Misplaced Pages

Duchess Bridge

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

55°09′26.1″N 03°00′44.7″W  /  55.157250°N 3.012417°W  / 55.157250; -3.012417

#844155

58-567: The Duchess Bridge is a cast iron footbridge over the River Esk in Dumfries and Galloway , Scotland. It was built for Charles Montagu-Scott, 4th Duke of Buccleuch by William Keir Junior of Millholm to replace a dilapidated wooden bridge in the grounds of his mansion Langholm Lodge, which has since been demolished. The bridge, which is probably the oldest surviving iron bridge in Scotland,

116-751: A cupola , but in modern applications, it is more often melted in electric induction furnaces or electric arc furnaces. After melting is complete, the molten cast iron is poured into a holding furnace or ladle. Cast iron's properties are changed by adding various alloying elements, or alloyants . Next to carbon , silicon is the most important alloyant because it forces carbon out of solution. A low percentage of silicon allows carbon to remain in solution, forming iron carbide and producing white cast iron. A high percentage of silicon forces carbon out of solution, forming graphite and producing grey cast iron. Other alloying agents, manganese , chromium , molybdenum , titanium , and vanadium counteract silicon, and promote

174-464: A 10-tonne impeller) to be sand cast, as the chromium reduces cooling rate required to produce carbides through the greater thicknesses of material. Chromium also produces carbides with impressive abrasion resistance. These high-chromium alloys attribute their superior hardness to the presence of chromium carbides. The main form of these carbides are the eutectic or primary M 7 C 3 carbides, where "M" represents iron or chromium and can vary depending on

232-418: A carbon content of more than 2% and silicon content around 1–3%. Its usefulness derives from its relatively low melting temperature. The alloying elements determine the form in which its carbon appears: white cast iron has its carbon combined into an iron carbide named cementite , which is very hard, but brittle, as it allows cracks to pass straight through; grey cast iron has graphite flakes which deflect

290-493: A critical role in the kinetics of phase transformations in steel. The coiling temperature and cooling rate significantly affect cementite formation. At lower coiling temperatures, cementite forms fine pearlitic colonies, whereas at higher temperatures, it precipitates as coarse particles at grain boundaries. This morphological difference influences the rate of austenite formation and decomposition, with fine cementite promoting faster transformations due to its increased surface area and

348-631: A passing crack and initiate countless new cracks as the material breaks, and ductile cast iron has spherical graphite "nodules" which stop the crack from further progressing. Carbon (C), ranging from 1.8 to 4 wt%, and silicon (Si), 1–3 wt%, are the main alloying elements of cast iron. Iron alloys with lower carbon content are known as steel . Cast iron tends to be brittle , except for malleable cast irons . With its relatively low melting point, good fluidity, castability , excellent machinability , resistance to deformation and wear resistance , cast irons have become an engineering material with

406-563: A rule of mixtures. In any case, they offer hardness at the expense of toughness . Since carbide makes up a large fraction of the material, white cast iron could reasonably be classified as a cermet . White iron is too brittle for use in many structural components, but with good hardness and abrasion resistance and relatively low cost, it finds use in such applications as the wear surfaces ( impeller and volute ) of slurry pumps , shell liners and lifter bars in ball mills and autogenous grinding mills , balls and rings in coal pulverisers . It

464-424: A spongy steel without the stress concentration effects that flakes of graphite would produce. The carbon percentage present is 3-4% and percentage of silicon is 1.8-2.8%.Tiny amounts of 0.02 to 0.1% magnesium , and only 0.02 to 0.04% cerium added to these alloys slow the growth of graphite precipitates by bonding to the edges of the graphite planes. Along with careful control of other elements and timing, this allows

522-417: A wide range of applications and are used in pipes , machines and automotive industry parts, such as cylinder heads , cylinder blocks and gearbox cases. Some alloys are resistant to damage by oxidation . In general, cast iron is notoriously difficult to weld . The earliest cast-iron artefacts date to the 5th century BC, and were discovered by archaeologists in what is now Jiangsu , China. Cast iron

580-399: A year after it was opened. The Dee bridge disaster was caused by excessive loading at the centre of the beam by a passing train, and many similar bridges had to be demolished and rebuilt, often in wrought iron . The bridge had been badly designed, being trussed with wrought iron straps, which were wrongly thought to reinforce the structure. The centres of the beams were put into bending, with

638-472: Is a common constituent because ferrite can contain at most 0.02wt% of uncombined carbon. Therefore, in carbon steels and cast irons that are slowly cooled, a portion of the carbon is in the form of cementite. Cementite forms directly from the melt in the case of white cast iron . In carbon steel , cementite precipitates from austenite as austenite transforms to ferrite on slow cooling, or from martensite during tempering . An intimate mixture with ferrite,

SECTION 10

#1732784055845

696-438: Is added in the ladle or in the furnace, on the order of 0.5–2.5%, to decrease chill, refine graphite, and increase fluidity. Molybdenum is added on the order of 0.3–1% to increase chill and refine the graphite and pearlite structure; it is often added in conjunction with nickel, copper, and chromium to form high strength irons. Titanium is added as a degasser and deoxidizer, but it also increases fluidity. Vanadium at 0.15–0.5%

754-439: Is added to cast iron to stabilize cementite, increase hardness, and increase resistance to wear and heat. Zirconium at 0.1–0.3% helps to form graphite, deoxidize, and increase fluidity. In malleable iron melts, bismuth is added at 0.002–0.01% to increase how much silicon can be added. In white iron, boron is added to aid in the production of malleable iron; it also reduces the coarsening effect of bismuth. Grey cast iron

812-718: Is called cohenite after the German mineralogist Emil Cohen , who first described it. There are other forms of metastable iron carbides that have been identified in tempered steel and in the industrial Fischer–Tropsch process . These include epsilon (ε) carbide , hexagonal close-packed Fe 2–3 C, precipitates in plain-carbon steels of carbon content > 0.2%, tempered at 100–200 °C. Non-stoichiometric ε-carbide dissolves above ~200 °C, where Hägg carbides and cementite begin to form. Hägg carbide , monoclinic Fe 5 C 2 , precipitates in hardened tool steels tempered at 200–300 °C. It has also been found naturally as

870-420: Is characterised by its graphitic microstructure, which causes fractures of the material to have a grey appearance. It is the most commonly used cast iron and the most widely used cast material based on weight. Most cast irons have a chemical composition of 2.5–4.0% carbon, 1–3% silicon, and the remainder iron. Grey cast iron has less tensile strength and shock resistance than steel, but its compressive strength

928-485: Is comparable to low- and medium-carbon steel. These mechanical properties are controlled by the size and shape of the graphite flakes present in the microstructure and can be characterised according to the guidelines given by the ASTM . White cast iron displays white fractured surfaces due to the presence of an iron carbide precipitate called cementite. With a lower silicon content (graphitizing agent) and faster cooling rate,

986-453: Is difficult to cool thick castings fast enough to solidify the melt as white cast iron all the way through. However, rapid cooling can be used to solidify a shell of white cast iron, after which the remainder cools more slowly to form a core of grey cast iron. The resulting casting, called a chilled casting , has the benefits of a hard surface with a somewhat tougher interior. High-chromium white iron alloys allow massive castings (for example,

1044-605: Is known as the Iron Bridge in Shropshire , England. Cast iron was also used in the construction of buildings . Cast iron is made from pig iron , which is the product of melting iron ore in a blast furnace . Cast iron can be made directly from the molten pig iron or by re-melting pig iron, often along with substantial quantities of iron, steel, limestone, carbon (coke) and taking various steps to remove undesirable contaminants. Phosphorus and sulfur may be burnt out of

1102-433: Is one of the most common alloying elements, because it refines the pearlite and graphite structures, improves toughness, and evens out hardness differences between section thicknesses. Chromium is added in small amounts to reduce free graphite, produce chill, and because it is a powerful carbide stabilizer; nickel is often added in conjunction. A small amount of tin can be added as a substitute for 0.5% chromium. Copper

1160-575: Is still in use as part of a public walkway through the grounds of the estate, and has been designated a Category A listed building . Although iron had long been in use in China as a material for building bridges, it was not until 1778 that the first iron bridge in the Western world was constructed at Coalbrookdale in England. The first iron bridge in Scotland is thought to have been built on Islay , and

1218-698: The Chirk Aqueduct and the Pontcysyllte Aqueduct , both of which remain in use following the recent restorations. The best way of using cast iron for bridge construction was by using arches , so that all the material is in compression. Cast iron, again like masonry, is very strong in compression. Wrought iron, like most other kinds of iron and indeed like most metals in general, is strong in tension, and also tough – resistant to fracturing. The relationship between wrought iron and cast iron, for structural purposes, may be thought of as analogous to

SECTION 20

#1732784055845

1276-527: The Congo region of the Central African forest, blacksmiths invented sophisticated furnaces capable of high temperatures over 1000 years ago. There are countless examples of welding, soldering, and cast iron created in crucibles and poured into molds. These techniques were employed for the use of composite tools and weapons with cast iron or steel blades and soft, flexible wrought iron interiors. Iron wire

1334-490: The Warring States period . This is based on an analysis of the artifact's microstructures. Because cast iron is comparatively brittle, it is not suitable for purposes where a sharp edge or flexibility is required. It is strong under compression, but not under tension. Cast iron was invented in China in the 5th century BC and poured into molds to make ploughshares and pots as well as weapons and pagodas. Although steel

1392-403: The surface tension to form the graphite into spheroidal particles rather than flakes. Due to their lower aspect ratio , the spheroids are relatively short and far from one another, and have a lower cross section vis-a-vis a propagating crack or phonon . They also have blunt boundaries, as opposed to flakes, which alleviates the stress concentration problems found in grey cast iron. In general,

1450-652: The 13th century and other travellers subsequently noted an iron industry in the Alburz Mountains to the south of the Caspian Sea . This is close to the silk route , thus the use of cast-iron technology being derived from China is conceivable. Upon its introduction to the West in the 15th century it was used for cannon and shot . Henry VIII (reigned 1509–1547) initiated the casting of cannon in England. Soon, English iron workers using blast furnaces developed

1508-533: The 1720s and 1730s by a small number of other coke -fired blast furnaces. Application of the steam engine to power blast bellows (indirectly by pumping water to a waterwheel) in Britain, beginning in 1743 and increasing in the 1750s, was a key factor in increasing the production of cast iron, which surged in the following decades. In addition to overcoming the limitation on water power, the steam-pumped-water powered blast gave higher furnace temperatures which allowed

1566-515: The Industrial Revolution, cast iron was also widely used for frame and other fixed parts of machinery, including spinning and later weaving machines in textile mills. Cast iron became widely used, and many towns had foundries producing industrial and agricultural machinery. Iron carbide Cementite (or iron carbide ) is a compound of iron and carbon , more precisely an intermediate transition metal carbide with

1624-488: The alloy's composition. The eutectic carbides form as bundles of hollow hexagonal rods and grow perpendicular to the hexagonal basal plane. The hardness of these carbides are within the range of 1500-1800HV. Malleable iron starts as a white iron casting that is then heat treated for a day or two at about 950 °C (1,740 °F) and then cooled over a day or two. As a result, the carbon in iron carbide transforms into graphite and ferrite plus carbon. The slow process allows

1682-429: The benefit of what is called precipitation hardening (as in some steels, where much smaller cementite precipitates might inhibit [plastic deformation] by impeding the movement of dislocations through the pure iron ferrite matrix). Rather, they increase the bulk hardness of the cast iron simply by virtue of their own very high hardness and their substantial volume fraction, such that the bulk hardness can be approximated by

1740-537: The blast furnaces at Coalbrookdale. Other inventions followed, including one patented by Thomas Paine . Cast-iron bridges became commonplace as the Industrial Revolution gathered pace. Thomas Telford adopted the material for his bridge upstream at Buildwas , and then for Longdon-on-Tern Aqueduct , a canal trough aqueduct at Longdon-on-Tern on the Shrewsbury Canal . It was followed by

1798-539: The bolt holes were also cast and not drilled. Thus, because of casting's draft angle, the tension from the tie bars was placed on the hole's edge rather than being spread over the length of the hole. The replacement bridge was built in wrought iron and steel. Further bridge collapses occurred, however, culminating in the Norwood Junction rail accident of 1891. Thousands of cast-iron rail underbridges were eventually replaced by steel equivalents by 1900 owing to

Duchess Bridge - Misplaced Pages Continue

1856-522: The carbon in white cast iron precipitates out of the melt as the metastable phase cementite , Fe 3 C, rather than graphite. The cementite which precipitates from the melt forms as relatively large particles. As the iron carbide precipitates out, it withdraws carbon from the original melt, moving the mixture toward one that is closer to eutectic , and the remaining phase is the lower iron-carbon austenite (which on cooling might transform to martensite ). These eutectic carbides are much too large to provide

1914-439: The carbon to separate as spheroidal particles as the material solidifies. The properties are similar to malleable iron, but parts can be cast with larger sections. Cast iron and wrought iron can be produced unintentionally when smelting copper using iron ore as a flux. The earliest cast-iron artifacts date to the 5th century BC, and were discovered by archaeologists in what is now modern Luhe County , Jiangsu in China during

1972-627: The cotton, hemp , or wool being spun. As a result, textile mills had an alarming propensity to burn down. The solution was to build them completely of non-combustible materials, and it was found convenient to provide the building with an iron frame, largely of cast iron, replacing flammable wood. The first such building was at Ditherington in Shrewsbury , Shropshire. Many other warehouses were built using cast-iron columns and beams, although faulty designs, flawed beams or overloading sometimes caused building collapses and structural failures. During

2030-599: The development of steel-framed skyscrapers. Cast iron was also used sometimes for decorative facades, especially in the United States, and the Soho district of New York has numerous examples. It was also used occasionally for complete prefabricated buildings, such as the historic Iron Building in Watervliet, New York . Another important use was in textile mills . The air in the mills contained flammable fibres from

2088-520: The effects of sulfur, manganese is added, because the two form into manganese sulfide instead of iron sulfide. The manganese sulfide is lighter than the melt, so it tends to float out of the melt and into the slag . The amount of manganese required to neutralize sulfur is 1.7 × sulfur content + 0.3%. If more than this amount of manganese is added, then manganese carbide forms, which increases hardness and chilling , except in grey iron, where up to 1% of manganese increases strength and density. Nickel

2146-510: The existing roadway and railings but have new ribs cast in iron, the cost would be reduced to £140. The new duke gave him the go ahead to make preparations for this work, but having entered into correspondence with an iron foundry in Workington , Keir became convinced that it would be better to build a new bridge entirely of iron. He wrote to the duke's secretary in July, writing: If the bridge

2204-403: The family of alternative ironmaking technologies. The name cementite originated from the theory of Floris Osmond and J. Werth, in which the structure of solidified steel consists of a kind of cellular tissue, with ferrite as the nucleus and Fe 3 C the envelope of the cells. The carbide therefore cemented the iron. In the iron–carbon system (i.e. plain-carbon steels and cast irons ) it

2262-413: The formula Fe 3 C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, brittle material, normally classified as a ceramic in its pure form, and is a frequently found and important constituent in ferrous metallurgy . While cementite is present in most steels and cast irons, it is produced as a raw material in the iron carbide process, which belongs to

2320-539: The lower edge in tension, where cast iron, like masonry , is very weak. Nevertheless, cast iron continued to be used in inappropriate structural ways, until the Tay Rail Bridge disaster of 1879 cast serious doubt on the use of the material. Crucial lugs for holding tie bars and struts in the Tay Bridge had been cast integral with the columns, and they failed in the early stages of the accident. In addition,

2378-406: The molten iron, but this also burns out the carbon, which must be replaced. Depending on the application, carbon and silicon content are adjusted to the desired levels, which may be anywhere from 2–3.5% and 1–3%, respectively. If desired, other elements are then added to the melt before the final form is produced by casting . Cast iron is sometimes melted in a special type of blast furnace known as

Duchess Bridge - Misplaced Pages Continue

2436-612: The other product of austenite, forms a lamellar structure called pearlite . While cementite is thermodynamically unstable, eventually being converted to austenite (low carbon level) and graphite (high carbon level) at higher temperatures, it does not decompose on heating at temperatures below the eutectoid temperature (723 °C) on the metastable iron-carbon phase diagram. Mechanical properties are as follows: room temperature microhardness 760–1350 HV; bending strength 4.6–8 GPa, Young's modulus 160–180 GPa, indentation fracture toughness 1.5–2.7 MPa√m. The morphology of cementite plays

2494-423: The projecting deck of the bridge by iron scrolls. The arch has a span of approximately 101 feet (31 m), rises 8 feet (2.4 m), and has a walkway 6 feet (1.8 m) wide. John R. Hume , the former chief inspector of historic buildings for Historic Scotland , described the bridge in 2000 as "early, fine and remarkably slender". Cast iron Cast iron is a class of iron – carbon alloys with

2552-418: The properties of malleable cast iron are more like those of mild steel . There is a limit to how large a part can be cast in malleable iron, as it is made from white cast iron. Developed in 1948, nodular or ductile cast iron has its graphite in the form of very tiny nodules with the graphite in the form of concentric layers forming the nodules. As a result, the properties of ductile cast iron are that of

2610-460: The proximity of the carbide-ferrite interface. Furthermore, the dissolution kinetics of cementite during annealing are slower for coarse carbides, impacting the microstructural evolution during heat treatments. Cementite changes from ferromagnetic to paramagnetic upon heating to its Curie temperature of approximately 480 K (207 °C). A natural iron carbide (containing minor amounts of nickel and cobalt) occurs in iron meteorites and

2668-762: The relationship between wood and stone. Cast-iron beam bridges were used widely by the early railways, such as the Water Street Bridge in 1830 at the Manchester terminus of the Liverpool and Manchester Railway , but problems with its use became all too apparent when a new bridge carrying the Chester and Holyhead Railway across the River Dee in Chester collapsed killing five people in May 1847, less than

2726-475: The retention of carbon and the formation of those carbides. Nickel and copper increase strength and machinability, but do not change the amount of graphite formed. Carbon as graphite produces a softer iron, reduces shrinkage, lowers strength, and decreases density. Sulfur , largely a contaminant when present, forms iron sulfide , which prevents the formation of graphite and increases hardness . Sulfur makes molten cast iron viscous, which causes defects. To counter

2784-501: The technique of producing cast-iron cannons, which, while heavier than the prevailing bronze cannons, were much cheaper and enabled England to arm her navy better. Cast-iron pots were made at many English blast furnaces at the time. In 1707, Abraham Darby patented a new method of making pots (and kettles) thinner and hence cheaper than those made by traditional methods. This meant that his Coalbrookdale furnaces became dominant as suppliers of pots, an activity in which they were joined in

2842-566: The use of higher lime ratios, enabling the conversion from charcoal (supplies of wood for which were inadequate) to coke. The ironmasters of the Weald continued producing cast irons until the 1760s, and armament was one of the main uses of irons after the Restoration . The use of cast iron for structural purposes began in the late 1770s, when Abraham Darby III built The Iron Bridge , although short beams had already been used, such as in

2900-518: The widespread concern about cast iron under bridges on the rail network in Britain. Cast-iron columns , pioneered in mill buildings, enabled architects to build multi-storey buildings without the enormously thick walls required for masonry buildings of any height. They also opened up floor spaces in factories, and sight lines in churches and auditoriums. By the mid 19th century, cast iron columns were common in warehouse and industrial buildings, combined with wrought or cast iron beams, eventually leading to

2958-504: Was also employed there in later years. Scott died in 1812, but was survived by his wife, Elizabeth Scott who lived until in 1827, and was succeeded as duke by their son Charles Montagu-Scott. In May 1813, the younger Keir reported that the wooden bridge that was named for the dowager duchess, that spanned the Esk, was in a poor condition. He estimated the cost of repairing the existing structure would be around £160, but that if he were to retain

SECTION 50

#1732784055845

3016-514: Was also produced. Numerous testimonies were made by early European missionaries of the Luba people pouring cast iron into molds to make hoes. These technological innovations were accomplished without the invention of the blast furnace which was the prerequisite for the deployment of such innovations in Europe and Asia. The technology of cast iron was transferred to the West from China. Al-Qazvini in

3074-399: Was altogether made of Iron, the expense would be from £210 to £220 and I think it is a pity not to do it, it will look so remarkably light & neat, & His Grace I am convinced would not regret it afterwards, but I doubt much if He will be satisfied with the appearance of the structure, if the wooden railing is put on, it will I fear have a heavy appearance on the light Iron Ribs. The Duke

3132-517: Was convinced, and in August 1813 gave the go ahead for the work to be carried out, requesting that it should all be completed by September. The bridge was duly built at the foundry to designs drawn up by Keir, and transported by boat from Workington to the mouth of the Solway Firth , and as far up the Esk as possible, before being installed on the abutments of the previous bridge. Langholm Lodge

3190-452: Was demolished in 1953, but its ornamental grounds survive, and the bridge is still in use as part of a public walkway through them. It was designated a Category B listed building in 1971, and upgraded to Category A in 1988. The Duchess Bridge's segmental arch is constructed of latticed girders which morph into long spandrels . The girders rest on two ashlar abutments. The balusters of the parapet widen out at either end, and are tied to

3248-410: Was more desirable, cast iron was cheaper and thus was more commonly used for implements in ancient China, while wrought iron or steel was used for weapons. The Chinese developed a method of annealing cast iron by keeping hot castings in an oxidizing atmosphere for a week or longer in order to burn off some carbon near the surface in order to keep the surface layer from being too brittle. Deep within

3306-497: Was said to have already been standing for a number of years by 1811, but the Duchess Bridge is probably the oldest surviving Scottish example. Langholm Lodge was a mansion built by James Playfair for Henry Scott , the 3rd Duke of Buccleuch between 1786 and 1787. William Keir of Millholm was employed by the duke in the 1770s to manage and improve the estate the house was to be built upon, and his son William Keir Junior

3364-522: Was used in ancient China to mass-produce weaponry for warfare, as well as agriculture and architecture. During the 15th century AD, cast iron became utilized for cannons and shot in Burgundy , France, and in England during the Reformation . The amounts of cast iron used for cannons required large-scale production. The first cast-iron bridge was built during the 1770s by Abraham Darby III , and

#844155