Misplaced Pages

FirePro

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Automatic fire suppression systems control and extinguish fires without human intervention. Examples of automatic systems include fire sprinkler system , gaseous fire suppression , and condensed aerosol fire suppression . When fires are extinguished in the early stages loss of life is minimal since 93% of all fire-related deaths occur once the fire has progressed beyond the early stages.

#649350

61-508: FirePro may refer to: FirePro Systems , a fire engineering company based in Europe; see Automatic fire suppression Firepro Systems (India) AMD FirePro , a graphics card from US-based Advanced Micro Devices Firepro Systems Private Limited (India) , a security and building management systems provider Fire Pro Wrestling , a wrestling video game series from Japan Topics referred to by

122-573: A chlorine atom. Rowland and Molina then proposed that these chlorine atoms might be expected to cause the breakdown of large amounts of ozone (O 3 ) in the stratosphere. Their argument was based upon an analogy to contemporary work by Paul J. Crutzen and Harold Johnston, which had shown that nitric oxide (NO) could catalyze the destruction of ozone. (Several other scientists, including Ralph Cicerone , Richard Stolarski , Michael McElroy, and Steven Wofsy had independently proposed that chlorine could catalyze ozone loss, but none had realized that CFCs were

183-566: A 10-year phase-out for developing countries identified in Article 5 of the treaty. The purpose of the treaty is that each signatory states: Recognizing that worldwide emissions of certain substances can significantly deplete and otherwise modify the ozone layer in a manner that is likely to result in adverse effects on human health and the environment. Determined to protect the ozone layer by taking precautionary measures to control equitably total global emissions of substances that deplete it with

244-475: A basic scientific research discovery (1973) and the international agreement signed (1985 and 1987). The treaty is structured around several groups of halogenated hydrocarbons that lead to the catalytic destruction of stratospheric ozone. All of the ozone depleting substances controlled by the Montreal Protocol contain either chlorine or bromine (substances containing only fluorine do not harm

305-586: A complete phase-out of HCFCs by 2030, but does not place any restriction on HFCs. Since the CFCs themselves are equally powerful greenhouse gases, the mere substitution of HFCs for CFCs does not significantly increase the rate of anthropogenic climate change, but over time a steady increase in their use could increase the danger that human activity will change the climate. Policy experts have advocated for increased efforts to link ozone protection efforts to climate protection efforts. Policy decisions in one arena affect

366-434: A group of human-made compounds containing hydrogen, chlorine, fluorine and carbon. They are not found anywhere in nature. HCFC production began to take off after countries agreed to phase out the use of CFCs in the 1980s, which were found to be destroying the ozone layer. Like CFCs, HCFCs are used for refrigeration, aerosol propellants, foam manufacture and air conditioning. Unlike the CFCs, however, most HCFCs are broken down in

427-464: A large part of emissions exceeding global estimates under the Montreal Protocol. The year 2012 marked the 25th anniversary of the signing of the Montreal Protocol. Accordingly, the Montreal Protocol community organized a range of celebrations at the national, regional and international levels to publicize its considerable success to date and to consider the work ahead for the future. Among its accomplishments are: Within 25 years of signing, parties to

488-413: A means of detection, actuation and delivery. In many systems, detection is accomplished by mechanical or electrical means. Mechanical detection uses fusible-link or thermo-bulb detectors. These detectors are designed to separate at a specific temperature and release tension on a release mechanism. Electrical detection uses heat detectors equipped with self-restoring, normally-open contacts which close when

549-458: A potentially large source of chlorine.) Crutzen, Molina and Rowland were awarded the 1995 Nobel Prize for Chemistry for their work on this problem. The environmental consequence of this discovery was that, since stratospheric ozone absorbs most of the ultraviolet-B (UV-B) radiation reaching the surface of the planet, depletion of the ozone layer by CFCs would lead to an increase in UV-B radiation at

610-404: A predetermined temperature is reached. Remote and local manual operation is also possible. Actuation usually involves either a pressurized fluid and a release valve, or in some cases an electric pump. Delivery is accomplished by means of piping and nozzles. Nozzle design is specific to the agent used and coverage desired. Water is the most prevalent fire suppression agent in use worldwide. However,

671-490: A product unless it can be made, used, handled and disposed of safely and consistent with appropriate safety, health and environmental quality criteria. At the moment, scientific evidence does not point to the need for dramatic CFC emission reductions. There is no available measure of the contribution of CFCs to any observed ozone change..." In an unexpected policy change, however, the Alliance for Responsible CFC Policy issued

SECTION 10

#1732776487650

732-487: A result of the international agreement, the ozone hole in Antarctica is slowly recovering. Climate projections indicate that the ozone layer will return to 1980 levels between 2040 (across much of the world) and 2066 (over Antarctica). Due to its widespread adoption and implementation, it has been hailed as an example of successful international co-operation. Former UN Secretary-General Kofi Annan stated that "perhaps

793-418: A result, manufacturers have focused on alternatives to Halon 1301 and Halon 1211 (halogenated hydrocarbons). A number of countries have also taken steps to mandate the removal of installed Halon systems. Most notably these include Germany and Australia, the first two countries in the world to require this action. In both of these countries complete removal of installed Halon systems has been completed except for

854-567: A scientific consensus was established. Also, overall public opinion was convinced of possible imminent risks. The ozone treaty has been ratified by 198 parties (197 states and the European Union ), making it the first universally ratified treaty in United Nations history. This truly universal treaty has also been remarkable in the expedience of the policy-making process at the global scale, where only 14 years lapsed between

915-736: A series of reports entitled Scientific assessment of ozone depletion , by the Scientific Assessment Panel (SAP). In 1990 a Technology and Economic Assessment Panel was also established as the technology and economics advisory body to the Montreal Protocol Parties. The Technology and Economic Assessment Panel (TEAP) provides, at the request of Parties, technical information related to the alternative technologies that have been investigated and employed to make it possible to virtually eliminate use of Ozone Depleting Substances (such as CFCs and Halons), that harm

976-480: A statement in 1986 declaring that "large future increases...in CFCs...would be unacceptable to future generations," and that it would be "inconsistent with [industry] goals...to ignore the potential for risk to future generations." Three months before the protocol negotiations began, U.S. industry announced its support for new international controls on CFCs. The main objective of the Multilateral Fund for

1037-437: A very few essential-use applications. The European Union is currently undergoing a similar mandated removal of installed Halon systems. The first fire extinguisher patent was issued to Alanson Crane of Virginia on Feb. 10, 1863. The first fire sprinkler system was patented by H.W. Pratt in 1872. But the first practical automatic sprinkler system was invented in 1874 by Henry S. Parmalee of New Haven, CT. He installed

1098-532: Is different from Wikidata All article disambiguation pages All disambiguation pages Automatic fire suppression Today there are numerous types of automatic fire suppression systems and standards for each one. Systems are as diverse as the many applications. In general, however, automatic fire suppression systems fall into two categories: engineered and pre-engineered systems. By definition, an automatic fire suppression system can operate without human intervention. To do so it must possess

1159-605: Is fast-acting, safe for assets and required minimal storage space. Halon 1301's major drawbacks are that it depletes atmospheric ozone and is potentially harmful to humans. Since 1987, some 191 nations have signed The Montreal Protocol on Substances That Deplete the Ozone Layer . The Protocol is an international treaty designed to protect the ozone layer by phasing out the production of a number of substances believed to be responsible for ozone depletion. Among these were halogenated hydrocarbons often used in fire suppression. As

1220-465: Is replenished on a three-year basis by the donors. Pledges amount to US$ 3.1 billion over the period 1991 to 2005. Funds are used, for example, to finance the conversion of existing manufacturing processes, train personnel, pay royalties and patent rights on new technologies, and establish national ozone offices. As of October 2022, all Member States of the United Nations, the Cook Islands , Niue ,

1281-611: The Holy See , the State of Palestine as well as the European Union have ratified the original Montreal Protocol (see external link below), with the State of Palestine being the last party to ratify the agreement, bringing the total to 198. 197 of those parties (with the exception of the State of Palestine) have also ratified the London, Copenhagen, Montreal, and Beijing amendments. Since

SECTION 20

#1732776487650

1342-670: The Kigali Amendment to the Montreal Protocol came into force. Under the Kigali Amendment countries promised to reduce the use of hydrofluorocarbons (HFCs) by more than 80% over the next 30 years. By 27 December 2018, 65 countries had ratified the Amendment. As of 31 October 2024 , 160 states and the European Union have ratified the Amendment. Produced mostly in developed countries, hydrofluorocarbons (HFCs) replaced CFCs and HCFCs. HFCs pose no harm to

1403-510: The 1980 rate would "reduce global average ozone by about 9 percent by the latter half of the century." Based on these figures, the U.S. Environmental Protection Agency estimated that in the United States alone there could be "over 150 million new cases of skin cancer among people currently alive and born by the year 2075, resulting in over 3 million deaths." The CFC industry continued pushing back against regulation as late as 1986, when

1464-684: The 28th Meeting of the Parties to the Montreal Protocol in Kigali , the Parties to the Montreal Protocol adopted the Kigali Amendment whereby the Parties agreed to phase down HFCs under the Montreal Protocol. The amendment to the Montreal Protocol commits the signatory parties to reduce their HFC production and consumption by at least 85 per cent from the annual average value in the period from 2011 to 2013. A group of developing countries including China, Brazil and South Africa are mandated to reduce their HFC use by 85 per cent of their average value in 2020-22 by

1525-678: The Alliance for Responsible CFC Policy (an association representing the CFC industry founded by DuPont ) was still arguing that the science was too uncertain to justify any action. In 1987, DuPont testified before the US Congress that "We believe there is no imminent crisis that demands unilateral regulation." And even in March 1988, Du Pont Chair Richard E. Heckert would write in a letter to the United States Senate, "we will not produce

1586-626: The Amendment would enter into force 1 January 2019. In the 1970s, the chemists Frank Sherwood Rowland and Mario Molina , who were then at the University of California, Irvine , began studying the impacts of CFCs in the Earth's atmosphere. They discovered that CFC molecules were stable enough to remain in the atmosphere until they got up into the middle of the stratosphere where they would finally (after an average of 50–100 years for two common CFCs) be broken down by ultraviolet radiation releasing

1647-534: The Implementation of the Montreal Protocol is to assist developing country parties to the Montreal Protocol whose annual per capita consumption and production of ozone depleting substances (ODS) is less than 0.3 kg to comply with the control measures of the Protocol. Currently, 147 of the 196 Parties to the Montreal Protocol meet these criteria (they are referred to as Article 5 countries). It embodies

1708-593: The MP celebrate significant milestones. Significantly, the world has phased-out 98% of the Ozone-Depleting Substances (ODS) contained in nearly 100 hazardous chemicals worldwide; every country is in compliance with stringent obligations; and, the MP has achieved the status of the first global regime with universal ratification; even the newest member state, South Sudan, ratified in 2013. UNEP received accolades for achieving global consensus that "demonstrates

1769-530: The Meeting of the Parties on its operations. The work of the Multilateral Fund on the ground in developing countries is carried out by four Implementing Agencies, which have contractual agreements with the executive committee: Up to 20 percent of the contributions of contributing parties can also be delivered through their bilateral agencies in the form of eligible projects and activities. The fund

1830-417: The Montreal Protocol came into effect, the atmospheric concentrations of the most important chlorofluorocarbons and related chlorinated hydrocarbons have either leveled off or decreased. Halon concentrations have continued to increase, as the halons presently stored in fire extinguishers are released, but their rate of increase has slowed and their abundances are expected to begin to decline by about 2020. Also,

1891-417: The Montreal Protocol to the stratospheric ozone. In consequence, the Montreal Protocol has often been called the most successful international environmental agreement to date. In a 2001 report, NASA found the ozone thinning over Antarctica had remained the same thickness for the previous three years, however in 2003 the ozone hole grew to its second largest size. The most recent (2006) scientific evaluation of

FirePro - Misplaced Pages Continue

1952-562: The Ozone Layer." The following year, a group of countries, including the United States, Canada, the Nordic Countries, and Switzerland, proposed a worldwide ban on "nonessential" uses of CFCs in spray cans. Then, in 1985, British Antarctic Survey scientists Joe Farman , Brian Gardiner and Jon Shanklin published results of abnormally low ozone concentrations above Halley Bay near the South Pole . They speculated that this

2013-400: The Protocol include the requirement that the Parties to the Protocol base their future decisions on the current scientific, environmental, technical, and economic information that is assessed through panels drawn from the worldwide expert communities. To provide that input to the decision-making process, advances in understanding on these topics were assessed in 1989, 1991, 1994, 1998 and 2002 in

2074-503: The black market to the EU throughout the 90s. Related US production and consumption was enabled by fraudulent reporting due to poor enforcement mechanisms. Similar illegal markets for CFCs were detected in Taiwan, Korea, and Hong Kong. The Montreal Protocol is also expected to have effects on human health. A 2015 report by the U.S. Environmental Protection Agency estimates that the protection of

2135-477: The concentration of the HCFCs increased drastically at least partly because of many uses (e.g. used as solvents or refrigerating agents) CFCs were substituted with HCFCs. While there have been reports of attempts by individuals to circumvent the ban, e.g. by smuggling CFCs from undeveloped to developed nations, the overall level of compliance has been high. Statistical analysis from 2010 show a clear positive signal from

2196-458: The costs and effectiveness of environmental improvements in the other. In 2018, scientists monitoring the atmosphere following the 2010 phaseout date reported evidence of continuing industrial production of CFC-11, likely in eastern Asia, with detrimental global effects on the ozone layer. A monitoring study detected fresh atmospheric releases of carbon tetrachloride from China's Shandong province, beginning sometime after 2012, and accounting for

2257-402: The early 20th century, carbon tetrachloride was extensively used as a dry cleaning solvent, a refrigerant and as a fire extinguishing agent. In time, it was found carbon tetrachloride could lead to severe health effects. From the mid-1960s Halon 1301 was the industry standard for protecting high-value assets from the threat of fire. Halon 1301 had many benefits as a fire suppression agent; it

2318-466: The effects of the Montreal Protocol states, "The Montreal Protocol is working: There is clear evidence of a decrease in the atmospheric burden of ozone-depleting substances and some early signs of stratospheric ozone recovery." However, a more recent study seems to point to a relative increase in CFCs due to an unknown source. Reported in 1997, significant production of CFCs occurred in Russia for sale on

2379-555: The high-HFC growth scenario, and up to 0.35C under the low-HFC growth scenario. Recognizing the opportunity presented for fast and effective phasing down of HFCs through the Montreal Protocol, starting in 2009 the Federated States of Micronesia proposed an amendment to phase down high-GWP HFCs, with the U.S., Canada, and Mexico following with a similar proposal in 2010. After seven years of negotiations, in October 2016 at

2440-560: The less damaging HCFCs only began in 1996 and will go on until a complete phasing-out is achieved by 2030. There were a few exceptions for "essential uses" where no acceptable substitutes were initially found (for example, metered dose inhalers commonly used to treat asthma and chronic obstructive pulmonary disease were previously exempt) or Halon fire suppression systems used in submarines and aircraft (but not in general industry). The substances in Group I of Annex A are: The provisions of

2501-674: The lowest part of the atmosphere and pose a much smaller risk to the ozone layer. Nevertheless, HCFCs are very potent greenhouse gases , despite their very low atmospheric concentrations, measured in parts per trillion (million million). The HCFCs are transitional CFCs replacements, used as refrigerants , solvents, blowing agents for plastic foam manufacture, and fire extinguishers. In terms of ozone depletion potential (ODP), in comparison to CFCs that have ODP 0.6–1.0, these HCFCs have lower ODPs (0.01–0.5). In terms of global warming potential (GWP), in comparison to CFCs that have GWP 4,680–10,720, HCFCs have lower GWPs (76–2,270). On 1 January 2019,

FirePro - Misplaced Pages Continue

2562-533: The metaphor 'ozone hole', and the colorful visual representation in a time lapse animation proved shocking enough for negotiators in Montreal, Canada to take the issue seriously. Also in 1985, 20 nations, including most of the major CFC producers, signed the Vienna Convention , which established a framework for negotiating international regulations on ozone-depleting substances. After the discovery of

2623-437: The ozone depleting substances, since the substances have been used in various technical sectors, like in refrigeration, air conditioning, flexible and rigid foam, fire protection, aerospace, electronics, agriculture, and laboratory measurements. Under the Montreal Protocol on Substances that Deplete the Ozone Layer, especially Executive Committee (ExCom) 53/37 and ExCom 54/39, Parties to this Protocol agreed to set year 2013 as

2684-725: The ozone hole by SAGE 2 it only took 18 months to reach a binding agreement in Montreal, Canada. Mostafa Kamal Tolba , the head of the UNEP at the time, was considered the "father of the Montreal Protocol" for his role in bringing the nations together for an agreement. In 1986, an assessment spearheaded by NASA and sponsored by the United Nationals Environment Program, the World Meteorological Organization , and various other organizations concluded that continued CFC emissions at

2745-459: The ozone layer because, unlike CFCs and HCFCs, they do not contain chlorine. They are, however, greenhouse gases, with a high global warming potential (GWP), comparable to that of CFCs and HCFCs. In 2009, a study calculated that a fast phasedown of high-GWP HFCs could potentially prevent the equivalent of up to 8.8 Gt CO 2 -eq per year in emissions by 2050. A proposed phasedown of HFCs was hence projected to avoid up to 0.5C of warming by 2100 under

2806-460: The ozone layer under the treaty will prevent over 280 million cases of skin cancer, 1.5 million skin cancer deaths, and 45 million cataracts in the United States. However, the hydrochlorofluorocarbons, or HCFCs, and hydrofluorocarbons, or HFCs, contribute to anthropogenic global warming . On a molecule-for-molecule basis, these compounds are up to 10,000 times more potent greenhouse gases than carbon dioxide. The Montreal Protocol currently calls for

2867-431: The ozone layer, although they can be strong greenhouse gases). Some ozone-depleting substances (ODSs) are not yet controlled by the Montreal Protocol, including nitrous oxide (N 2 O). For a table of ozone-depleting substances controlled by the Montreal Protocol see: For each group of ODSs, the treaty provides a timetable on which the production of those substances must be reduced and eventually eliminated. This includes

2928-496: The ozone layer. The TEAP is also tasked by the Parties every year to assess and evaluate various technical issues including evaluating nominations for essential use exemptions for CFCs and halons, and nominations for critical use exemptions for methyl bromide. TEAP's annual reports are a basis for the Parties' informed decision-making. Numerous reports have been published by various inter-governmental, governmental and non-governmental organizations to catalogue and assess alternatives to

2989-610: The president of Precision Valve Corporation (and inventor of the first practical aerosol spray can valve), wrote to the Chancellor of UC Irvine to complain about Rowland's public statements (Roan, p. 56.) After publishing their pivotal paper in June 1974, Rowland and Molina testified at a hearing before the U.S. House of Representatives in December 1974. As a result, significant funding was made available to study various aspects of

3050-499: The principle agreed at the United Nations Conference on Environment and Development in 1992 that countries have a common but differentiated responsibility to protect and manage the global commons. The Fund is managed by an executive committee with an equal representation of seven industrialized and seven Article 5 countries, which are elected annually by a Meeting of the Parties. The Committee reports annually to

3111-528: The problem and to confirm the initial findings. In 1976, the U.S. National Academy of Sciences (NAS) released a report that confirmed the scientific credibility of the ozone depletion hypothesis. NAS continued to publish assessments of related science for the next decade. In 1982, representatives from 24 countries met in Stockholm, Sweden to decide on a "Global Framework Convention for the Protection of

SECTION 50

#1732776487650

3172-411: The same term [REDACTED] This disambiguation page lists articles associated with the title FirePro . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=FirePro&oldid=1122127799 " Category : Disambiguation pages Hidden categories: Short description

3233-514: The single most successful international agreement to date has been the Montreal Protocol". In comparison, effective burden-sharing and solution proposals mitigating regional conflicts of interest have been among the success factors for the ozone depletion challenge, where global regulation based on the Kyoto Protocol has failed to do so. In this case of the ozone depletion challenge, there was global regulation already being installed before

3294-408: The surface, resulting in an increase in skin cancer and other impacts such as damage to crops and to marine phytoplankton. The Rowland-Molina hypothesis was strongly disputed by representatives of the aerosol and halocarbon industries. The chair of the board of DuPont was quoted as saying that ozone depletion theory is "a science fiction tale...a load of rubbish...utter nonsense". Robert Abplanalp ,

3355-678: The system in a piano factory he owned. Since the early 1990s manufacturers have successfully developed safe and effective Halon alternatives. These include DuPont 's FM-200, American Pacific's Halotron, FirePro 's FPC Compound, Plumis ’ Automist and 3M 's Novec 1230 Fire Protection Fluid. Generally, the Halon replacement agents available today fall into two broad categories, in-kind (gaseous extinguishing agents) or not in-kind (alternative technologies). In-kind gaseous agents generally fall into two further categories, halocarbons and inert gases. Not in-kind alternatives include such options as water mist or

3416-414: The time to freeze the consumption and production of HCFCs for developing countries. For developed countries, reduction of HCFC consumption and production began in 2004 and 2010, respectively, with 100% reduction set for 2020. Developing countries agreed to start reducing its consumption and production of HCFCs by 2015, with 100% reduction set for 2030. Hydrochlorofluorocarbons, commonly known as HCFCs, are

3477-570: The ultimate objective of their elimination on the basis of developments in scientific knowledge Acknowledging that special provision is required to meet the needs of developing countries shall accept a series of stepped limits on CFC use and production, including: There was a faster phase-out of halon-1211, -2402, -1301, There was a slower phase-out (to zero by 2010) of other substances (halon 1211, 1301, 2402; CFCs 13, 111, 112, etc.) and some chemicals were given individual attention ( Carbon tetrachloride ; 1,1,1-trichloroethane ). The phasing-out of

3538-766: The use of early warning smoke detection systems. Montreal Protocol on Substances that Deplete the Ozone Layer The Montreal Protocol on Substances That Deplete the Ozone Layer is an international treaty designed to protect the ozone layer by phasing out the production of numerous substances that are responsible for ozone depletion . It was agreed on 16 September 1987, and entered into force on 1 January 1989. Since then, it has undergone several amendments and adjustments, with revisions agreed to in 1990 ( London ), 1992 ( Copenhagen ), 1995 ( Vienna ), 1997 ( Montreal ), 1999 ( Beijing ), 2007 (Montreal), 2016 ( Kigali ) and 2018 ( Quito ). As

3599-623: The use of water does have some limitations, which can range from inadequate supplies (particularly in less developed regions) to operations and processes which are highly susceptible to water damage. In some cases, certain contents or processes (such as water-reactive chemicals or metals, molten materials, etc.) are truly incompatible with water; water discharge could lead to explosion. In these instances, alternative chemical compounds, inert gases and similar can be utilized for fire suppression as outlined below: Despite their effectiveness, chemical fire extinguishing agents are not without disadvantages. In

3660-438: The year 2045. India and some other developing countries – Iran, Iraq, Pakistan, and some oil economies like Saudi Arabia and Kuwait – will cut down their HFCs by 85 per cent of their values in 2024-26 by the year 2047. On 17 November 2017, ahead of the 29th Meeting of the Parties of the Montreal Protocol, Sweden became the 20th Party to ratify the Kigali Amendment, pushing the Amendment over its ratification threshold ensuring that

3721-481: Was connected to increased levels of CFCs in the atmosphere. It took several other attempts to establish the Antarctic losses as real and significant, especially after NASA had retrieved matching data from its satellite recordings. This unforeseen phenomenon in the Antarctic, as well as NASA's scientific images of the ozone hole played an important role in the Montreal Protocol negotiations. The impact of these studies,

SECTION 60

#1732776487650
#649350