El Niño–Southern Oscillation ( ENSO ) is a global climate phenomenon that emerges from variations in winds and sea surface temperatures over the tropical Pacific Ocean . Those variations have an irregular pattern but do have some semblance of cycles. The occurrence of ENSO is not predictable. It affects the climate of much of the tropics and subtropics , and has links ( teleconnections ) to higher-latitude regions of the world. The warming phase of the sea surface temperature is known as " El Niño " and the cooling phase as " La Niña ". The Southern Oscillation is the accompanying atmospheric oscillation , which is coupled with the sea temperature change.
138-700: El Niño is associated with higher than normal air sea level pressure over Indonesia, Australia and across the Indian Ocean to the Atlantic . La Niña has roughly the reverse pattern: high pressure over the central and eastern Pacific and lower pressure through much of the rest of the tropics and subtropics. The two phenomena last a year or so each and typically occur every two to seven years with varying intensity, with neutral periods of lower intensity interspersed. El Niño events can be more intense but La Niña events may repeat and last longer. A key mechanism of ENSO
276-567: A cooler West Pacific and a warmer East Pacific, leading to a shift of cloudiness and rainfall towards the East Pacific. This situation is called El Niño. The opposite occurs if trade winds are stronger than average, leading to a warmer West Pacific and a cooler East Pacific. This situation is called La Niña and is associated with increased cloudiness and rainfall over the West Pacific. The close relationship between ocean temperatures and
414-415: A diurnal or semidiurnal (twice-daily) cycle caused by global atmospheric tides . This effect is strongest in tropical zones, with an amplitude of a few hectopascals, and almost zero in polar areas. These variations have two superimposed cycles, a circadian (24 h) cycle, and a semi-circadian (12 h) cycle. The highest adjusted-to-sea level barometric pressure ever recorded on Earth (above 750 meters)
552-479: A feedback or internal climate process, greenhouse gases emitted from volcanoes are typically classified as external by climatologists. Greenhouse gases, such as CO 2 , methane and nitrous oxide , heat the climate system by trapping infrared light. Volcanoes are also part of the extended carbon cycle . Over very long (geological) time periods, they release carbon dioxide from the Earth's crust and mantle, counteracting
690-629: A land-based equivalent, competing theories exist concerning effects on climatic temperatures, for example contrasting the Iris hypothesis and CLAW hypothesis . A change in the type, distribution and coverage of vegetation may occur given a change in the climate. Some changes in climate may result in increased precipitation and warmth, resulting in improved plant growth and the subsequent sequestration of airborne CO 2 . Though an increase in CO 2 may benefit plants, some factors can diminish this increase. If there
828-485: A larger EP ENSO occurrence, or even displaying opposite conditions from the observed ones in the other Niño regions when accompanied by Modoki variations. ENSO Costero events usually present more localized effects, with warm phases leading to increased rainfall over the coast of Ecuador, northern Peru and the Amazon rainforest , and increased temperatures over the northern Chilean coast, and cold phases leading to droughts on
966-410: A location on Earth 's surface ( terrain and oceans ). It is directly proportional to the mass of air over that location. For numerical reasons, atmospheric models such as general circulation models (GCMs) usually predict the nondimensional logarithm of surface pressure . The average value of surface pressure on Earth is 985 hPa. This is in contrast to mean sea-level pressure, which involves
1104-605: A new climate. Rapid or large climate change can cause mass extinctions when creatures are stretched too far to be able to adapt. Collapses of past civilizations such as the Maya may be related to cycles of precipitation, especially drought, that in this example also correlates to the Western Hemisphere Warm Pool . Around 70 000 years ago the Toba supervolcano eruption created an especially cold period during
1242-473: A particular year, there is an energy imbalance and extra heat can be absorbed by the oceans. Due to climate inertia , this signal can be 'stored' in the ocean and be expressed as variability on longer time scales than the original weather disturbances. If the weather disturbances are completely random, occurring as white noise , the inertia of glaciers or oceans can transform this into climate changes where longer-duration oscillations are also larger oscillations,
1380-531: A period of anthropogenic global warming . In a larger timeframe, the Earth is emerging from the latest ice age, cooling from the Holocene climatic optimum and warming from the " Little Ice Age ", which means that climate has been constantly changing over the last 15,000 years or so. During warm periods, temperature fluctuations are often of a lesser amplitude. The Pleistocene period, dominated by repeated glaciations , developed out of more stable conditions in
1518-404: A phenomenon called red noise . Many climate changes have a random aspect and a cyclical aspect. This behavior is dubbed stochastic resonance . Half of the 2021 Nobel prize on physics was awarded for this work to Klaus Hasselmann jointly with Syukuro Manabe for related work on climate modelling . While Giorgio Parisi who with collaborators introduced the concept of stochastic resonance
SECTION 10
#17327653206241656-427: A pressure of about 2 atmospheres (1 atm of air plus 1 atm of water). Conversely, 10.3 m is the maximum height to which water can be raised using suction under standard atmospheric conditions. Low pressures, such as natural gas lines, are sometimes specified in inches of water , typically written as w.c. (water column) gauge or w.g. (inches water) gauge. A typical gas-using residential appliance in
1794-515: A quarter of the planet, and particularly in the form of temperature at the ocean surface, can have a significant effect on weather across the entire planet. Tropical instability waves visible on sea surface temperature maps, showing a tongue of colder water, are often present during neutral or La Niña conditions. La Niña is a complex weather pattern that occurs every few years, often persisting for longer than five months. El Niño and La Niña can be indicators of weather changes across
1932-586: A region will lead to earlier flowering and fruiting times, driving a change in the timing of life cycles of dependent organisms. Conversely, cold will cause plant bio-cycles to lag. Larger, faster or more radical changes, however, may result in vegetation stress, rapid plant loss and desertification in certain circumstances. An example of this occurred during the Carboniferous Rainforest Collapse (CRC), an extinction event 300 million years ago. At this time vast rainforests covered
2070-530: A role. The US Geological Survey estimates are that volcanic emissions are at a much lower level than the effects of current human activities, which generate 100–300 times the amount of carbon dioxide emitted by volcanoes. The annual amount put out by human activities may be greater than the amount released by supereruptions , the most recent of which was the Toba eruption in Indonesia 74,000 years ago. Slight variations in Earth's motion lead to changes in
2208-422: A scale of more than 1 year are the ones that inject over 100,000 tons of SO 2 into the stratosphere . This is due to the optical properties of SO 2 and sulfate aerosols, which strongly absorb or scatter solar radiation, creating a global layer of sulfuric acid haze. On average, such eruptions occur several times per century, and cause cooling (by partially blocking the transmission of solar radiation to
2346-423: A secondary peak in sea surface temperature across the far eastern equatorial Pacific Ocean sometimes follows the initial peak. An especially strong Walker circulation causes La Niña, which is considered to be the cold oceanic and positive atmospheric phase of the broader El Niño–Southern Oscillation (ENSO) weather phenomenon, as well as the opposite of El Niño weather pattern, where sea surface temperature across
2484-424: A standard lapse rate) associated with reduction of sea level from high elevations. The Dead Sea , the lowest place on Earth at 430 metres (1,410 ft) below sea level, has a correspondingly high typical atmospheric pressure of 1,065 hPa. A below-sea-level surface pressure record of 1,081.8 hPa (31.95 inHg) was set on 21 February 1961. The lowest non-tornadic atmospheric pressure ever measured
2622-404: Is a single climate phenomenon that quasi-periodically fluctuates between three phases: Neutral, La Niña or El Niño. La Niña and El Niño are opposite phases which require certain changes to take place in both the ocean and the atmosphere before an event is declared. The cool phase of ENSO is La Niña, with SST in the eastern Pacific below average, and air pressure high in the eastern Pacific and low in
2760-427: Is an environmental change such as drought, increased CO 2 concentrations will not benefit the plant. So even though climate change does increase CO 2 emissions, plants will often not use this increase as other environmental stresses put pressure on them. However, sequestration of CO 2 is expected to affect the rate of many natural cycles like plant litter decomposition rates. A gradual increase in warmth in
2898-458: Is caused by the gravitational attraction of the planet on the atmospheric gases above the surface and is a function of the mass of the planet, the radius of the surface, and the amount and composition of the gases and their vertical distribution in the atmosphere. It is modified by the planetary rotation and local effects such as wind velocity, density variations due to temperature and variations in composition. The mean sea-level pressure (MSLP)
SECTION 20
#17327653206243036-635: Is distributed around the globe by winds, ocean currents, and other mechanisms to affect the climates of different regions. Factors that can shape climate are called climate forcings or "forcing mechanisms". These include processes such as variations in solar radiation , variations in the Earth's orbit, variations in the albedo or reflectivity of the continents, atmosphere, and oceans, mountain-building and continental drift and changes in greenhouse gas concentrations. External forcing can be either anthropogenic (e.g. increased emissions of greenhouse gases and dust) or natural (e.g., changes in solar output,
3174-508: Is in the air and the temperature, but also by the amount of aerosols in the air such as dust. Globally, more dust is available if there are many regions with dry soils, little vegetation and strong winds. Paleoclimatology is the study of changes in climate through the entire history of Earth. It uses a variety of proxy methods from the Earth and life sciences to obtain data preserved within things such as rocks, sediments, ice sheets, tree rings, corals, shells, and microfossils. It then uses
3312-511: Is instead reported in kilopascals. In the US weather code remarks, three digits are all that are transmitted; decimal points and the one or two most significant digits are omitted: 1,013.2 hPa (14.695 psi) is transmitted as 132; 1,000 hPa (100 kPa) is transmitted as 000; 998.7 hPa is transmitted as 987; etc. The highest sea-level pressure on Earth occurs in Siberia , where
3450-403: Is known as Ekman transport . Colder water from deeper in the ocean rises along the continental margin to replace the near-surface water. This process cools the East Pacific because the thermocline is closer to the ocean surface, leaving relatively little separation between the deeper cold water and the ocean surface. Additionally, the northward-flowing Humboldt Current carries colder water from
3588-657: Is located over Indonesia and the eastern one over the equatorial Pacific, close to the South American coast. However, data on EQSOI goes back only to 1949. Sea surface height (SSH) changes up or down by several centimeters in Pacific equatorial region with the ESNO: El Niño causes a positive SSH anomaly (raised sea level) because of thermal expansion while La Niña causes a negative SSH anomaly (lowered sea level) via contraction. The El Niño–Southern Oscillation
3726-510: Is longer, it is classified as an El Niño "episode". It is thought that there have been at least 30 El Niño events between 1900 and 2024, with the 1982–83 , 1997–98 and 2014–16 events among the strongest on record. Since 2000, El Niño events have been observed in 2002–03, 2004–05, 2006–07, 2009–10, 2014–16 , 2018–19, and 2023–24 . Major ENSO events were recorded in the years 1790–93, 1828, 1876–78, 1891, 1925–26, 1972–73, 1982–83, 1997–98, 2014–16, and 2023–24. During strong El Niño episodes,
3864-517: Is often used to refer specifically to anthropogenic climate change. Anthropogenic climate change is caused by human activity, as opposed to changes in climate that may have resulted as part of Earth's natural processes. Global warming became the dominant popular term in 1988, but within scientific journals global warming refers to surface temperature increases while climate change includes global warming and everything else that increasing greenhouse gas levels affect. A related term, climatic change ,
4002-435: Is positive and the climate system is warming. If more energy goes out, the energy budget is negative and Earth experiences cooling. The energy moving through Earth's climate system finds expression in weather, varying on geographic scales and time. Long-term averages and variability of weather in a region constitute the region's climate. Such changes can be the result of "internal variability", when natural processes inherent to
4140-431: Is released from the ocean. The exchange of CO 2 between the air and the ocean can also be impacted by further aspects of climatic change. These and other self-reinforcing processes allow small changes in Earth's motion to have a large effect on climate. The Sun is the predominant source of energy input to the Earth's climate system . Other sources include geothermal energy from the Earth's core, tidal energy from
4278-458: Is strongly seasonal than will several smaller continents or islands . It has been postulated that ionized particles known as cosmic rays could impact cloud cover and thereby the climate. As the sun shields the Earth from these particles, changes in solar activity were hypothesized to influence climate indirectly as well. To test the hypothesis, CERN designed the CLOUD experiment , which showed
El Niño–Southern Oscillation - Misplaced Pages Continue
4416-522: Is the Bjerknes feedback (named after Jacob Bjerknes in 1969) in which the atmospheric changes alter the sea temperatures that in turn alter the atmospheric winds in a positive feedback. Weaker easterly trade winds result in a surge of warm surface waters to the east and reduced ocean upwelling on the equator . In turn, this leads to warmer sea surface temperatures (called El Niño), a weaker Walker circulation (an east-west overturning circulation in
4554-530: Is the atmospheric cooling after a volcanic eruption, when volcanic ash reflects sunlight. Thermal expansion of ocean water after atmospheric warming is slow, and can take thousands of years. A combination is also possible, e.g., sudden loss of albedo in the Arctic Ocean as sea ice melts, followed by more gradual thermal expansion of the water. Climate variability can also occur due to internal processes. Internal unforced processes often involve changes in
4692-465: Is the atmospheric pressure at mean sea level . This is the atmospheric pressure normally given in weather reports on radio, television, and newspapers or on the Internet . The altimeter setting in aviation is an atmospheric pressure adjustment. Average sea-level pressure is 1,013.25 hPa (29.921 inHg; 760.00 mmHg). In aviation weather reports ( METAR ), QNH is transmitted around
4830-548: Is the term to describe variations in the mean state and other characteristics of climate (such as chances or possibility of extreme weather, etc.) "on all spatial and temporal scales beyond that of individual weather events." Some of the variability does not appear to be caused by known systems and occurs at seemingly random times. Such variability is called random variability or noise . On the other hand, periodic variability occurs relatively regularly and in distinct modes of variability or climate patterns. The term climate change
4968-402: Is typically around 0.5 m (1.5 ft) higher than near Peru because of the buildup of water in the West Pacific. The thermocline , or the transitional zone between the warmer waters near the ocean surface and the cooler waters of the deep ocean , is pushed downwards in the West Pacific due to this water accumulation. The total weight of a column of ocean water is almost the same in
5106-495: The 1815 eruption of Mount Tambora causing the Year Without a Summer . At a larger scale—a few times every 50 million to 100 million years—the eruption of large igneous provinces brings large quantities of igneous rock from the mantle and lithosphere to the Earth's surface. Carbon dioxide in the rock is then released into the atmosphere. Small eruptions, with injections of less than 0.1 Mt of sulfur dioxide into
5244-486: The Antarctic ice sheet , can be used to show a link between temperature and global sea level variations. The air trapped in bubbles in the ice can also reveal the CO 2 variations of the atmosphere from the distant past, well before modern environmental influences. The study of these ice cores has been a significant indicator of the changes in CO 2 over many millennia, and continues to provide valuable information about
5382-525: The Atlantic and Pacific Oceans. This strongly affected the ocean dynamics of what is now the Gulf Stream and may have led to Northern Hemisphere ice cover. During the Carboniferous period, about 300 to 360 million years ago, plate tectonics may have triggered large-scale storage of carbon and increased glaciation . Geologic evidence points to a "megamonsoonal" circulation pattern during
5520-488: The Industrial Revolution , the climate has increasingly been affected by human activities . The climate system receives nearly all of its energy from the sun and radiates energy to outer space . The balance of incoming and outgoing energy and the passage of the energy through the climate system is Earth's energy budget . When the incoming energy is greater than the outgoing energy, Earth's energy budget
5658-524: The International Date Line and 120°W ), including the area off the west coast of South America , as upwelling of cold water occurs less or not at all offshore. This warming causes a shift in the atmospheric circulation, leading to higher air pressure in the western Pacific and lower in the eastern Pacific, with rainfall reducing over Indonesia, India and northern Australia, while rainfall and tropical cyclone formation increases over
El Niño–Southern Oscillation - Misplaced Pages Continue
5796-621: The Miocene and Pliocene climate . Holocene climate has been relatively stable. All of these changes complicate the task of looking for cyclical behavior in the climate. Positive feedback , negative feedback , and ecological inertia from the land-ocean-atmosphere system often attenuate or reverse smaller effects, whether from orbital forcings, solar variations or changes in concentrations of greenhouse gases. Certain feedbacks involving processes such as clouds are also uncertain; for contrails , natural cirrus clouds, oceanic dimethyl sulfide and
5934-472: The Siberian High often attains a sea-level pressure above 1,050 hPa (15.2 psi; 31 inHg), with record highs close to 1,085 hPa (15.74 psi; 32.0 inHg). The lowest measurable sea-level pressure is found at the centres of tropical cyclones and tornadoes , with a record low of 870 hPa (12.6 psi; 26 inHg). Surface pressure is the atmospheric pressure at
6072-596: The Southern Ocean to the tropics in the East Pacific . The combination of the Humboldt Current and upwelling maintains an area of cooler ocean waters off the coast of Peru. The West Pacific lacks a cold ocean current and has less upwelling as the trade winds are usually weaker than in the East Pacific, allowing the West Pacific to reach warmer temperatures. These warmer waters provide energy for
6210-408: The barometer ), is the pressure within the atmosphere of Earth . The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa ), which is equivalent to 1,013.25 millibars , 760 mm Hg , 29.9212 inches Hg , or 14.696 psi . The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is,
6348-1339: The troposphere , the following equation (the barometric formula ) relates atmospheric pressure p to altitude h : p = p 0 ⋅ ( 1 − L ⋅ h T 0 ) g ⋅ M R 0 ⋅ L = p 0 ⋅ ( 1 − g ⋅ h c p ⋅ T 0 ) c p ⋅ M R 0 ≈ p 0 ⋅ exp ( − g ⋅ h ⋅ M T 0 ⋅ R 0 ) {\displaystyle {\begin{aligned}p&=p_{0}\cdot \left(1-{\frac {L\cdot h}{T_{0}}}\right)^{\frac {g\cdot M}{R_{0}\cdot L}}\\&=p_{0}\cdot \left(1-{\frac {g\cdot h}{c_{\text{p}}\cdot T_{0}}}\right)^{\frac {c_{\text{p}}\cdot M}{R_{0}}}\approx p_{0}\cdot \exp \left(-{\frac {g\cdot h\cdot M}{T_{0}\cdot R_{0}}}\right)\end{aligned}}} The values in these equations are: Atmospheric pressure varies widely on Earth, and these changes are important in studying weather and climate . Atmospheric pressure shows
6486-423: The upward movement of air . As a result, the warm West Pacific has on average more cloudiness and rainfall than the cool East Pacific. ENSO describes a quasi-periodic change of both oceanic and atmospheric conditions over the tropical Pacific Ocean. These changes affect weather patterns across much of the Earth. The tropical Pacific is said to be in one of three states of ENSO (also called "phases") depending on
6624-416: The vapour pressure is equal to the atmospheric pressure around the liquid. Because of this, the boiling point of liquids is lower at lower pressure and higher at higher pressure. Cooking at high elevations, therefore, requires adjustments to recipes or pressure cooking . A rough approximation of elevation can be obtained by measuring the temperature at which water boils; in the mid-19th century, this method
6762-558: The 1800s, its reliability is limited due to the latitudes of both Darwin and Tahiti being well south of the Equator, so that the surface air pressure at both locations is less directly related to ENSO. To overcome this effect, a new index was created, named the Equatorial Southern Oscillation Index (EQSOI). To generate this index, two new regions, centered on the Equator, were defined. The western region
6900-556: The 1970s. Historical climatology is the study of historical changes in climate and their effect on human history and development. The primary sources include written records such as sagas , chronicles , maps and local history literature as well as pictorial representations such as paintings , drawings and even rock art . Climate variability in the recent past may be derived from changes in settlement and agricultural patterns. Archaeological evidence, oral history and historical documents can offer insights into past changes in
7038-563: The Bjerknes feedback naturally triggers negative feedbacks that end and reverse the abnormal state of the tropical Pacific. This perspective implies that the processes that lead to El Niño and La Niña also eventually bring about their end, making ENSO a self-sustaining process. Other theories view the state of ENSO as being changed by irregular and external phenomena such as the Madden–Julian oscillation , tropical instability waves , and westerly wind bursts . The three phases of ENSO relate to
SECTION 50
#17327653206247176-480: The Coastal Niño Index (ICEN), strong El Niño Costero events include 1957, 1982–83, 1997–98 and 2015–16, and La Niña Costera ones include 1950, 1954–56, 1962, 1964, 1966, 1967–68, 1970–71, 1975–76 and 2013. Currently, each country has a different threshold for what constitutes an El Niño event, which is tailored to their specific interests, for example: In climate change science, ENSO is known as one of
7314-581: The ENSO trend, the amplitude of the ENSO variability in the observed data still increases, by as much as 60% in the last 50 years. A study published in 2023 by CSIRO researchers found that climate change may have increased by two times the likelihood of strong El Niño events and nine times the likelihood of strong La Niña events. The study stated it found a consensus between different models and experiments. Sea level pressure Atmospheric pressure , also known as air pressure or barometric pressure (after
7452-619: The EP and CP types, and some scientists argue that ENSO exists as a continuum, often with hybrid types. The effects of the CP ENSO are different from those of the EP ENSO. The El Niño Modoki is associated with more hurricanes more frequently making landfall in the Atlantic. La Niña Modoki leads to a rainfall increase over northwestern Australia and northern Murray–Darling basin , rather than over
7590-403: The Earth's atmospheric pressure at sea level is approximately 1 atm. In most circumstances, atmospheric pressure is closely approximated by the hydrostatic pressure caused by the weight of air above the measurement point. As elevation increases, there is less overlying atmospheric mass, so atmospheric pressure decreases with increasing elevation. Because the atmosphere is thin relative to
7728-423: The Earth's orbit, volcano eruptions). There are a variety of climate change feedbacks that can either amplify or diminish the initial forcing. There are also key thresholds which when exceeded can produce rapid or irreversible change. Some parts of the climate system, such as the oceans and ice caps, respond more slowly in reaction to climate forcings, while others respond more quickly. An example of fast change
7866-443: The Earth's radius—especially the dense atmospheric layer at low altitudes—the Earth's gravitational acceleration as a function of altitude can be approximated as constant and contributes little to this fall-off. Pressure measures force per unit area, with SI units of pascals (1 pascal = 1 newton per square metre , 1 N/m ). On average, a column of air with a cross-sectional area of 1 square centimetre (cm ), measured from
8004-461: The Earth's surface) for a period of several years. Although volcanoes are technically part of the lithosphere, which itself is part of the climate system, the IPCC explicitly defines volcanism as an external forcing agent. Notable eruptions in the historical records are the 1991 eruption of Mount Pinatubo which lowered global temperatures by about 0.5 °C (0.9 °F) for up to three years, and
8142-495: The El Niño state. This process is known as Bjerknes feedback . Although these associated changes in the ocean and atmosphere often occur together, the state of the atmosphere may resemble a different ENSO phase than the state of the ocean or vice versa. Because their states are closely linked, the variations of ENSO may arise from changes in both the ocean and atmosphere and not necessarily from an initial change of exclusively one or
8280-490: The El Niños of 2006-07 and 2014-16 were also Central Pacific El Niños. Recent years when La Niña Modoki events occurred include 1973–1974, 1975–1976, 1983–1984, 1988–1989, 1998–1999, 2000–2001, 2008–2009, 2010–2011, and 2016–2017. The recent discovery of ENSO Modoki has some scientists believing it to be linked to global warming. However, comprehensive satellite data go back only to 1979. More research must be done to find
8418-516: The Moon and heat from the decay of radioactive compounds. Both long term variations in solar intensity are known to affect global climate. Solar output varies on shorter time scales, including the 11-year solar cycle and longer-term modulations . Correlation between sunspots and climate and tenuous at best. Three to four billion years ago , the Sun emitted only 75% as much power as it does today. If
SECTION 60
#17327653206248556-555: The Pacific trade winds , and a reduction in rainfall over eastern and northern Australia. La Niña episodes are defined as sustained cooling of the central and eastern tropical Pacific Ocean, thus resulting in an increase in the strength of the Pacific trade winds , and the opposite effects in Australia when compared to El Niño. Although the Southern Oscillation Index has a long station record going back to
8694-477: The Pacific Ocean and are dependent on agriculture and fishing. In climate change science, ENSO is known as one of the internal climate variability phenomena. Future trends in ENSO due to climate change are uncertain, although climate change exacerbates the effects of droughts and floods. The IPCC Sixth Assessment Report summarized the scientific knowledge in 2021 for the future of ENSO as follows: "In
8832-400: The US is rated for a maximum of 1 ⁄ 2 psi (3.4 kPa; 34 mbar), which is approximately 14 w.g. Similar metric units with a wide variety of names and notation based on millimetres , centimetres or metres are now less commonly used. Pure water boils at 100 °C (212 °F) at earth's standard atmospheric pressure. The boiling point is the temperature at which
8970-529: The Walker circulation, which was named after Gilbert Walker who discovered the Southern Oscillation during the early twentieth century. The Walker circulation is an east-west overturning circulation in the vicinity of the equator in the Pacific. Upward air is associated with high sea temperatures, convection and rainfall, while the downward branch occurs over cooler sea surface temperatures in
9108-406: The West Pacific northeast of Australia averages around 28–30 °C (82–86 °F). SSTs in the East Pacific off the western coast of South America are closer to 20 °C (68 °F). Strong trade winds near the equator push water away from the East Pacific and towards the West Pacific. This water is slowly warmed by the Sun as it moves west along the equator. The ocean surface near Indonesia
9246-462: The West Pacific to a depth of about 30 m (90 ft) in the East Pacific. Cooler deep ocean water takes the place of the outgoing surface waters in the East Pacific, rising to the ocean surface in a process called upwelling . Along the western coast of South America, water near the ocean surface is pushed westward due to the combination of the trade winds and the Coriolis effect . This process
9384-475: The advance and retreat of the Sahara , and for their appearance in the stratigraphic record . During the glacial cycles, there was a high correlation between CO 2 concentrations and temperatures. Early studies indicated that CO 2 concentrations lagged temperatures, but it has become clear that this is not always the case. When ocean temperatures increase, the solubility of CO 2 decreases so that it
9522-428: The asymmetric nature of the warm and cold phases of ENSO, some studies could not identify similar variations for La Niña, both in observations and in the climate models, but some sources could identify variations on La Niña with cooler waters on central Pacific and average or warmer water temperatures on both eastern and western Pacific, also showing eastern Pacific Ocean currents going to the opposite direction compared to
9660-437: The atmosphere) and even weaker trade winds. Ultimately the warm waters in the western tropical Pacific are depleted enough so that conditions return to normal. The exact mechanisms that cause the oscillation are unclear and are being studied. Each country that monitors the ENSO has a different threshold for what constitutes an El Niño or La Niña event, which is tailored to their specific interests. El Niño and La Niña affect
9798-435: The atmospheric and oceanic conditions. When the tropical Pacific roughly reflects the average conditions, the state of ENSO is said to be in the neutral phase. However, the tropical Pacific experiences occasional shifts away from these average conditions. If trade winds are weaker than average, the effect of upwelling in the East Pacific and the flow of warmer ocean surface waters towards the West Pacific lessen. This results in
9936-499: The atmospheric composition had been the same as today, liquid water should not have existed on the Earth's surface. However, there is evidence for the presence of water on the early Earth, in the Hadean and Archean eons, leading to what is known as the faint young Sun paradox . Hypothesized solutions to this paradox include a vastly different atmosphere, with much higher concentrations of greenhouse gases than currently exist. Over
10074-503: The atmospheric pressure at a given altitude. Temperature and humidity also affect the atmospheric pressure. Pressure is proportional to temperature and inversely related to humidity, and both of these are necessary to compute an accurate figure. The graph on the right above was developed for a temperature of 15 °C and a relative humidity of 0%. At low altitudes above sea level, the pressure decreases by about 1.2 kPa (12 hPa) for every 100 metres. For higher altitudes within
10212-548: The climate. Changes in climate have been linked to the rise and the collapse of various civilizations. Various archives of past climate are present in rocks, trees and fossils. From these archives, indirect measures of climate, so-called proxies, can be derived. Quantification of climatological variation of precipitation in prior centuries and epochs is less complete but approximated using proxies such as marine sediments, ice cores, cave stalagmites, and tree rings. Stress, too little precipitation or unsuitable temperatures, can alter
10350-593: The climate. Other changes, including Heinrich events , Dansgaard–Oeschger events and the Younger Dryas , however, illustrate how glacial variations may also influence climate without the orbital forcing . During the Last Glacial Maximum , some 25,000 years ago, sea levels were roughly 130 m lower than today. The deglaciation afterwards was characterized by rapid sea level change. In the early Pliocene , global temperatures were 1–2˚C warmer than
10488-405: The climate. The hypothesis is that soot released by large-scale fires blocks a significant fraction of sunlight for as much as a year, leading to a sharp drop in temperatures for a few years. This possible event is described as nuclear winter . Humans' use of land impact how much sunlight the surface reflects and the concentration of dust. Cloud formation is not only influenced by how much water
10626-481: The continents determines the geometry of the oceans and therefore influences patterns of ocean circulation. The locations of the seas are important in controlling the transfer of heat and moisture across the globe, and therefore, in determining global climate. A recent example of tectonic control on ocean circulation is the formation of the Isthmus of Panama about 5 million years ago, which shut off direct mixing between
10764-581: The correlation and study past El Niño episodes. More generally, there is no scientific consensus on how/if climate change might affect ENSO. There is also a scientific debate on the very existence of this "new" ENSO. A number of studies dispute the reality of this statistical distinction or its increasing occurrence, or both, either arguing the reliable record is too short to detect such a distinction, finding no distinction or trend using other statistical approaches, or that other types should be distinguished, such as standard and extreme ENSO. Likewise, following
10902-553: The currents in traditional La Niñas. Coined by the Peruvian Comité Multisectorial Encargado del Estudio Nacional del Fenómeno El Niño (ENFEN), ENSO Costero, or ENSO Oriental, is the name given to the phenomenon where the sea-surface temperature anomalies are mostly focused on the South American coastline, especially from Peru and Ecuador. Studies point many factors that can lead to its occurrence, sometimes accompanying, or being accompanied, by
11040-461: The differences between ancient and modern atmospheric conditions. The O/ O ratio in calcite and ice core samples used to deduce ocean temperature in the distant past is an example of a temperature proxy method. The remnants of plants, and specifically pollen, are also used to study climatic change. Plant distributions vary under different climate conditions. Different groups of plants have pollen with distinctive shapes and surface textures, and since
11178-426: The distribution of energy in the ocean and atmosphere, for instance, changes in the thermohaline circulation . Climatic changes due to internal variability sometimes occur in cycles or oscillations. For other types of natural climatic change, we cannot predict when it happens; the change is called random or stochastic . From a climate perspective, the weather can be considered random. If there are little clouds in
11316-517: The east. During El Niño, as the sea surface temperatures change so does the Walker Circulation. Warming in the eastern tropical Pacific weakens or reverses the downward branch, while cooler conditions in the west lead to less rain and downward air, so the Walker Circulation first weakens and may reverse. The Southern Oscillation is the atmospheric component of ENSO. This component is an oscillation in surface air pressure between
11454-475: The eastern Pacific. However, in the 1990s and 2000s, variations of ENSO conditions were observed, in which the usual place of the temperature anomaly (Niño 1 and 2) is not affected, but an anomaly also arises in the central Pacific (Niño 3.4). The phenomenon is called Central Pacific (CP) ENSO, "dateline" ENSO (because the anomaly arises near the dateline ), or ENSO "Modoki" (Modoki is Japanese for "similar, but different"). There are variations of ENSO additional to
11592-402: The eastern equatorial part of the central Pacific Ocean will be lower than normal by 3–5 °C (5.4–9 °F). The phenomenon occurs as strong winds blow warm water at the ocean's surface away from South America, across the Pacific Ocean towards Indonesia. As this warm water moves west, cold water from the deep sea rises to the surface near South America. The movement of so much heat across
11730-560: The eastern portion of the country as in a conventional EP La Niña. Also, La Niña Modoki increases the frequency of cyclonic storms over Bay of Bengal , but decreases the occurrence of severe storms in the Indian Ocean overall. The first recorded El Niño that originated in the central Pacific and moved toward the east was in 1986. Recent Central Pacific El Niños happened in 1986–87, 1991–92, 1994–95, 2002–03, 2004–05 and 2009–10. Furthermore, there were "Modoki" events in 1957–59, 1963–64, 1965–66, 1968–70, 1977–78 and 1979–80. Some sources say that
11868-589: The effect of cosmic rays is too weak to influence climate noticeably. Evidence exists that the Chicxulub asteroid impact some 66 million years ago had severely affected the Earth's climate. Large quantities of sulfate aerosols were kicked up into the atmosphere, decreasing global temperatures by up to 26 °C and producing sub-freezing temperatures for a period of 3–16 years. The recovery time for this event took more than 30 years. The large-scale use of nuclear weapons has also been investigated for its impact on
12006-417: The equatorial region of Europe and America. Climate change devastated these tropical rainforests, abruptly fragmenting the habitat into isolated 'islands' and causing the extinction of many plant and animal species. One of the most important ways animals can deal with climatic change is migration to warmer or colder regions. On a longer timescale, evolution makes ecosystems including animals better adapted to
12144-431: The evolution of a glacier in a particular season. The most significant climate processes since the middle to late Pliocene (approximately 3 million years ago) are the glacial and interglacial cycles. The present interglacial period (the Holocene ) has lasted about 11,700 years. Shaped by orbital variations , responses such as the rise and fall of continental ice sheets and significant sea-level changes helped create
12282-441: The extensive lineage of beetles whose genetic makeup has not altered significantly over the millennia, knowledge of the present climatic range of the different species, and the age of the sediments in which remains are found, past climatic conditions may be inferred. One difficulty in detecting climate cycles is that the Earth's climate has been changing in non-cyclic ways over most paleoclimatological timescales. Currently we are in
12420-505: The extrapolation of pressure to sea level for locations above or below sea level. The average pressure at mean sea level ( MSL ) in the International Standard Atmosphere ( ISA ) is 1,013.25 hPa, or 1 atmosphere (atm), or 29.92 inches of mercury. Pressure (P), mass (m), and acceleration due to gravity (g) are related by P = F/A = (m*g)/A, where A is the surface area. Atmospheric pressure is thus proportional to
12558-413: The following approximately 4 billion years, the energy output of the Sun increased. Over the next five billion years, the Sun's ultimate death as it becomes a red giant and then a white dwarf will have large effects on climate, with the red giant phase possibly ending any life on Earth that survives until that time. The volcanic eruptions considered to be large enough to affect the Earth's climate on
12696-732: The following years: Transitional phases at the onset or departure of El Niño or La Niña can also be important factors on global weather by affecting teleconnections . Significant episodes, known as Trans-Niño, are measured by the Trans-Niño index (TNI). Examples of affected short-time climate in North America include precipitation in the Northwest US and intense tornado activity in the contiguous US. The first ENSO pattern to be recognised, called Eastern Pacific (EP) ENSO, to distinguish if from others, involves temperature anomalies in
12834-530: The global climate and disrupt normal weather patterns, which as a result can lead to intense storms in some places and droughts in others. El Niño events cause short-term (approximately 1 year in length) spikes in global average surface temperature while La Niña events cause short term surface cooling. Therefore, the relative frequency of El Niño compared to La Niña events can affect global temperature trends on timescales of around ten years. The countries most affected by ENSO are developing countries that are bordering
12972-408: The globe. Atlantic and Pacific hurricanes can have different characteristics due to lower or higher wind shear and cooler or warmer sea surface temperatures. La Niña events have been observed for hundreds of years, and occurred on a regular basis during the early parts of both the 17th and 19th centuries. Since the start of the 20th century, La Niña events have occurred during
13110-444: The growth rate of trees, which allows scientists to infer climate trends by analyzing the growth rate of tree rings. This branch of science studying this called dendroclimatology . Glaciers leave behind moraines that contain a wealth of material—including organic matter, quartz, and potassium that may be dated—recording the periods in which a glacier advanced and retreated. Analysis of ice in cores drilled from an ice sheet such as
13248-520: The ice age, leading to a possible genetic bottleneck in human populations. Glaciers are considered among the most sensitive indicators of a changing climate. Their size is determined by a mass balance between snow input and melt output. As temperatures increase, glaciers retreat unless snow precipitation increases to make up for the additional melt. Glaciers grow and shrink due both to natural variability and external forcings. Variability in temperature, precipitation and hydrology can strongly determine
13386-414: The ice sheet melts, the resulting water is very low in salt and cold, driving changes in circulation. Life affects climate through its role in the carbon and water cycles and through such mechanisms as albedo , evapotranspiration , cloud formation , and weathering . Examples of how life may have affected past climate include: Whereas greenhouse gases released by the biosphere is often seen as
13524-465: The internal climate variability phenomena. The other two main ones are Pacific decadal oscillation and Atlantic multidecadal oscillation . La Niña impacts the global climate and disrupts normal weather patterns, which can lead to intense storms in some places and droughts in others. El Niño events cause short-term (approximately 1 year in length) spikes in global average surface temperature while La Niña events cause short term cooling. Therefore,
13662-470: The last glacial period ) show that the circulation in the North Atlantic can change suddenly and substantially, leading to global climate changes, even though the total amount of energy coming into the climate system did not change much. These large changes may have come from so called Heinrich events where internal instability of ice sheets caused huge ice bergs to be released into the ocean. When
13800-425: The last several decades, the number of El Niño events increased, and the number of La Niña events decreased, although observation of ENSO for much longer is needed to detect robust changes. Studies of historical data show the recent El Niño variation is most likely linked to global warming. For example, some results, even after subtracting the positive influence of decadal variation, are shown to be possibly present in
13938-523: The long term, it is very likely that the precipitation variance related to El Niño–Southern Oscillation will increase". The scientific consensus is also that "it is very likely that rainfall variability related to changes in the strength and spatial extent of ENSO teleconnections will lead to significant changes at regional scale". The El Niño–Southern Oscillation is a single climate phenomenon that periodically fluctuates between three phases: Neutral, La Niña or El Niño. La Niña and El Niño are opposite phases in
14076-421: The mean (average) sea level to the top of Earth's atmosphere, has a mass of about 1.03 kilogram and exerts a force or "weight" of about 10.1 newtons , resulting in a pressure of 10.1 N/cm or 101 kN /m (101 kilopascals, kPa). A column of air with a cross-sectional area of 1 in would have a weight of about 14.7 lbf , resulting in a pressure of 14.7 lbf/in . Atmospheric pressure
14214-641: The neutral ENSO phase, other climate anomalies/patterns such as the sign of the North Atlantic Oscillation or the Pacific–North American teleconnection pattern exert more influence. El Niño conditions are established when the Walker circulation weakens or reverses and the Hadley circulation strengthens, leading to the development of a band of warm ocean water in the central and east-central equatorial Pacific (approximately between
14352-469: The observed phenomenon of more frequent and stronger El Niño events occurs only in the initial phase of the global warming, and then (e.g., after the lower layers of the ocean get warmer, as well), El Niño will become weaker. It may also be that the stabilizing and destabilizing forces influencing the phenomenon will eventually compensate for each other. The consequences of ENSO in terms of the temperature anomalies and precipitation and weather extremes around
14490-413: The ocean having hundreds of times more mass than in the atmosphere , and thus very high thermal inertia. For example, alterations to ocean processes such as thermohaline circulation play a key role in redistributing heat in the world's oceans. Ocean currents transport a lot of energy from the warm tropical regions to the colder polar regions. Changes occurring around the last ice age (in technical terms,
14628-650: The oscillation which are deemed to occur when specific ocean and atmospheric conditions are reached or exceeded. An early recorded mention of the term "El Niño" ("The Boy" in Spanish) to refer to climate occurred in 1892, when Captain Camilo Carrillo told the geographical society congress in Lima that Peruvian sailors named the warm south-flowing current "El Niño" because it was most noticeable around Christmas. Although pre-Columbian societies were certainly aware of
14766-510: The other hand have positive SOI, meaning there is higher pressure in Tahiti and lower in Darwin. Low atmospheric pressure tends to occur over warm water and high pressure occurs over cold water, in part because of deep convection over the warm water. El Niño episodes are defined as sustained warming of the central and eastern tropical Pacific Ocean, thus resulting in a decrease in the strength of
14904-409: The other. Conceptual models explaining how ENSO operates generally accept the Bjerknes feedback hypothesis. However, ENSO would perpetually remain in one phase if Bjerknes feedback were the only process occurring. Several theories have been proposed to explain how ENSO can change from one state to the next, despite the positive feedback. These explanations broadly fall under two categories. In one view,
15042-638: The outer surface of pollen is composed of a very resilient material, they resist decay. Changes in the type of pollen found in different layers of sediment indicate changes in plant communities. These changes are often a sign of a changing climate. As an example, pollen studies have been used to track changing vegetation patterns throughout the Quaternary glaciations and especially since the last glacial maximum . Remains of beetles are common in freshwater and land sediments. Different species of beetles tend to be found under different climatic conditions. Given
15180-414: The peruvian coast, and increased rainfall and decreased temperatures on its mountainous and jungle regions. Because they don't influence the global climate as much as the other types, these events present lesser and weaker correlations to other significant ENSO features, neither always being triggered by Kelvin waves , nor always being accompanied by proportional Southern Oscillation responses. According to
15318-486: The phenomenon, the indigenous names for it have been lost to history. The capitalized term El Niño refers to the Christ Child , Jesus , because periodic warming in the Pacific near South America is usually noticed around Christmas . Originally, the term El Niño applied to an annual weak warm ocean current that ran southwards along the coast of Peru and Ecuador at about Christmas time. However, over time
15456-439: The present temperature, yet sea level was 15–25 meters higher than today. Sea ice plays an important role in Earth's climate as it affects the total amount of sunlight that is reflected away from the Earth. In the past, the Earth's oceans have been almost entirely covered by sea ice on a number of occasions, when the Earth was in a so-called Snowball Earth state, and completely ice-free in periods of warm climate. When there
15594-541: The records to determine the past states of the Earth's various climate regions and its atmospheric system. Direct measurements give a more complete overview of climate variability. Climate changes that occurred after the widespread deployment of measuring devices can be observed directly. Reasonably complete global records of surface temperature are available beginning from the mid-late 19th century. Further observations are derived indirectly from historical documents. Satellite cloud and precipitation data has been available since
15732-402: The relative frequency of El Niño compared to La Niña events can affect global temperature trends on decadal timescales. There is no sign that there are actual changes in the ENSO physical phenomenon due to climate change. Climate models do not simulate ENSO well enough to make reliable predictions. Future trends in ENSO are uncertain as different models make different predictions. It may be that
15870-607: The seasonal distribution of sunlight reaching the Earth's surface and how it is distributed across the globe. There is very little change to the area-averaged annually averaged sunshine; but there can be strong changes in the geographical and seasonal distribution. The three types of kinematic change are variations in Earth's eccentricity , changes in the tilt angle of Earth's axis of rotation , and precession of Earth's axis. Combined, these produce Milankovitch cycles which affect climate and are notable for their correlation to glacial and interglacial periods , their correlation with
16008-485: The stratosphere, affect the atmosphere only subtly, as temperature changes are comparable with natural variability. However, because smaller eruptions occur at a much higher frequency, they too significantly affect Earth's atmosphere. Over the course of millions of years, the motion of tectonic plates reconfigures global land and ocean areas and generates topography. This can affect both global and local patterns of climate and atmosphere-ocean circulation. The position of
16146-429: The strength of the trade winds was first identified by Jacob Bjerknes in 1969. Bjerknes also hypothesized that ENSO was a positive feedback system where the associated changes in one component of the climate system (the ocean or atmosphere) tend to reinforce changes in the other. For example, during El Niño, the reduced contrast in ocean temperatures across the Pacific results in weaker trade winds, further reinforcing
16284-614: The term has evolved and now refers to the warm and negative phase of the El Niño–Southern Oscillation (ENSO). The original phrase, El Niño de Navidad , arose centuries ago, when Peruvian fishermen named the weather phenomenon after the newborn Christ. La Niña ("The Girl" in Spanish) is the colder counterpart of El Niño, as part of the broader ENSO climate pattern . In the past, it was also called an anti-El Niño and El Viejo, meaning "the old man." A negative phase exists when atmospheric pressure over Indonesia and
16422-431: The time of the supercontinent Pangaea , and climate modeling suggests that the existence of the supercontinent was conducive to the establishment of monsoons. The size of continents is also important. Because of the stabilizing effect of the oceans on temperature, yearly temperature variations are generally lower in coastal areas than they are inland. A larger supercontinent will therefore have more area in which climate
16560-644: The title of the Intergovernmental Panel on Climate Change (IPCC) and the UN Framework Convention on Climate Change (UNFCCC). Climate change is now used as both a technical description of the process, as well as a noun used to describe the problem. On the broadest scale, the rate at which energy is received from the Sun and the rate at which it is lost to space determine the equilibrium temperature and climate of Earth. This energy
16698-472: The total energy budget of the Earth. A climate oscillation or climate cycle is any recurring cyclical oscillation within global or regional climate . They are quasiperiodic (not perfectly periodic), so a Fourier analysis of the data does not have sharp peaks in the spectrum . Many oscillations on different time-scales have been found or hypothesized: The oceanic aspects of climate variability can generate variability on centennial timescales due to
16836-449: The tropical Pacific Ocean. The low-level surface trade winds , which normally blow from east to west along the equator, either weaken or start blowing from the other direction. El Niño phases are known to happen at irregular intervals of two to seven years, and lasts nine months to two years. The average period length is five years. When this warming occurs for seven to nine months, it is classified as El Niño "conditions"; when its duration
16974-561: The tropical eastern and the western Pacific Ocean waters. The strength of the Southern Oscillation is measured by the Southern Oscillation Index (SOI). The SOI is computed from fluctuations in the surface air pressure difference between Tahiti (in the Pacific) and Darwin, Australia (on the Indian Ocean). El Niño episodes have negative SOI, meaning there is lower pressure over Tahiti and higher pressure in Darwin. La Niña episodes on
17112-582: The uptake by sedimentary rocks and other geological carbon dioxide sinks . Since the Industrial Revolution , humanity has been adding to greenhouse gases by emitting CO 2 from fossil fuel combustion, changing land use through deforestation, and has further altered the climate with aerosols (particulate matter in the atmosphere), release of trace gases (e.g. nitrogen oxides, carbon monoxide, or methane). Other factors, including land use, ozone depletion , animal husbandry ( ruminant animals such as cattle produce methane ), and deforestation , also play
17250-400: The variations in the climate that last longer than individual weather events, whereas the term climate change only refers to those variations that persist for a longer period of time, typically decades or more. Climate change may refer to any time in Earth's history, but the term is now commonly used to describe contemporary climate change, often popularly referred to as global warming. Since
17388-616: The various parts of the climate system alter the distribution of energy. Examples include variability in ocean basins such as the Pacific decadal oscillation and Atlantic multidecadal oscillation . Climate variability can also result from external forcing , when events outside of the climate system's components produce changes within the system. Examples include changes in solar output and volcanism . Climate variability has consequences for sea level changes, plant life, and mass extinctions; it also affects human societies. Climate variability
17526-483: The weight per unit area of the atmospheric mass above that location. Pressure on Earth varies with the altitude of the surface, so air pressure on mountains is usually lower than air pressure at sea level. Pressure varies smoothly from the Earth's surface to the top of the mesosphere . Although the pressure changes with the weather, NASA has averaged the conditions for all parts of the earth year-round. As altitude increases, atmospheric pressure decreases. One can calculate
17664-465: The west Pacific is abnormally high and pressure over the east Pacific is abnormally low, during El Niño episodes, and a positive phase is when the opposite occurs during La Niña episodes, and pressure over Indonesia is low and over the west Pacific is high. On average, the temperature of the ocean surface in the tropical East Pacific is roughly 8–10 °C (14–18 °F) cooler than in the tropical West Pacific . The sea surface temperature (SST) of
17802-519: The western Pacific. The ENSO cycle, including both El Niño and La Niña, causes global changes in temperature and rainfall. If the temperature variation from climatology is within 0.5 °C (0.9 °F), ENSO conditions are described as neutral. Neutral conditions are the transition between warm and cold phases of ENSO. Sea surface temperatures (by definition), tropical precipitation, and wind patterns are near average conditions during this phase. Close to half of all years are within neutral periods. During
17940-439: The western and east Pacific. Because the warmer waters of the upper ocean are slightly less dense than the cooler deep ocean, the thicker layer of warmer water in the western Pacific means the thermocline there must be deeper. The difference in weight must be enough to drive any deep water return flow. Consequently, the thermocline is tilted across the tropical Pacific, rising from an average depth of about 140 m (450 ft) in
18078-444: The world are clearly increasing and associated with climate change . For example, recent scholarship (since about 2019) has found that climate change is increasing the frequency of extreme El Niño events. Previously there was no consensus on whether climate change will have any influence on the strength or duration of El Niño events, as research alternately supported El Niño events becoming stronger and weaker, longer and shorter. Over
18216-602: The world in hectopascals or millibars (1 hectopascal = 1 millibar), except in the United States , Canada , and Japan where it is reported in inches of mercury (to two decimal places). The United States and Canada also report sea-level pressure SLP, which is adjusted to sea level by a different method, in the remarks section, not in the internationally transmitted part of the code, in hectopascals or millibars. However, in Canada's public weather reports, sea level pressure
18354-512: Was confirming Newton's theory of gravitation at and on Schiehallion mountain in Scotland, and he needed to measure elevations on the mountain's sides accurately. William Roy , using barometric pressure, was able to confirm Maskelyne's height determinations; the agreement was within one meter (3.28 feet). This method became and continues to be useful for survey work and map making. Climate pattern Climate variability includes all
18492-567: Was 1,084.8 hPa (32.03 inHg) measured in Tosontsengel, Mongolia on 19 December 2001. The highest adjusted-to-sea level barometric pressure ever recorded (below 750 meters) was at Agata in Evenk Autonomous Okrug , Russia (66°53' N, 93°28' E, elevation: 261 m, 856 ft) on 31 December 1968 of 1,083.8 hPa (32.005 inHg). The discrimination is due to the problematic assumptions (assuming
18630-439: Was 870 hPa (0.858 atm; 25.69 inHg), set on 12 October 1979, during Typhoon Tip in the western Pacific Ocean. The measurement was based on an instrumental observation made from a reconnaissance aircraft. One atmosphere (101.325 kPa or 14.7 psi) is also the pressure caused by the weight of a column of freshwater of approximately 10.3 m (33.8 ft). Thus, a diver 10.3 m under water experiences
18768-430: Was awarded the other half but mainly for work on theoretical physics. The ocean and atmosphere can work together to spontaneously generate internal climate variability that can persist for years to decades at a time. These variations can affect global average surface temperature by redistributing heat between the deep ocean and the atmosphere and/or by altering the cloud/water vapor/sea ice distribution which can affect
18906-494: Was proposed by the World Meteorological Organization (WMO) in 1966 to encompass all forms of climatic variability on time-scales longer than 10 years, but regardless of cause. During the 1970s, the term climate change replaced climatic change to focus on anthropogenic causes, as it became clear that human activities had a potential to drastically alter the climate. Climate change was incorporated in
19044-444: Was used by explorers. Conversely, if one wishes to evaporate a liquid at a lower temperature, for example in distillation , the atmospheric pressure may be lowered by using a vacuum pump , as in a rotary evaporator . An important application of the knowledge that atmospheric pressure varies directly with altitude was in determining the height of hills and mountains, thanks to reliable pressure measurement devices. In 1774, Maskelyne
#623376