Misplaced Pages

Page break

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A page break is a marker in an electronic document that tells the document interpreter that the content which follows is part of a new page. A page break causes a form feed to be sent to the printer during spooling of the document to the printer. Thus it is one of the elements that contributes to pagination .

#612387

95-577: Form feed is a page-breaking ASCII control character . It directs the printer to eject the current page and to continue printing at the top of another. Often, it will also cause a carriage return . The form feed character code is defined as 12 (0xC in hexadecimal ), and may be represented as Ctrl + L or ^L . In a related use, Ctrl + L can be used to clear the screen in Unix shells such as bash , or redraw screen in TUI programs like vi/emacs. In

190-529: A shift function (like in ITA2 ), which would allow more than 64 codes to be represented by a six-bit code . In a shifted code, some character codes determine choices between options for the following character codes. It allows compact encoding, but is less reliable for data transmission , as an error in transmitting the shift code typically makes a long part of the transmission unreadable. The standards committee decided against shifting, and so ASCII required at least

285-522: A BS (backspace). Instead, there was a key marked RUB OUT that sent code 127 (DEL). The purpose of this key was to erase mistakes in a manually-input paper tape: the operator had to push a button on the tape punch to back it up, then type the rubout, which punched all holes and replaced the mistake with a character that was intended to be ignored. Teletypes were commonly used with the less-expensive computers from Digital Equipment Corporation (DEC); these systems had to use what keys were available, and thus

380-498: A block is always a multiple of 16, and is often a multiple of 128, but is otherwise arbitrary. Characters required for a given script may be spread out over several different, potentially disjunct blocks within the codespace. Each code point is assigned a classification, listed as the code point's General Category property. Here, at the uppermost level code points are categorized as one of Letter, Mark, Number, Punctuation, Symbol, Separator, or Other. Under each category, each code point

475-727: A calendar year and with rare cases where the scheduled release had to be postponed. For instance, in April 2020, a month after version 13.0 was published, the Unicode Consortium announced they had changed the intended release date for version 14.0, pushing it back six months to September 2021 due to the COVID-19 pandemic . Unicode 16.0, the latest version, was released on 10 September 2024. It added 5,185 characters and seven new scripts: Garay , Gurung Khema , Kirat Rai , Ol Onal , Sunuwar , Todhri , and Tulu-Tigalari . Thus far,

570-458: A character count followed by the characters of the line and which used EBCDIC rather than ASCII encoding. The Telnet protocol defined an ASCII "Network Virtual Terminal" (NVT), so that connections between hosts with different line-ending conventions and character sets could be supported by transmitting a standard text format over the network. Telnet used ASCII along with CR-LF line endings, and software using other conventions would translate between

665-432: A comprehensive catalog of character properties, including those needed for supporting bidirectional text , as well as visual charts and reference data sets to aid implementers. Previously, The Unicode Standard was sold as a print volume containing the complete core specification, standard annexes, and code charts. However, version 5.0, published in 2006, was the last version printed this way. Starting with version 5.2, only

760-575: A full semantic duplicate of the Latin alphabet, because legacy CJK encodings contained both "fullwidth" (matching the width of CJK characters) and "halfwidth" (matching ordinary Latin script) characters. The Unicode Bulldog Award is given to people deemed to be influential in Unicode's development, with recipients including Tatsuo Kobayashi , Thomas Milo, Roozbeh Pournader , Ken Lunde , and Michael Everson . The origins of Unicode can be traced back to

855-442: A large number of scripts, and not with all of the scripts supported being treated in a consistent manner. The philosophy that underpins Unicode seeks to encode the underlying characters— graphemes and grapheme-like units—rather than graphical distinctions considered mere variant glyphs thereof, that are instead best handled by the typeface , through the use of markup , or by some other means. In particularly complex cases, such as

950-498: A line terminator. The tty driver would handle the LF to CRLF conversion on output so files can be directly printed to terminal, and NL (newline) is often used to refer to CRLF in UNIX documents. Unix and Unix-like systems, and Amiga systems, adopted this convention from Multics. On the other hand, the original Macintosh OS , Apple DOS , and ProDOS used carriage return (CR) alone as

1045-605: A line terminator; however, since Apple later replaced these obsolete operating systems with their Unix-based macOS (formerly named OS X) operating system, they now use line feed (LF) as well. The Radio Shack TRS-80 also used a lone CR to terminate lines. Computers attached to the ARPANET included machines running operating systems such as TOPS-10 and TENEX using CR-LF line endings; machines running operating systems such as Multics using LF line endings; and machines running operating systems such as OS/360 that represented lines as

SECTION 10

#1732779883613

1140-534: A low-surrogate code point forms a surrogate pair in UTF-16 in order to represent code points greater than U+FFFF . In principle, these code points cannot otherwise be used, though in practice this rule is often ignored, especially when not using UTF-16. A small set of code points are guaranteed never to be assigned to characters, although third-parties may make independent use of them at their discretion. There are 66 of these noncharacters : U+FDD0 – U+FDEF and

1235-421: A part of the standard. Moreover, the widespread adoption of Unicode was in large part responsible for the initial popularization of emoji outside of Japan. Unicode is ultimately capable of encoding more than 1.1 million characters. Unicode has largely supplanted the previous environment of a myriad of incompatible character sets , each used within different locales and on different computer architectures. Unicode

1330-535: A project run by Deborah Anderson at the University of California, Berkeley was founded in 2002 with the goal of funding proposals for scripts not yet encoded in the standard. The project has become a major source of proposed additions to the standard in recent years. The Unicode Consortium together with the ISO have developed a shared repertoire following the initial publication of The Unicode Standard : Unicode and

1425-399: A properly engineered design, 16 bits per character are more than sufficient for this purpose. This design decision was made based on the assumption that only scripts and characters in "modern" use would require encoding: Unicode gives higher priority to ensuring utility for the future than to preserving past antiquities. Unicode aims in the first instance at the characters published in

1520-600: A reserved device control (DC0), synchronous idle (SYNC), and acknowledge (ACK). These were positioned to maximize the Hamming distance between their bit patterns. ASCII-code order is also called ASCIIbetical order. Collation of data is sometimes done in this order rather than "standard" alphabetical order ( collating sequence ). The main deviations in ASCII order are: An intermediate order converts uppercase letters to lowercase before comparing ASCII values. ASCII reserves

1615-541: A reserved meaning. Over time this interpretation has been co-opted and has eventually been changed. In modern usage, an ESC sent to the terminal usually indicates the start of a command sequence, which can be used to address the cursor, scroll a region, set/query various terminal properties, and more. They are usually in the form of a so-called " ANSI escape code " (often starting with a " Control Sequence Introducer ", "CSI", " ESC [ ") from ECMA-48 (1972) and its successors. Some escape sequences do not have introducers, like

1710-404: A seven-bit code. The committee considered an eight-bit code, since eight bits ( octets ) would allow two four-bit patterns to efficiently encode two digits with binary-coded decimal . However, it would require all data transmission to send eight bits when seven could suffice. The committee voted to use a seven-bit code to minimize costs associated with data transmission. Since perforated tape at

1805-399: A terminal. Some operating systems such as CP/M tracked file length only in units of disk blocks, and used control-Z to mark the end of the actual text in the file. For these reasons, EOF, or end-of-file , was used colloquially and conventionally as a three-letter acronym for control-Z instead of SUBstitute. The end-of-text character ( ETX ), also known as control-C , was inappropriate for

1900-558: A total of 168 scripts are included in the latest version of Unicode (covering alphabets , abugidas and syllabaries ), although there are still scripts that are not yet encoded, particularly those mainly used in historical, liturgical, and academic contexts. Further additions of characters to the already encoded scripts, as well as symbols, in particular for mathematics and music (in the form of notes and rhythmic symbols), also occur. The Unicode Roadmap Committee ( Michael Everson , Rick McGowan, Ken Whistler, V.S. Umamaheswaran) maintain

1995-654: A universal encoding than the original Unicode architecture envisioned. Version 1.0 of Microsoft's TrueType specification, published in 1992, used the name "Apple Unicode" instead of "Unicode" for the Platform ID in the naming table. The Unicode Consortium is a nonprofit organization that coordinates Unicode's development. Full members include most of the main computer software and hardware companies (and few others) with any interest in text-processing standards, including Adobe , Apple , Google , IBM , Meta (previously as Facebook), Microsoft , Netflix , and SAP . Over

SECTION 20

#1732779883613

2090-449: A variety of reasons, while using control-Z as the control character to end a file is analogous to the letter Z's position at the end of the alphabet, and serves as a very convenient mnemonic aid . A historically common and still prevalent convention uses the ETX character convention to interrupt and halt a program via an input data stream, usually from a keyboard. The Unix terminal driver uses

2185-737: Is 0101 in binary). Many of the non-alphanumeric characters were positioned to correspond to their shifted position on typewriters; an important subtlety is that these were based on mechanical typewriters, not electric typewriters. Mechanical typewriters followed the de facto standard set by the Remington No. 2 (1878), the first typewriter with a shift key, and the shifted values of 23456789- were "#$ %_&'()  – early typewriters omitted 0 and 1 , using O (capital letter o ) and l (lowercase letter L ) instead, but 1! and 0) pairs became standard once 0 and 1 became common. Thus, in ASCII !"#$ % were placed in

2280-413: Is intended to suggest a unique, unified, universal encoding". In this document, entitled Unicode 88 , Becker outlined a scheme using 16-bit characters: Unicode is intended to address the need for a workable, reliable world text encoding. Unicode could be roughly described as "wide-body ASCII " that has been stretched to 16 bits to encompass the characters of all the world's living languages. In

2375-457: Is not padded. There are a total of 2 + (2 − 2 ) = 1 112 064 valid code points within the codespace. (This number arises from the limitations of the UTF-16 character encoding, which can encode the 2 code points in the range U+0000 through U+FFFF except for the 2 code points in the range U+D800 through U+DFFF , which are used as surrogate pairs to encode the 2 code points in

2470-480: Is projected to include 4301 new unified CJK characters . The Unicode Standard defines a codespace : a sequence of integers called code points in the range from 0 to 1 114 111 , notated according to the standard as U+0000 – U+10FFFF . The codespace is a systematic, architecture-independent representation of The Unicode Standard ; actual text is processed as binary data via one of several Unicode encodings, such as UTF-8 . In this normative notation,

2565-427: Is replaced by a second control-S to resume output. The 33 ASR also could be configured to employ control-R (DC2) and control-T (DC4) to start and stop the tape punch; on some units equipped with this function, the corresponding control character lettering on the keycap above the letter was TAPE and TAPE respectively. The Teletype could not move its typehead backwards, so it did not have a key on its keyboard to send

2660-468: Is seldom used when programming with modern printers in modern operating environments like Windows , Unix , Linux or macOS . Instead, form feeds are generated by having the printing program call a form feed API function. For example, when printing using the .NET Framework , the PrintPageEventArgs.HasMorePages property is used to indicate a form feed is desired. The form feed character

2755-455: Is sometimes used in plain text files of source code as a delimiter for a page break, or as marker for sections of code. Some editors, in particular emacs and vi , have built-in commands to page up/down on the form feed character. This convention is predominantly used in Lisp code, and is also seen in C and Python source code. GNU Coding Standards require such form feeds in C. In Usenet ,

2850-404: Is the newline problem on various operating systems . Teletype machines required that a line of text be terminated with both "carriage return" (which moves the printhead to the beginning of the line) and "line feed" (which advances the paper one line without moving the printhead). The name "carriage return" comes from the fact that on a manual typewriter the carriage holding the paper moves while

2945-400: Is then further subcategorized. In most cases, other properties must be used to adequately describe all the characteristics of any given code point. The 1024 points in the range U+D800 – U+DBFF are known as high-surrogate code points, and code points in the range U+DC00 – U+DFFF ( 1024 code points) are known as low-surrogate code points. A high-surrogate code point followed by

Page break - Misplaced Pages Continue

3040-507: Is used to encode the vast majority of text on the Internet, including most web pages , and relevant Unicode support has become a common consideration in contemporary software development. The Unicode character repertoire is synchronized with ISO/IEC 10646 , each being code-for-code identical with one another. However, The Unicode Standard is more than just a repertoire within which characters are assigned. To aid developers and designers,

3135-407: The C programming language (and other languages derived from C), the form feed character is represented as '\f' . Unicode also provides the character U+21A1 ↡ DOWNWARDS TWO HEADED ARROW as a printable symbol for a form feed (not as the form feed itself). The form feed character is considered whitespace by the C character classification function isspace() . Form feed

3230-503: The Comité Consultatif International Téléphonique et Télégraphique (CCITT) International Telegraph Alphabet No. 2 (ITA2) standard of 1932, FIELDATA (1956 ), and early EBCDIC (1963), more than 64 codes were required for ASCII. ITA2 was in turn based on Baudot code , the 5-bit telegraph code Émile Baudot invented in 1870 and patented in 1874. The committee debated the possibility of

3325-636: The Teletype Model 33 , which used the left-shifted layout corresponding to ASCII, differently from traditional mechanical typewriters. Electric typewriters, notably the IBM Selectric (1961), used a somewhat different layout that has become de facto standard on computers – following the IBM PC (1981), especially Model M (1984) – and thus shift values for symbols on modern keyboards do not correspond as closely to

3420-730: The United States Federal Government support ASCII, stating: I have also approved recommendations of the Secretary of Commerce [ Luther H. Hodges ] regarding standards for recording the Standard Code for Information Interchange on magnetic tapes and paper tapes when they are used in computer operations. All computers and related equipment configurations brought into the Federal Government inventory on and after July 1, 1969, must have

3515-667: The carriage return , line feed , and tab codes. For example, lowercase i would be represented in the ASCII encoding by binary 1101001 = hexadecimal 69 ( i is the ninth letter) = decimal 105. Despite being an American standard, ASCII does not have a code point for the cent (¢). It also does not support English terms with diacritical marks such as résumé and jalapeño , or proper nouns with diacritical marks such as Beyoncé (although on certain devices characters could be combined with punctuation such as Tilde (~) and Backtick (`) to approximate such characters.) The American Standard Code for Information Interchange (ASCII)

3610-645: The "Reset to Initial State", "RIS" command " ESC c ". In contrast, an ESC read from the terminal is most often used as an out-of-band character used to terminate an operation or special mode, as in the TECO and vi text editors . In graphical user interface (GUI) and windowing systems, ESC generally causes an application to abort its current operation or to exit (terminate) altogether. The inherent ambiguity of many control characters, combined with their historical usage, created problems when transferring "plain text" files between systems. The best example of this

3705-582: The "help" prefix command in GNU Emacs . Many more of the control characters have been assigned meanings quite different from their original ones. The "escape" character (ESC, code 27), for example, was intended originally to allow sending of other control characters as literals instead of invoking their meaning, an "escape sequence". This is the same meaning of "escape" encountered in URL encodings, C language strings, and other systems where certain characters have

3800-401: The "line feed" function (which causes a printer to advance its paper), and character 8 represents " backspace ". RFC   2822 refers to control characters that do not include carriage return, line feed or white space as non-whitespace control characters. Except for the control characters that prescribe elementary line-oriented formatting, ASCII does not define any mechanism for describing

3895-578: The 1980s, to a group of individuals with connections to Xerox 's Character Code Standard (XCCS). In 1987, Xerox employee Joe Becker , along with Apple employees Lee Collins and Mark Davis , started investigating the practicalities of creating a universal character set. With additional input from Peter Fenwick and Dave Opstad , Becker published a draft proposal for an "international/multilingual text character encoding system in August 1988, tentatively called Unicode". He explained that "the name 'Unicode'

Page break - Misplaced Pages Continue

3990-419: The ASCII chart in this article. Ninety-five of the encoded characters are printable: these include the digits 0 to 9 , lowercase letters a to z , uppercase letters A to Z , and punctuation symbols . In addition, the original ASCII specification included 33 non-printing control codes which originated with Teletype models ; most of these are now obsolete, although a few are still commonly used, such as

4085-679: The ASCII table as earlier keyboards did. The /? pair also dates to the No. 2, and the ,< .> pairs were used on some keyboards (others, including the No. 2, did not shift , (comma) or . (full stop) so they could be used in uppercase without unshifting). However, ASCII split the ;: pair (dating to No. 2), and rearranged mathematical symbols (varied conventions, commonly -* =+ ) to :* ;+ -= . Some then-common typewriter characters were not included, notably ½ ¼ ¢ , while ^ ` ~ were included as diacritics for international use, and < > for mathematical use, together with

4180-470: The DEL character was assigned to erase the previous character. Because of this, DEC video terminals (by default) sent the DEL character for the key marked "Backspace" while the separate key marked "Delete" sent an escape sequence ; many other competing terminals sent a BS character for the backspace key. The early Unix tty drivers, unlike some modern implementations, allowed only one character to be set to erase

4275-638: The IETF's USEFOR working group, as a feature that user agents should (but are not required to) support. ASCII ASCII ( / ˈ æ s k iː / ASS -kee ), an acronym for American Standard Code for Information Interchange , is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment , and other devices. ASCII has just 128 code points , of which only 95 are printable characters , which severely limit its scope. The set of available punctuation had significant impact on

4370-567: The ISO's Universal Coded Character Set (UCS) use identical character names and code points. However, the Unicode versions do differ from their ISO equivalents in two significant ways. While the UCS is a simple character map, Unicode specifies the rules, algorithms, and properties necessary to achieve interoperability between different platforms and languages. Thus, The Unicode Standard includes more information, covering in-depth topics such as bitwise encoding, collation , and rendering. It also provides

4465-469: The Teletype Model 33 machine assignments for codes 17 (control-Q, DC1, also known as XON), 19 (control-S, DC3, also known as XOFF), and 127 ( delete ) became de facto standards. The Model 33 was also notable for taking the description of control-G (code 7, BEL, meaning audibly alert the operator) literally, as the unit contained an actual bell which it rang when it received a BEL character. Because

4560-487: The capability to use the Standard Code for Information Interchange and the formats prescribed by the magnetic tape and paper tape standards when these media are used. Unicode Unicode , formally The Unicode Standard , is a text encoding standard maintained by the Unicode Consortium designed to support the use of text in all of the world's writing systems that can be digitized. Version 16.0 of

4655-585: The change into its draft standard. The X3.2.4 task group voted its approval for the change to ASCII at its May 1963 meeting. Locating the lowercase letters in sticks 6 and 7 caused the characters to differ in bit pattern from the upper case by a single bit, which simplified case-insensitive character matching and the construction of keyboards and printers. The X3 committee made other changes, including other new characters (the brace and vertical bar characters), renaming some control characters (SOM became start of header (SOH)) and moving or removing others (RU

4750-493: The concept of "carriage return" was meaningless. IBM's PC DOS (also marketed as MS-DOS by Microsoft) inherited the convention by virtue of being loosely based on CP/M, and Windows in turn inherited it from MS-DOS. Requiring two characters to mark the end of a line introduces unnecessary complexity and ambiguity as to how to interpret each character when encountered by itself. To simplify matters, plain text data streams, including files, on Multics used line feed (LF) alone as

4845-527: The convention was so well established that backward compatibility necessitated continuing to follow it. When Gary Kildall created CP/M , he was inspired by some of the command line interface conventions used in DEC's RT-11 operating system. Until the introduction of PC DOS in 1981, IBM had no influence in this because their 1970s operating systems used EBCDIC encoding instead of ASCII, and they were oriented toward punch-card input and line printer output on which

SECTION 50

#1732779883613

4940-496: The core specification, published as a print-on-demand paperback, may be purchased. The full text, on the other hand, is published as a free PDF on the Unicode website. A practical reason for this publication method highlights the second significant difference between the UCS and Unicode—the frequency with which updated versions are released and new characters added. The Unicode Standard has regularly released annual expanded versions, occasionally with more than one version released in

5035-475: The discretion of the software actually rendering the text, such as a web browser or word processor . However, partially with the intent of encouraging rapid adoption, the simplicity of this original model has become somewhat more elaborate over time, and various pragmatic concessions have been made over the course of the standard's development. The first 256 code points mirror the ISO/IEC 8859-1 standard, with

5130-663: The earlier five-bit ITA2 , which was also used by the competing Telex teleprinter system. Bob Bemer introduced features such as the escape sequence . His British colleague Hugh McGregor Ross helped to popularize this work – according to Bemer, "so much so that the code that was to become ASCII was first called the Bemer–Ross Code in Europe". Because of his extensive work on ASCII, Bemer has been called "the father of ASCII". On March 11, 1968, US President Lyndon B. Johnson mandated that all computers purchased by

5225-576: The earlier teleprinter encoding systems. Like other character encodings , ASCII specifies a correspondence between digital bit patterns and character symbols (i.e. graphemes and control characters ). This allows digital devices to communicate with each other and to process, store, and communicate character-oriented information such as written language. Before ASCII was developed, the encodings in use included 26 alphabetic characters, 10 numerical digits , and from 11 to 25 special graphic symbols. To include all these, and control characters compatible with

5320-497: The end-of-transmission character ( EOT ), also known as control-D, to indicate the end of a data stream. In the C programming language , and in Unix conventions, the null character is used to terminate text strings ; such null-terminated strings can be known in abbreviation as ASCIZ or ASCIIZ, where here Z stands for "zero". Other representations might be used by specialist equipment, for example ISO 2047 graphics or hexadecimal numbers. Codes 20 hex to 7E hex , known as

5415-627: The first 32 code points (numbers 0–31 decimal) and the last one (number 127 decimal) for control characters . These are codes intended to control peripheral devices (such as printers ), or to provide meta-information about data streams, such as those stored on magnetic tape. Despite their name, these code points do not represent printable characters (i.e. they are not characters at all, but signals). For debugging purposes, "placeholder" symbols (such as those given in ISO 2047 and its predecessors) are assigned to them. For example, character 0x0A represents

5510-401: The following versions of The Unicode Standard have been published. Update versions, which do not include any changes to character repertoire, are signified by the third number (e.g., "version 4.0.1") and are omitted in the table below. The Unicode Consortium normally releases a new version of The Unicode Standard once a year. Version 17.0, the next major version,

5605-411: The form feed as asterisks ; Dialog turns the font and background color red between form feeds; and XRN simply inserts blank lines to fill up the remainder of the article display area so the user must scroll down to reveal the spoiler. This use of the form feed character is not supported by all newsreaders, and is not standardized, although it has appeared in a draft of a Usenet Best Practices document by

5700-460: The form feed character is used by several newsreaders as a "spoiler character", causing them to automatically hide the following text until prompted, as a way to prevent spoilers from being inadvertently revealed. The precise behavior depends on the client displaying the article: for example, Gnus displays "Next page..." in boldface, and switches to a second screen to display text after the form feed; slrn displays all non-space characters following

5795-526: The group. By the end of 1990, most of the work of remapping existing standards had been completed, and a final review draft of Unicode was ready. The Unicode Consortium was incorporated in California on 3 January 1991, and the first volume of The Unicode Standard was published that October. The second volume, now adding Han ideographs, was published in June 1992. In 1996, a surrogate character mechanism

SECTION 60

#1732779883613

5890-562: The intent of trivializing the conversion of text already written in Western European scripts. To preserve the distinctions made by different legacy encodings, therefore allowing for conversion between them and Unicode without any loss of information, many characters nearly identical to others , in both appearance and intended function, were given distinct code points. For example, the Halfwidth and Fullwidth Forms block encompasses

5985-448: The keytop for the O key also showed a left-arrow symbol (from ASCII-1963, which had this character instead of underscore ), a noncompliant use of code 15 (control-O, shift in) interpreted as "delete previous character" was also adopted by many early timesharing systems but eventually became neglected. When a Teletype 33 ASR equipped with the automatic paper tape reader received a control-S (XOFF, an abbreviation for transmit off), it caused

6080-403: The last two code points in each of the 17 planes (e.g. U+FFFE , U+FFFF , U+1FFFE , U+1FFFF , ..., U+10FFFE , U+10FFFF ). The set of noncharacters is stable, and no new noncharacters will ever be defined. Like surrogates, the rule that these cannot be used is often ignored, although the operation of the byte order mark assumes that U+FFFE will never be the first code point in

6175-637: The list of scripts that are candidates or potential candidates for encoding and their tentative code block assignments on the Unicode Roadmap page of the Unicode Consortium website. For some scripts on the Roadmap, such as Jurchen and Khitan large script , encoding proposals have been made and they are working their way through the approval process. For other scripts, such as Numidian and Rongorongo , no proposal has yet been made, and they await agreement on character repertoire and other details from

6270-800: The local conventions and the NVT. The File Transfer Protocol adopted the Telnet protocol, including use of the Network Virtual Terminal, for use when transmitting commands and transferring data in the default ASCII mode. This adds complexity to implementations of those protocols, and to other network protocols, such as those used for E-mail and the World Wide Web, on systems not using the NVT's CR-LF line-ending convention. The PDP-6 monitor, and its PDP-10 successor TOPS-10, used control-Z (SUB) as an end-of-file indication for input from

6365-675: The modern text (e.g. in the union of all newspapers and magazines printed in the world in 1988), whose number is undoubtedly far below 2 = 16,384. Beyond those modern-use characters, all others may be defined to be obsolete or rare; these are better candidates for private-use registration than for congesting the public list of generally useful Unicode. In early 1989, the Unicode working group expanded to include Ken Whistler and Mike Kernaghan of Metaphor, Karen Smith-Yoshimura and Joan Aliprand of Research Libraries Group , and Glenn Wright of Sun Microsystems . In 1990, Michel Suignard and Asmus Freytag of Microsoft and NeXT 's Rick McGowan had also joined

6460-452: The previous character in canonical input processing (where a very simple line editor is available); this could be set to BS or DEL, but not both, resulting in recurring situations of ambiguity where users had to decide depending on what terminal they were using ( shells that allow line editing, such as ksh , bash , and zsh , understand both). The assumption that no key sent a BS character allowed Ctrl+H to be used for other purposes, such as

6555-515: The previous section. Code 7F hex corresponds to the non-printable "delete" (DEL) control character and is therefore omitted from this chart; it is covered in the previous section's chart. Earlier versions of ASCII used the up arrow instead of the caret (5E hex ) and the left arrow instead of the underscore (5F hex ). ASCII was first used commercially during 1963 as a seven-bit teleprinter code for American Telephone & Telegraph 's TWX (TeletypeWriter eXchange) network. TWX originally used

6650-413: The printable characters, represent letters, digits, punctuation marks , and a few miscellaneous symbols. There are 95 printable characters in total. Code 20 hex , the "space" character, denotes the space between words, as produced by the space bar of a keyboard. Since the space character is considered an invisible graphic (rather than a control character) it is listed in the table below instead of in

6745-444: The proposed Bell code and ASCII were both ordered for more convenient sorting (i.e., alphabetization) of lists and added features for devices other than teleprinters. The use of ASCII format for Network Interchange was described in 1969. That document was formally elevated to an Internet Standard in 2015. Originally based on the (modern) English alphabet , ASCII encodes 128 specified characters into seven-bit integers as shown by

6840-828: The range U+10000 through U+10FFFF .) The Unicode codespace is divided into 17 planes , numbered 0 to 16. Plane 0 is the Basic Multilingual Plane (BMP), and contains the most commonly used characters. All code points in the BMP are accessed as a single code unit in UTF-16 encoding and can be encoded in one, two or three bytes in UTF-8. Code points in planes 1 through 16 (the supplementary planes ) are accessed as surrogate pairs in UTF-16 and encoded in four bytes in UTF-8 . Within each plane, characters are allocated within named blocks of related characters. The size of

6935-522: The same reason, many special signs commonly used as separators were placed before digits. The committee decided it was important to support uppercase 64-character alphabets , and chose to pattern ASCII so it could be reduced easily to a usable 64-character set of graphic codes, as was done in the DEC SIXBIT code (1963). Lowercase letters were therefore not interleaved with uppercase . To keep options available for lowercase letters and other graphics,

7030-494: The second stick, positions 1–5, corresponding to the digits 1–5 in the adjacent stick. The parentheses could not correspond to 9 and 0 , however, because the place corresponding to 0 was taken by the space character. This was accommodated by removing _ (underscore) from 6 and shifting the remaining characters, which corresponded to many European typewriters that placed the parentheses with 8 and 9 . This discrepancy from typewriters led to bit-paired keyboards , notably

7125-538: The simple line characters \ | (in addition to common / ). The @ symbol was not used in continental Europe and the committee expected it would be replaced by an accented À in the French variation, so the @ was placed in position 40 hex , right before the letter A. The control codes felt essential for data transmission were the start of message (SOM), end of address (EOA), end of message (EOM), end of transmission (EOT), "who are you?" (WRU), "are you?" (RU),

7220-402: The special and numeric codes were arranged before the letters, and the letter A was placed in position 41 hex to match the draft of the corresponding British standard. The digits 0–9 are prefixed with 011, but the remaining 4 bits correspond to their respective values in binary, making conversion with binary-coded decimal straightforward (for example, 5 in encoded to 011 0101 , where 5

7315-464: The standard defines 154 998 characters and 168 scripts used in various ordinary, literary, academic, and technical contexts. Many common characters, including numerals, punctuation, and other symbols, are unified within the standard and are not treated as specific to any given writing system. Unicode encodes 3790 emoji , with the continued development thereof conducted by the Consortium as

7410-429: The standard also provides charts and reference data, as well as annexes explaining concepts germane to various scripts, providing guidance for their implementation. Topics covered by these annexes include character normalization , character composition and decomposition, collation , and directionality . Unicode text is processed and stored as binary data using one of several encodings , which define how to translate

7505-425: The standard is unclear about the meaning of "delete". Probably the most influential single device affecting the interpretation of these characters was the Teletype Model 33 ASR, which was a printing terminal with an available paper tape reader/punch option. Paper tape was a very popular medium for long-term program storage until the 1980s, less costly and in some ways less fragile than magnetic tape. In particular,

7600-453: The standard's abstracted codes for characters into sequences of bytes. The Unicode Standard itself defines three encodings: UTF-8 , UTF-16 , and UTF-32 , though several others exist. Of these, UTF-8 is the most widely used by a large margin, in part due to its backwards-compatibility with ASCII . Unicode was originally designed with the intent of transcending limitations present in all text encodings designed up to that point: each encoding

7695-440: The structure or appearance of text within a document. Other schemes, such as markup languages , address page and document layout and formatting. The original ASCII standard used only short descriptive phrases for each control character. The ambiguity this caused was sometimes intentional, for example where a character would be used slightly differently on a terminal link than on a data stream , and sometimes accidental, for example

7790-515: The syntax of computer languages and text markup. ASCII hugely influenced the design of character sets used by modern computers, including Unicode which has over a million code points, but the first 128 of these are the same as ASCII. The Internet Assigned Numbers Authority (IANA) prefers the name US-ASCII for this character encoding. ASCII is one of the IEEE milestones . ASCII was developed in part from telegraph code . Its first commercial use

7885-441: The tape reader to stop; receiving control-Q (XON, transmit on) caused the tape reader to resume. This so-called flow control technique became adopted by several early computer operating systems as a "handshaking" signal warning a sender to stop transmission because of impending buffer overflow ; it persists to this day in many systems as a manual output control technique. On some systems, control-S retains its meaning, but control-Q

7980-600: The time could record eight bits in one position, it also allowed for a parity bit for error checking if desired. Eight-bit machines (with octets as the native data type) that did not use parity checking typically set the eighth bit to 0. The code itself was patterned so that most control codes were together and all graphic codes were together, for ease of identification. The first two so-called ASCII sticks (32 positions) were reserved for control characters. The "space" character had to come before graphics to make sorting easier, so it became position 20 hex ; for

8075-462: The treatment of orthographical variants in Han characters , there is considerable disagreement regarding which differences justify their own encodings, and which are only graphical variants of other characters. At the most abstract level, Unicode assigns a unique number called a code point to each character. Many issues of visual representation—including size, shape, and style—are intended to be up to

8170-418: The two-character prefix U+ always precedes a written code point, and the code points themselves are written as hexadecimal numbers. At least four hexadecimal digits are always written, with leading zeros prepended as needed. For example, the code point U+00F7 ÷ DIVISION SIGN is padded with two leading zeros, but U+13254 𓉔 EGYPTIAN HIEROGLYPH O004 ( [REDACTED] )

8265-447: The typebars that strike the ribbon remain stationary. The entire carriage had to be pushed (returned) to the right in order to position the paper for the next line. DEC operating systems ( OS/8 , RT-11 , RSX-11 , RSTS , TOPS-10 , etc.) used both characters to mark the end of a line so that the console device (originally Teletype machines) would work. By the time so-called "glass TTYs" (later called CRTs or "dumb terminals") came along,

8360-618: The user communities involved. Some modern invented scripts which have not yet been included in Unicode (e.g., Tengwar ) or which do not qualify for inclusion in Unicode due to lack of real-world use (e.g., Klingon ) are listed in the ConScript Unicode Registry , along with unofficial but widely used Private Use Areas code assignments. There is also a Medieval Unicode Font Initiative focused on special Latin medieval characters. Part of these proposals has been already included in Unicode. The Script Encoding Initiative,

8455-640: The years several countries or government agencies have been members of the Unicode Consortium. Presently only the Ministry of Endowments and Religious Affairs (Oman) is a full member with voting rights. The Consortium has the ambitious goal of eventually replacing existing character encoding schemes with Unicode and its standard Unicode Transformation Format (UTF) schemes, as many of the existing schemes are limited in size and scope and are incompatible with multilingual environments. Unicode currently covers most major writing systems in use today. As of 2024 ,

8550-741: Was developed under the auspices of a committee of the American Standards Association (ASA), called the X3 committee, by its X3.2 (later X3L2) subcommittee, and later by that subcommittee's X3.2.4 working group (now INCITS ). The ASA later became the United States of America Standards Institute (USASI) and ultimately became the American National Standards Institute (ANSI). With the other special characters and control codes filled in, ASCII

8645-491: Was implemented in Unicode 2.0, so that Unicode was no longer restricted to 16 bits. This increased the Unicode codespace to over a million code points, which allowed for the encoding of many historic scripts, such as Egyptian hieroglyphs , and thousands of rarely used or obsolete characters that had not been anticipated for inclusion in the standard. Among these characters are various rarely used CJK characters—many mainly being used in proper names, making them far more necessary for

8740-557: Was in the Teletype Model 33 and the Teletype Model 35 as a seven- bit teleprinter code promoted by Bell data services. Work on the ASCII standard began in May 1961, with the first meeting of the American Standards Association's (ASA) (now the American National Standards Institute or ANSI) X3.2 subcommittee. The first edition of the standard was published in 1963, underwent a major revision during 1967, and experienced its most recent update during 1986. Compared to earlier telegraph codes,

8835-695: Was published as ASA X3.4-1963, leaving 28 code positions without any assigned meaning, reserved for future standardization, and one unassigned control code. There was some debate at the time whether there should be more control characters rather than the lowercase alphabet. The indecision did not last long: during May 1963 the CCITT Working Party on the New Telegraph Alphabet proposed to assign lowercase characters to sticks 6 and 7, and International Organization for Standardization TC 97 SC 2 voted during October to incorporate

8930-439: Was relied upon for use in its own context, but with no particular expectation of compatibility with any other. Indeed, any two encodings chosen were often totally unworkable when used together, with text encoded in one interpreted as garbage characters by the other. Most encodings had only been designed to facilitate interoperation between a handful of scripts—often primarily between a given script and Latin characters —not between

9025-450: Was removed). ASCII was subsequently updated as USAS X3.4-1967, then USAS X3.4-1968, ANSI X3.4-1977, and finally, ANSI X3.4-1986. In the X3.15 standard, the X3 committee also addressed how ASCII should be transmitted ( least significant bit first) and recorded on perforated tape. They proposed a 9-track standard for magnetic tape and attempted to deal with some punched card formats. The X3.2 subcommittee designed ASCII based on

#612387