some of the oldest iron and steel artifacts and production processes to the island from the classical period . The Chinese and locals in Anuradhapura , Sri Lanka had also adopted

7957-507: The finished product, is at the core of all mass-produced construction. Early examples include movable structures reportedly utilized by Akbar the Great , and the chattel houses built by emancipated slaves on Barbados . The Nissen hut , first used by the British during World War I , married prefabrication and mass production in a way that suited the needs of the military. The simple structures, which cost little and could be erected in just

8066-471: The first instance of the application of mass production techniques (though not necessarily the assembly-line method) to marine engineering. In filling an Admiralty order for 90 sets to his high-pressure and high-revolution horizontal trunk engine design, Penn produced them all in 90 days. He also used Whitworth Standard threads throughout. Prerequisites for the wide use of mass production were interchangeable parts , machine tools and power , especially in

8175-594: The first time which in turn allowed the application of interchangeable parts , collaborated on plans to manufacture block-making machinery. By 1805, the dockyard had been fully updated with the revolutionary, purpose-built machinery at a time when products were still built individually with different components. A total of 45 machines were required to perform 22 processes on the blocks, which could be made into one of three possible sizes. The machines were almost entirely made of metal thus improving their accuracy and durability. The machines would make markings and indentations on

8284-475: The form of electricity . Some of the organizational management concepts needed to create 20th-century mass production, such as scientific management , had been pioneered by other engineers (most of whom are not famous, but Frederick Winslow Taylor is one of the well-known ones), whose work would later be synthesized into fields such as industrial engineering , manufacturing engineering , operations research , and management consultancy . Although after leaving

8393-513: The form of charcoal) in a crucible, was produced in Merv by the 9th to 10th century AD. In the 11th century, there is evidence of the production of steel in Song China using two techniques: a "berganesque" method that produced inferior, inhomogeneous steel, and a precursor to the modern Bessemer process that used partial decarburization via repeated forging under a cold blast . Since

8502-599: The hardenability of thick sections. High strength low alloy steel has small additions (usually < 2% by weight) of other elements, typically 1.5% manganese, to provide additional strength for a modest price increase. Recent corporate average fuel economy (CAFE) regulations have given rise to a new variety of steel known as Advanced High Strength Steel (AHSS). This material is both strong and ductile so that vehicle structures can maintain their current safety levels while using less material. There are several commercially available grades of AHSS, such as dual-phase steel , which

8611-547: The invention of machine tools the manufacture of precision parts, especially metal ones, was highly labour-intensive. Crossbows made with bronze parts were produced in China during the Warring States period . The Qin Emperor unified China at least in part by equipping large armies with these weapons, which were fitted with a sophisticated trigger mechanism made of interchangeable parts. The Terracotta Army guarding

8720-423: The leather belt and line shaft , for it eventually became possible to provide each tool with its own electric motor. This may seem only a detail of minor importance. In fact, modern industry could not be carried out with the belt and line shaft for a number of reasons. The motor enabled machinery to be arranged in the order of the work, and that alone has probably doubled the efficiency of industry, for it has cut out

8829-455: The leveraging of economies of scale , as well as the specialization of construction tasks in a process akin to an assembly line. This era also saw the invention of the mobile home , a small prefabricated house that can be transported cheaply on a truck bed. In the modern industrialization of construction, mass production is often used for prefabrication of house components. Fabrics and Materials Mass production has significantly impacted

8938-439: The main production route. At the end of 2008, the steel industry faced a sharp downturn that led to many cut-backs. In 2021, it was estimated that around 7% of the global greenhouse gas emissions resulted from the steel industry. Reduction of these emissions are expected to come from a shift in the main production route using cokes, more recycling of steel and the application of carbon capture and storage technology. Steel

9047-793: The major oil company in the 19th century, was vertically integrated partly because there was no demand for unrefined crude oil, but kerosene and some other products were in great demand. The other reason was that Standard Oil monopolized the oil industry. The major oil companies were, and many still are, vertically integrated, from production to refining and with their own retail stations, although some sold off their retail operations. Some oil companies also have chemical divisions. Lumber and paper companies at one time owned most of their timber lands and sold some finished products such as corrugated boxes. The tendency has been to divest of timber lands to raise cash and to avoid property taxes. The economies of mass production come from several sources. The primary cause

9156-450: The most part, however, p-block elements such as sulphur, nitrogen , phosphorus , and lead are considered contaminants that make steel more brittle and are therefore removed from steel during the melting processing. The density of steel varies based on the alloying constituents but usually ranges between 7,750 and 8,050 kg/m (484 and 503 lb/cu ft), or 7.75 and 8.05 g/cm (4.48 and 4.65 oz/cu in). Even in

9265-457: The need for greater ethical and sustainable practices within the fashion industry. Mass production systems for items made of numerous parts are usually organized into assembly lines . The assemblies pass by on a conveyor, or if they are heavy, hung from an overhead crane or monorail. In a factory for a complex product, rather than one assembly line, there may be many auxiliary assembly lines feeding sub-assemblies (i.e. car engines or seats) to

9374-632: The north and south sides of Boston had to be routed via Pan Am Railways trackage between Ayer, Massachusetts and Worcester, Massachusetts (a detour over 100 miles [160 km] in length). The bridge reopened in early January 2013, but was closed again in March for major structural repairs, reopening again in June. Steel Steel is an alloy of iron and carbon with improved strength and fracture resistance compared to other forms of iron. Because of its high tensile strength and low cost, steel

9483-515: The ongoing energy transition , many wind turbine components and solar panels are being mass-produced. Wind turbines and solar panels are being used in respectively wind farms and solar farms . In addition, in the ongoing climate change mitigation , large-scale carbon sequestration (through reforestation , blue carbon restoration , etc) has been proposed. Some projects (such as the Trillion Tree Campaign ) involve planting

9592-436: The oxidation rate of iron increases rapidly beyond 800 °C (1,470 °F), it is important that smelting take place in a low-oxygen environment. Smelting, using carbon to reduce iron oxides, results in an alloy ( pig iron ) that retains too much carbon to be called steel. The excess carbon and other impurities are removed in a subsequent step. Other materials are often added to the iron/carbon mixture to produce steel with

9701-479: The product against the plans or the other parts as it is being formed, there were jigs ready at hand to ensure that the part was made to fit this set-up. It had already been checked that the finished part would be to specifications to fit all the other finished parts—and it would be made more quickly, with no time spent on finishing the parts to fit one another. Later, once computerized control came about (for example, CNC ), jigs were obviated, but it remained true that

9810-449: The product but only locally relieves strains and stresses locked up within the material. Annealing goes through three phases: recovery , recrystallization , and grain growth . The temperature required to anneal a particular steel depends on the type of annealing to be achieved and the alloying constituents. Quenching involves heating the steel to create the austenite phase then quenching it in water or oil . This rapid cooling results in

9919-421: The product will be successful. One of the descriptions of mass production is that "the skill is built into the tool", which means that the worker using the tool may not need the skill. For example, in the 19th or early 20th century, this could be expressed as "the craftsmanship is in the workbench itself" (not the training of the worker). Rather than having a skilled worker measure every dimension of each part of

10028-759: The production methods of creating wootz steel from the Chera Dynasty Tamils of South India by the 5th century AD. In Sri Lanka, this early steel-making method employed a unique wind furnace, driven by the monsoon winds, capable of producing high-carbon steel. Since the technology was acquired from the Tamilians from South India, the origin of steel technology in India can be conservatively estimated at 400–500 BC. The manufacture of wootz steel and Damascus steel , famous for its durability and ability to hold an edge, may have been taken by

10137-418: The skill (or knowledge) was built into the tool (or process, or documentation) rather than residing in the worker's head. This is the specialized capital required for mass production; each workbench and set of tools (or each CNC cell, or each fractionating column ) is different (fine-tuned to its task). Standardized parts and sizes and factory production techniques were developed in pre-industrial times; before

10246-477: The solid-state, by heating the ore in a charcoal fire and then welding the clumps together with a hammer and in the process squeezing out the impurities. With care, the carbon content could be controlled by moving it around in the fire. Unlike copper and tin, liquid or solid iron dissolves carbon quite readily. All of these temperatures could be reached with ancient methods used since the Bronze Age . Since

10355-444: The standardization of cannon design in the late 18th century. He streamlined production and management of cannonballs and cannons by limiting them to only three calibers, and he improved their effectiveness by requiring more spherical ammunition. Redesigning these weapons to use interchangeable wheels, screws, and axles simplified mass production and repair. In the Industrial Revolution , simple mass production techniques were used at

10464-401: The steel. At the very high cooling rates produced by quenching, the carbon has no time to migrate but is locked within the face-centred austenite and forms martensite . Martensite is a highly strained and stressed, supersaturated form of carbon and iron and is exceedingly hard but brittle. Depending on the carbon content, the martensitic phase takes different forms. Below 0.2% carbon, it takes on

10573-561: The steel. The early modern crucible steel industry resulted from the invention of Benjamin Huntsman in the 1740s. Blister steel (made as above) was melted in a crucible or in a furnace, and cast (usually) into ingots. The modern era in steelmaking began with the introduction of Henry Bessemer 's process in 1855, the raw material for which was pig iron. His method let him produce steel in large quantities cheaply, thus mild steel came to be used for most purposes for which wrought iron

10682-561: The technology of that time, such qualities were produced by chance rather than by design. Natural wind was used where the soil containing iron was heated by the use of wood. The ancient Sinhalese managed to extract a ton of steel for every 2 tons of soil, a remarkable feat at the time. One such furnace was found in Samanalawewa and archaeologists were able to produce steel as the ancients did. Crucible steel , formed by slowly heating and cooling pure iron and carbon (typically in

10791-513: The uncertain labour of one hundred and ten. By 1808, annual production from the 45 machines had reached 130,000 blocks and some of the equipment was still in operation as late as the mid-twentieth century. Mass production techniques were also used to rather limited extent to make clocks and watches, and to make small arms, though parts were usually non-interchangeable. Though produced on a very small scale, Crimean War gunboat engines designed and assembled by John Penn of Greenwich are recorded as

10900-525: The upper carbon content of steel, beyond which is cast iron. When carbon moves out of solution with iron, it forms a very hard, but brittle material called cementite (Fe 3 C). When steels with exactly 0.8% carbon (known as a eutectoid steel), are cooled, the austenitic phase (FCC) of the mixture attempts to revert to the ferrite phase (BCC). The carbon no longer fits within the FCC austenite structure, resulting in an excess of carbon. One way for carbon to leave

11009-428: The world's steel in 2023. Further refinements in the process, such as basic oxygen steelmaking (BOS), largely replaced earlier methods by further lowering the cost of production and increasing the quality of the final product. Today more than 1.6 billion tons of steel is produced annually. Modern steel is generally identified by various grades defined by assorted standards organizations . The modern steel industry

11118-505: Was closed on June 17, 2010. On November 21, 2012, the Grand Junction Railroad Bridge was closed to all rail traffic due to its poor condition. This was a change from a restriction put in place days earlier, on November 16, which barred freight trains from crossing, as well as restricting MBTA and Amtrak equipment moves to 5 miles per hour (8 km/h). While emergency repairs were under way, trains moving between

11227-667: Was developed by Galileo Ferraris , Nikola Tesla and Westinghouse , Mikhail Dolivo-Dobrovolsky and others. Electrification of factories was fastest between 1900 and 1930, aided by the establishment of electric utilities with central stations and the lowering of electricity prices from 1914 to 1917. Electric motors were several times more efficient than small steam engines because central station generation were more efficient than small steam engines and because line shafts and belts had high friction losses. Electric motors also allowed more flexibility in manufacturing and required less maintenance than line shafts and belts. Many factories saw

11336-718: Was developed in Southern India and Sri Lanka in the 1st millennium BCE. Metal production sites in Sri Lanka employed wind furnaces driven by the monsoon winds, capable of producing high-carbon steel. Large-scale wootz steel production in India using crucibles occurred by the sixth century BC, the pioneering precursor to modern steel production and metallurgy. High-carbon steel was produced in Britain at Broxmouth Hillfort from 490–375 BC, and ultrahigh-carbon steel

11445-509: Was formerly used. The Gilchrist-Thomas process (or basic Bessemer process ) was an improvement to the Bessemer process, made by lining the converter with a basic material to remove phosphorus. Another 19th-century steelmaking process was the Siemens-Martin process , which complemented the Bessemer process. It consisted of co-melting bar iron (or steel scrap) with pig iron. These methods of steel production were rendered obsolete by

11554-605: Was greatly enhanced with high-speed steel and later very hard materials such as tungsten carbide for cutting edges. Fabrication using steel components was aided by the development of electric welding and stamped steel parts, both which appeared in industry in about 1890. Plastics such as polyethylene , polystyrene and polyvinyl chloride (PVC) can be easily formed into shapes by extrusion , blow molding or injection molding , resulting in very low cost manufacture of consumer products, plastic piping, containers and parts. An influential article that helped to frame and popularize

11663-438: Was produced globally, with 630,000,000 tonnes (620,000,000 long tons; 690,000,000 short tons) recycled. Modern steels are made with varying combinations of alloy metals to fulfil many purposes. Carbon steel , composed simply of iron and carbon, accounts for 90% of steel production. Low alloy steel is alloyed with other elements, usually molybdenum , manganese, chromium, or nickel, in amounts of up to 10% by weight to improve

11772-694: Was produced in the Netherlands from the 2nd-4th centuries AD. The Roman author Horace identifies steel weapons such as the falcata in the Iberian Peninsula , while Noric steel was used by the Roman military . The Chinese of the Warring States period (403–221 BC) had quench-hardened steel, while Chinese of the Han dynasty (202 BC—AD 220) created steel by melting together wrought iron with cast iron, thus producing

11881-430: Was used to handle 150 dozen bottles at a time where previously a hand truck would carry six dozen. Electric mixers replaced men with shovels handling sand and other ingredients that were fed into the glass furnace. An electric overhead crane replaced 36 day laborers for moving heavy loads across the factory. According to Henry Ford : The provision of a whole new system of electric generation emancipated industry from

#401598