A Fresnel lens ( / ˈ f r eɪ n ɛ l , - n əl / FRAY -nel, -nəl ; / ˈ f r ɛ n ɛ l , - əl / FREN -el, -əl ; or / f r eɪ ˈ n ɛ l / fray- NEL ) is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections.
100-523: The simpler dioptric (purely refractive ) form of the lens was first proposed by Georges-Louis Leclerc, Comte de Buffon , and independently reinvented by the French physicist Augustin-Jean Fresnel (1788–1827) for use in lighthouses . The catadioptric (combining refraction and reflection) form of the lens, entirely invented by Fresnel, has outer prismatic elements that use total internal reflection as well as refraction to capture more oblique light from
200-504: A prism , which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses , acoustic lenses , or explosive lenses . Lenses are used in various imaging devices such as telescopes , binoculars , and cameras . They are also used as visual aids in glasses to correct defects of vision such as myopia and hypermetropia . The word lens comes from lēns ,
300-678: A Fresnel lens in the scenes where the protagonist watches the musical Hello, Dolly! magnified on an iPod . Virtual reality headsets, such as the Meta Quest 2 and the HTC Vive Pro use Fresnel lenses, as they allow a thinner and lighter form factor than regular lenses. Newer devices, such as the Meta Quest Pro , have switched to a pancake lens design due to its smaller form factor and less chromatic aberration than Fresnel lenses. Multi-focal Fresnel lenses are also used as
400-405: A biconcave or plano-concave lens in a lower-index medium, a collimated beam of light passing through the lens is diverged (spread); the lens is thus called a negative or diverging lens. The beam, after passing through the lens, appears to emanate from a particular point on the axis in front of the lens. For a thin lens in air, the distance from this point to the lens is the focal length, though it
500-430: A constant light (from a fixed lens), one flash per minute (from a rotating lens with eight panels), and two per minute (16 panels). In late 1825, to reduce the loss of light in the reflecting elements, Fresnel proposed to replace each mirror with a catadioptric prism, through which the light would travel by refraction through the first surface, then total internal reflection off the second surface, then refraction through
600-414: A conventional lens by dividing the lens into a set of concentric annular sections. An ideal Fresnel lens would have an infinite number of sections. In each section, the overall thickness is decreased compared to an equivalent simple lens. This effectively divides the continuous surface of a standard lens into a set of surfaces of the same curvature, with stepwise discontinuities between them. In some lenses,
700-454: A cylindrical form while retaining the property of reflecting light from a single point back to that point. Reflectors of this form, paradoxically called "dioptric mirrors", proved particularly useful for returning light from the landward side of the lamp to the seaward side. As lighthouses proliferated, they became harder to distinguish from each other, leading to the use of colored filters, which wasted light. In 1884, John Hopkinson eliminated
800-430: A focal length of 920 mm ( 36 + 1 ⁄ 4 in) and stands about 2.59 m (8 ft 6 in) high, and 1.8 m (6 ft) wide. The smallest (sixth) order has a focal length of 150 mm (6 in) and a height of 433 mm ( 17 + 1 ⁄ 16 in). The largest Fresnel lenses are called hyperradiant (or hyper-radial). One such lens was on hand when it was decided to build and outfit
900-642: A focus. This led to the invention of the compound achromatic lens by Chester Moore Hall in England in 1733, an invention also claimed by fellow Englishman John Dollond in a 1758 patent. Developments in transatlantic commerce were the impetus for the construction of modern lighthouses in the 18th century, which utilize a combination of elevated sightlines, lighting sources, and lenses to provide navigational aid overseas. With maximal distance of visibility needed in lighthouses, conventional convex lenses would need to be significantly sized which would negatively affect
1000-412: A great deal of experimentation with lens shapes in the 17th and early 18th centuries by those trying to correct chromatic errors seen in lenses. Opticians tried to construct lenses of varying forms of curvature, wrongly assuming errors arose from defects in the spherical figure of their surfaces. Optical theory on refraction and experimentation was showing no single-element lens could bring all colours to
1100-444: A lens attached to the rear window permits examining the scene behind a vehicle, particularly a tall or bluff-tailed one, more effectively than a rear-view mirror alone. Fresnel lenses have been used on rangefinding equipment and projected map display screens. Fresnel lenses have also been used in the field of popular entertainment. The British rock artist Peter Gabriel made use of them in his early solo live performances to magnify
SECTION 10
#17328022434721200-537: A lens in air, f is then given by 1 f ≈ ( n − 1 ) [ 1 R 1 − 1 R 2 ] . {\displaystyle \ {\frac {1}{\ f\ }}\approx \left(n-1\right)\left[\ {\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\ \right]~.} The spherical thin lens equation in paraxial approximation
1300-579: A magnifying glass, or a burning glass. Others have suggested that certain Egyptian hieroglyphs depict "simple glass meniscal lenses". The oldest certain reference to the use of lenses is from Aristophanes ' play The Clouds (424 BCE) mentioning a burning-glass. Pliny the Elder (1st century) confirms that burning-glasses were known in the Roman period. Pliny also has the earliest known reference to
1400-413: A metal housing, a reflector, a lamp assembly, and a Fresnel lens. Many Fresnel instruments allow the lamp to be moved relative to the lens' focal point , to increase or decrease the size of the light beam. As a result, they are very flexible, and can often produce a beam as narrow as 7° or as wide as 70°. The Fresnel lens produces a very soft-edged beam, so is often used as a wash light. A holder in front of
1500-568: A million ships". The first person to focus a lighthouse beam using a lens was apparently the London glass-cutter Thomas Rogers, who proposed the idea to Trinity House in 1788. The first Rogers lenses, 53 cm in diameter and 14 cm thick at the center, were installed at the Old Lower Lighthouse at Portland Bill in 1789. Behind each lamp was a back-coated spherical glass mirror, which reflected rear radiation back through
1600-459: A part of retina identification cameras, where they provide multiple in- and out-of-focus images of a fixation target inside the camera. For virtually all users, at least one of the images will be in focus, thus allowing correct eye alignment. Canon and Nikon have used Fresnel lenses to reduce the size of telephoto lenses. Photographic lenses that include Fresnel elements can be much shorter than corresponding conventional lens design. Nikon calls
1700-858: A position. Perhaps the most widespread use of Fresnel lenses, for a time, occurred in automobile headlamps , where they can shape the roughly parallel beam from the parabolic reflector to meet requirements for dipped and main-beam patterns, often both in the same headlamp unit (such as the European H4 design). For reasons of economy, weight, and impact resistance, newer cars have dispensed with glass Fresnel lenses, using multifaceted reflectors with plain polycarbonate lenses. However, Fresnel lenses continue in wide use in automobile tail, marker, and reversing lights. Glass Fresnel lenses also are used in lighting instruments for theatre and motion pictures (see Fresnel lantern ); such instruments are often called simply Fresnels . The entire instrument consists of
1800-484: A rotating array outside the fixed array. Each panel of the rotating array was to refract part of the fixed light from a horizontal fan into a narrow beam. Also in 1825, Fresnel unveiled the Carte des Phares ('lighthouse map'), calling for a system of 51 lighthouses plus smaller harbor lights, in a hierarchy of lens sizes called "orders" (the first being the largest), with different characteristics to facilitate recognition:
1900-831: A spherical lens in air or vacuum for paraxial rays can be calculated from the lensmaker's equation : 1 f = ( n − 1 ) [ 1 R 1 − 1 R 2 + ( n − 1 ) d n R 1 R 2 ] , {\displaystyle {\frac {1}{\ f\ }}=\left(n-1\right)\left[\ {\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}+{\frac {\ \left(n-1\right)\ d~}{\ n\ R_{1}\ R_{2}\ }}\ \right]\ ,} where The focal length f {\textstyle \ f\ }
2000-557: A substantial reduction in thickness (and thus mass and volume of material) at the expense of reducing the imaging quality of the lens, which is why precise imaging applications such as photography usually still use larger conventional lenses. Fresnel lenses are usually made of glass or plastic; their size varies from large (old historical lighthouses, meter size) to medium (book-reading aids, OHP viewgraph projectors) to small ( TLR / SLR camera screens, micro-optics). In many cases they are very thin and flat, almost flexible, with thicknesses in
2100-403: Is biconvex (or double convex , or just convex ) if both surfaces are convex . If both surfaces have the same radius of curvature, the lens is equiconvex . A lens with two concave surfaces is biconcave (or just concave ). If one of the surfaces is flat, the lens is plano-convex or plano-concave depending on the curvature of the other surface. A lens with one convex and one concave side
SECTION 20
#17328022434722200-407: Is convex-concave or meniscus . Convex-concave lenses are most commonly used in corrective lenses , since the shape minimizes some aberrations. For a biconvex or plano-convex lens in a lower-index medium, a collimated beam of light passing through the lens converges to a spot (a focus ) behind the lens. In this case, the lens is called a positive or converging lens. For a thin lens in air,
2300-445: Is h ), and v {\textstyle v} is the on-axis image distance from the line. Due to paraxial approximation where the line of h is close to the vertex of the spherical surface meeting the optical axis on the left, u {\textstyle u} and v {\textstyle v} are also considered distances with respect to the vertex. Moving v {\textstyle v} toward
2400-482: Is a convex lens ( refractors ) are said to be "dioptric" telescopes. An early study of dioptrics was conducted by Ptolemy in relationship to the human eye as well as refraction in media such as water. The understanding of the principles of dioptrics was further expanded by Alhazen , considered the father of modern optics . This optics -related article is a stub . You can help Misplaced Pages by expanding it . Lens (optics)#Types of simple lenses A lens
2500-458: Is a transmissive optical device that focuses or disperses a light beam by means of refraction . A simple lens consists of a single piece of transparent material , while a compound lens consists of several simple lenses ( elements ), usually arranged along a common axis . Lenses are made from materials such as glass or plastic and are ground , polished , or molded to the required shape. A lens can focus light to form an image , unlike
2600-416: Is completely round. When used in novelty photography it is often called a "lensball". A ball-shaped lens has the advantage of being omnidirectional, but for most optical glass types, its focal point lies close to the ball's surface. Because of the ball's curvature extremes compared to the lens size, optical aberration is much worse than thin lenses, with the notable exception of chromatic aberration . For
2700-794: Is derived here with respect to the right figure. The 1st spherical lens surface (which meets the optical axis at V 1 {\textstyle \ V_{1}\ } as its vertex) images an on-axis object point O to the virtual image I , which can be described by the following equation, n 1 u + n 2 v ′ = n 2 − n 1 R 1 . {\displaystyle \ {\frac {\ n_{1}\ }{\ u\ }}+{\frac {\ n_{2}\ }{\ v'\ }}={\frac {\ n_{2}-n_{1}\ }{\ R_{1}\ }}~.} For
2800-460: Is further along in the direction of the ray travel (right, in the accompanying diagrams), while negative R means that rays reaching the surface have already passed the center of curvature. Consequently, for external lens surfaces as diagrammed above, R 1 > 0 and R 2 < 0 indicate convex surfaces (used to converge light in a positive lens), while R 1 < 0 and R 2 > 0 indicate concave surfaces. The reciprocal of
2900-407: Is negative with respect to the focal length of a converging lens. The behavior reverses when a lens is placed in a medium with higher refractive index than the material of the lens. In this case a biconvex or plano-convex lens diverges light, and a biconcave or plano-concave one converges it. Convex-concave (meniscus) lenses can be either positive or negative, depending on the relative curvatures of
3000-457: Is not critical or where the bulk of a solid lens would be prohibitive. Cheap Fresnel lenses can be stamped or molded of transparent plastic and are used in overhead projectors and projection televisions . Dioptrics Dioptrics is the branch of optics dealing with refraction , especially by lenses . In contrast, the branch dealing with mirrors is known as catoptrics . Telescopes that create their image with an objective that
3100-433: Is positive for converging lenses, and negative for diverging lenses. The reciprocal of the focal length, 1 f , {\textstyle \ {\tfrac {1}{\ f\ }}\ ,} is the optical power of the lens. If the focal length is in metres, this gives the optical power in dioptres (reciprocal metres). Lenses have the same focal length when light travels from
Fresnel lens - Misplaced Pages Continue
3200-474: Is the double-flashing lens of the Point Arena Light , which was in service from 1908 to 1977. The development of hyper-radial lenses was driven in part by the need for larger light sources, such as gas lights with multiple jets, which required a longer focal length for a given beam-width, hence a larger lens to collect a given fraction of the generated light. The first hyper-radial lens was built for
3300-400: Is the radius of the spherical surface, n 2 is the refractive index of the material of the surface, n 1 is the refractive index of medium (the medium other than the spherical surface material), u {\textstyle u} is the on-axis (on the optical axis) object distance from the line perpendicular to the axis toward the refraction point on the surface (which height
3400-444: Is unknown. Much to Fresnel's embarrassment, one of the assembled commissioners, Jacques Charles , recalled Buffon's suggestion. However, whereas Buffon's version was biconvex and in one piece, Fresnel's was plano-convex and made of multiple prisms for easier construction. With an official budget of 500 francs, Fresnel approached three manufacturers. The third, François Soleil, found a way to remove defects by reheating and remolding
3500-1135: Is with respect to the principal planes of the lens, and the locations of the principal planes h 1 {\textstyle \ h_{1}\ } and h 2 {\textstyle \ h_{2}\ } with respect to the respective lens vertices are given by the following formulas, where it is a positive value if it is right to the respective vertex. h 1 = − ( n − 1 ) f d n R 2 {\displaystyle \ h_{1}=-\ {\frac {\ \left(n-1\right)f\ d~}{\ n\ R_{2}\ }}\ } h 2 = − ( n − 1 ) f d n R 1 {\displaystyle \ h_{2}=-\ {\frac {\ \left(n-1\right)f\ d~}{\ n\ R_{1}\ }}\ } The focal length f {\displaystyle \ f\ }
3600-411: The École Polytechnique , in order to save his remaining time and energy for his lighthouse work. In the same year he designed the first fixed lens—for spreading light evenly around the horizon while minimizing waste above or below. Ideally the curved refracting surfaces would be segments of toroids about a common vertical axis, so that the dioptric panel would look like a cylindrical drum. If this
3700-477: The 1 to 5 mm ( 1 ⁄ 32 to 3 ⁄ 16 in) range. Most modern Fresnel lenses consist only of refractive elements. Lighthouse lenses, however, tend to include both refracting and reflecting elements, the latter being outside the metal rings seen in the photographs. While the inner elements are sections of refractive lenses, the outer elements are reflecting prisms, each of which performs two refractions and one total internal reflection , avoiding
3800-512: The Isle of May , Scotland, on 22 September 1836. The first large catadioptric lenses were made in 1842 for the lighthouses at Gravelines and Île Vierge , France; these were fixed third-order lenses whose catadioptric rings (made in segments) were one metre in diameter. Stevenson's first-order Skerryvore lens, lit in 1844, was only partly catadioptric; it was similar to the Cordouan lens except that
3900-559: The Makapuu Point Light in Hawaii. Rather than order a new lens, the huge optic construction, 3.7 metres (12 ft) tall and with over a thousand prisms, was used there. There are two main types of Fresnel lens: imaging and non-imaging . Imaging Fresnel lenses use segments with curved cross-sections and produce sharp images, while non-imaging lenses have segments with flat cross-sections, and do not produce sharp images. As
4000-484: The transverse wave hypothesis. Shortly after the Cordouan lens was lit, Fresnel started coughing up blood. In May 1824, Fresnel was promoted to Secretary of the Commission des Phares , becoming the first member of that body to draw a salary, albeit in the concurrent role of Engineer-in-Chief. Late that year, being increasingly ill, he curtailed his fundamental research and resigned his seasonal job as an examiner at
4100-480: The 11th and 13th century " reading stones " were invented. These were primitive plano-convex lenses initially made by cutting a glass sphere in half. The medieval (11th or 12th century) rock crystal Visby lenses may or may not have been intended for use as burning glasses. Spectacles were invented as an improvement of the "reading stones" of the high medieval period in Northern Italy in the second half of
Fresnel lens - Misplaced Pages Continue
4200-512: The 13th century. This was the start of the optical industry of grinding and polishing lenses for spectacles, first in Venice and Florence in the late 13th century, and later in the spectacle-making centres in both the Netherlands and Germany . Spectacle makers created improved types of lenses for the correction of vision based more on empirical knowledge gained from observing the effects of
4300-575: The Commission that Fresnel was asked for a full eight-panel version. This model, completed a year later in spite of insufficient funding, had panels 76 cm square. In a public spectacle on the evening of 13 April 1821, it was demonstrated by comparison with the most recent reflectors, which it suddenly rendered obsolete. Soon after this demonstration, Fresnel published the idea that light, including apparently unpolarized light, consists exclusively of transverse waves , and went on to consider
4400-979: The Gaussian thin lens equation is 1 u + 1 v = 1 f . {\displaystyle \ {\frac {1}{\ u\ }}+{\frac {1}{\ v\ }}={\frac {1}{\ f\ }}~.} For the thin lens in air or vacuum where n 1 = 1 {\textstyle \ n_{1}=1\ } can be assumed, f {\textstyle \ f\ } becomes 1 f = ( n − 1 ) ( 1 R 1 − 1 R 2 ) {\displaystyle \ {\frac {1}{\ f\ }}=\left(n-1\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)\ } where
4500-484: The Latin name of the lentil (a seed of a lentil plant), because a double-convex lens is lentil-shaped. The lentil also gives its name to a geometric figure . Some scholars argue that the archeological evidence indicates that there was widespread use of lenses in antiquity, spanning several millennia. The so-called Nimrud lens is a rock crystal artifact dated to the 7th century BCE which may or may not have been used as
4600-471: The Latin translation of an incomplete and very poor Arabic translation. The book was, however, received by medieval scholars in the Islamic world, and commented upon by Ibn Sahl (10th century), who was in turn improved upon by Alhazen ( Book of Optics , 11th century). The Arabic translation of Ptolemy's Optics became available in Latin translation in the 12th century ( Eugenius of Palermo 1154). Between
4700-464: The Rogers mirror of 60 years earlier, except that it subtended a whole hemisphere). Light radiated into the forward hemisphere but missing the bull's-eye lens was deflected by the paraboloid into a parallel beam surrounding the bull's-eye lens, while light radiated into the backward hemisphere was reflected back through the lamp by the spherical reflector (as in Rogers' arrangement), to be collected by
4800-465: The Stevensons in 1885 by F. Barbier & Cie of France, and tested at South Foreland Lighthouse with various light sources. Chance Brothers (Hopkinson's employers) then began constructing hyper-radials, installing their first at Bishop Rock Lighthouse in 1887. In the same year, Barbier installed a hyper-radial at Tory Island . But only about 30 hyper-radials went into service before
4900-469: The UK and Republic of Ireland (and vice versa, right-hand-drive Irish and British trucks entering mainland Europe) to overcome the blind spots caused by the driver operating the lorry while sitting on the wrong side of the cab relative to the side of the road the car is on. They attach to the passenger-side window. Another automobile application of a Fresnel lens is a rear view enhancer, as the wide view angle of
5000-523: The United States by the 1870s. In 1858 the company produced "a very small number of pressed flint-glass sixth-order lenses" for use in lighthouses—the first Fresnel lighthouse lenses made in America. By the 1950s, the substitution of plastic for glass made it economic to use Fresnel lenses as condensers in overhead projectors. The Fresnel lens reduces the amount of material required compared to
5100-405: The back to the front as when light goes from the front to the back. Other properties of the lens, such as the aberrations are not the same in both directions. The signs of the lens' radii of curvature indicate whether the corresponding surfaces are convex or concave. The sign convention used to represent this varies, but in this article a positive R indicates a surface's center of curvature
SECTION 50
#17328022434725200-404: The center. The result was an all-glass holophote, with no losses from metallic reflections. James Timmins Chance modified Thomas Stevenson's all-glass holophotal design by arranging the double-reflecting prisms about a vertical axis. The prototype was shown at the 1862 International Exhibition in London. Later, to ease manufacturing, Chance divided the prisms into segments, and arranged them in
5300-510: The completion of Augustin Fresnel's original Carte des Phares . Thomas Stevenson (younger brother of Alan) went a step beyond Fresnel with his "holophotal" lens, which focused the light radiated by the lamp in nearly all directions, forward or backward, into a single beam. The first version, described in 1849, consisted of a standard Fresnel bull's-eye lens, a paraboloidal reflector, and a rear hemispherical reflector (functionally equivalent to
5400-630: The curved surfaces are replaced with flat surfaces, with a different angle in each section. Such a lens can be regarded as an array of prisms arranged in a circular fashion with steeper prisms on the edges and a flat or slightly convex center. In the first (and largest) Fresnel lenses, each section was actually a separate prism. 'Single-piece' Fresnel lenses were later produced, being used for automobile headlamps, brake, parking, and turn signal lenses, and so on. In modern times, computer-controlled milling equipment (CNC) or 3-D printers might be used to manufacture more complex lenses. Fresnel lens design allows
5500-608: The date as 1773 or 1788), the Marquis de Condorcet suggested that it would be easier to make the annular sections separately and assemble them on a frame; but even that was impractical at the time. These designs were intended not for lighthouses, but for burning glasses . David Brewster , however, proposed a system similar to Condorcet's in 1811, and by 1820 was advocating its use in British lighthouses. The French Commission des Phares [ FR ] (Commission of Lighthouses)
5600-421: The development of lighthouses in terms of cost, design, and implementation. Fresnel lens were developed that considered these constraints by featuring less material through their concentric annular sectioning. They were first fully implemented into a lighthouse in 1823. Most lenses are spherical lenses : their two surfaces are parts of the surfaces of spheres. Each surface can be convex (bulging outwards from
5700-548: The development of more compact bright lamps rendered such large optics unnecessary (see Hyperradiant Fresnel lens ). Production of one-piece stepped dioptric lenses—roughly as envisaged by Buffon—became feasible in 1852, when John L. Gilliland of the Brooklyn Flint-Glass Company patented a method of making lenses from pressed and molded glass. The company made small bull's-eye lenses for use on railroads, steamboats, and docks; such lenses were common in
5800-403: The distance from the lens to the spot is the focal length of the lens, which is commonly represented by f in diagrams and equations. An extended hemispherical lens is a special type of plano-convex lens, in which the lens's curved surface is a full hemisphere and the lens is much thicker than the radius of curvature. Another extreme case of a thick convex lens is a ball lens , whose shape
5900-426: The effect of the lens' thickness. For a single refraction for a circular boundary, the relation between object and its image in the paraxial approximation is given by n 1 u + n 2 v = n 2 − n 1 R {\displaystyle {\frac {n_{1}}{u}}+{\frac {n_{2}}{v}}={\frac {n_{2}-n_{1}}{R}}} where R
6000-478: The forward components. The first unit was installed at North Harbour, Peterhead , in August 1849. Stevenson called this version a "catadioptric holophote", although each of its elements was either purely reflective or purely refractive. In the second version of the holophote concept, the bull's-eye lens and paraboloidal reflector were replaced by a catadioptric Fresnel lens—as conceived by Fresnel, but expanded to cover
6100-461: The glass. Arago assisted Fresnel with the design of a modified Argand lamp with concentric wicks (a concept that Fresnel attributed to Count Rumford ), and accidentally discovered that fish glue was heat-resistant, making it suitable for use in the lens. The prototype, finished in March 1820, had a square lens panel 55 cm on a side, containing 97 polygonal (not annular) prisms—and so impressed
SECTION 60
#17328022434726200-1499: The imaging by second lens surface, by taking the above sign convention, u ′ = − v ′ + d {\textstyle \ u'=-v'+d\ } and n 2 − v ′ + d + n 1 v = n 1 − n 2 R 2 . {\displaystyle \ {\frac {n_{2}}{\ -v'+d\ }}+{\frac {\ n_{1}\ }{\ v\ }}={\frac {\ n_{1}-n_{2}\ }{\ R_{2}\ }}~.} Adding these two equations yields n 1 u + n 1 v = ( n 2 − n 1 ) ( 1 R 1 − 1 R 2 ) + n 2 d ( v ′ − d ) v ′ . {\displaystyle \ {\frac {\ n_{1}\ }{u}}+{\frac {\ n_{1}\ }{v}}=\left(n_{2}-n_{1}\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)+{\frac {\ n_{2}\ d\ }{\ \left(\ v'-d\ \right)\ v'\ }}~.} For
6300-429: The implications for double refraction and partial reflection. Fresnel acknowledged the British lenses and Buffon's invention in a memoir read on 29 July 1822 and printed in the same year. The date of that memoir may be the source of the claim that Fresnel's lighthouse advocacy began two years later than Brewster's; but the text makes it clear that Fresnel's involvement began no later than 1819. Fresnel's next lens
6400-443: The incident light. Another report by Fresnel, dated 29 August 1819 (Fresnel, 1866–70, vol. 3, pp. 15–21), concerns tests on reflectors, and does not mention stepped lenses except in an unrelated sketch on the last page of the manuscript. The minutes of the meetings of the Commission go back only to 1824, when Fresnel himself took over as Secretary. Thus the exact date on which Fresnel formally recommended lentilles à échelons
6500-452: The lamp and into the lens. Further samples were installed at Howth Baily , North Foreland , and at least four other locations by 1804. But much of the light was wasted by absorption in the glass. In 1748, Georges-Louis Leclerc, Comte de Buffon was the first to replace a convex lens with a series of concentric annular prisms, ground as steps in a single piece of glass,to reduce weight and absorption. In 1790 (although secondary sources give
6600-502: The lens can hold a colored plastic film ( gel ) to tint the light or wire screens or frosted plastic to diffuse it. The Fresnel lens is useful in the making of motion pictures not only because of its ability to focus the beam brighter than a typical lens, but also because the light is a relatively consistent intensity across the entire width of the beam of light. Aircraft carriers and naval air stations typically use Fresnel lenses in their optical landing systems . The "meatball" light aids
6700-417: The lens), concave (depressed into the lens), or planar (flat). The line joining the centres of the spheres making up the lens surfaces is called the axis of the lens. Typically the lens axis passes through the physical centre of the lens, because of the way they are manufactured. Lenses may be cut or ground after manufacturing to give them a different shape or size. The lens axis may then not pass through
6800-399: The lens. These two cases are examples of image formation in lenses. In the former case, an object at an infinite distance (as represented by a collimated beam of waves) is focused to an image at the focal point of the lens. In the latter, an object at the focal length distance from the lens is imaged at infinity. The plane perpendicular to the lens axis situated at a distance f from the lens
6900-402: The lenses (probably without the knowledge of the rudimentary optical theory of the day). The practical development and experimentation with lenses led to the invention of the compound optical microscope around 1595, and the refracting telescope in 1608, both of which appeared in the spectacle-making centres in the Netherlands . With the invention of the telescope and microscope there was
7000-467: The light loss that occurs in reflection from a silvered mirror. Fresnel designed six sizes of lighthouse lenses, divided into four orders based on their size and focal length. The 3rd and 4th orders were sub-divided into "large" and "small". In modern use, the orders are classified as first through sixth order. An intermediate size between third and fourth order was added later, as well as sizes above first order and below sixth. A first-order lens has
7100-475: The light source and add it to the beam, making it visible at greater distances. The design allows the construction of lenses of large aperture and short focal length without the mass and volume of material that would be required by a lens of conventional design. A Fresnel lens can be made much thinner than a comparable conventional lens, in some cases taking the form of a flat sheet. Because of its use in lighthouses, it has been called "the invention that saved
7200-460: The light source. The light path through these elements can include an internal reflection , rather than the simple refraction in the planar Fresnel element. These lenses conferred many practical benefits upon the designers, builders, and users of lighthouses and their illumination. Among other things, smaller lenses could fit into more compact spaces. Greater light transmission over longer distances, and varied patterns, made it possible to triangulate
7300-555: The lower slats were replaced by French-made catadioptric prisms, while mirrors were retained at the top. The first fully catadioptric first-order lens, installed at Pointe d'Ailly in 1852, also gave eight rotating beams plus a fixed light at the bottom; but its top section had eight catadioptric panels focusing the light about 4 degrees ahead of the main beams, in order to lengthen the flashes. The first fully catadioptric lens with purely revolving beams—also of first order—was installed at Saint-Clément-des-Baleines in 1854, and marked
7400-401: The main beam, increasing the duration of the flash. Below the main panels were 128 small mirrors arranged in four rings, stacked like the slats of a louver or Venetian blind . Each ring, shaped like a frustum of a cone , reflected the light to the horizon, giving a fainter steady light between the flashes. The official test, conducted on the unfinished Arc de Triomphe on 20 August 1822,
7500-427: The middle of the 20th centuries; most lighthouses have now retired glass Fresnel lenses from service and replaced them with much less expensive and more durable aerobeacons , which themselves often contain plastic Fresnel lenses. Lighthouse Fresnel lens systems typically include extra annular prismatic elements, arrayed in faceted domes above and below the central planar Fresnel, in order to catch all light emitted from
7600-475: The need for filters by inventing the "group-flashing" lens, in which the dioptric and/or the catadioptric panels were split so as to give multiple flashes—allowing lighthouses to be identified not only by frequency of flashes, but also by multiplicity of flashes. Double-flashing lenses were installed at Tampico (Mexico) and Little Basses (Sri Lanka) in 1875, and a triple-flashing lens at Casquets Lighthouse ( Channel Islands ) in 1876. The example shown (right)
7700-423: The number of segments increases, the two types of lens become more similar to each other. In the abstract case of an infinite number of segments, the difference between curved and flat segments disappears. Imaging lenses can be classified as: Non-imaging lenses can be classified as: High-quality glass Fresnel lenses were used in lighthouses, where they were considered state of the art in the late 19th and through
7800-406: The physical centre of the lens. Toric or sphero-cylindrical lenses have surfaces with two different radii of curvature in two orthogonal planes. They have a different focal power in different meridians. This forms an astigmatic lens. An example is eyeglass lenses that are used to correct astigmatism in someone's eye. Lenses are classified by the curvature of the two optical surfaces. A lens
7900-412: The pilot in maintaining proper glide slope for the landing. In the center are amber and red lights composed of Fresnel lenses. Although the lights are always on, the angle of the lens from the pilot's point of view determines the color and position of the visible light. If the lights appear above the green horizontal bar, the pilot is too high. If it is below, the pilot is too low, and if the lights are red,
8000-595: The pilot is very low. Fresnel lenses are also commonly used in searchlights , spotlights , and flashlights . Fresnel lenses are used as simple hand-held magnifiers . They are also used to correct several visual disorders, including ocular-motility disorders such as strabismus . Fresnel lenses have been used to increase the visual size of CRT displays in pocket televisions , notably the Sinclair TV80 . They are also used in traffic lights . Fresnel lenses are used in left-hand-drive European lorries entering
8100-414: The radius of curvature is called the curvature . A flat surface has zero curvature, and its radius of curvature is infinite . This convention seems to be mainly used for this article, although there is another convention such as Cartesian sign convention requiring different lens equation forms. If d is small compared to R 1 and R 2 then the thin lens approximation can be made. For
8200-775: The right infinity leads to the first or object focal length f 0 {\textstyle f_{0}} for the spherical surface. Similarly, u {\textstyle u} toward the left infinity leads to the second or image focal length f i {\displaystyle f_{i}} . f 0 = n 1 n 2 − n 1 R , f i = n 2 n 2 − n 1 R {\displaystyle {\begin{aligned}f_{0}&={\frac {n_{1}}{n_{2}-n_{1}}}R,\\f_{i}&={\frac {n_{2}}{n_{2}-n_{1}}}R\end{aligned}}} Applying this equation on
8300-410: The sign) would have zero optical power (as its focal length becomes infinity as shown in the lensmaker's equation ), meaning that it would neither converge nor diverge light. All real lenses have a nonzero thickness, however, which makes a real lens with identical curved surfaces slightly positive. To obtain exactly zero optical power, a meniscus lens must have slightly unequal curvatures to account for
8400-565: The size of his head, in contrast to the rest of his body, for dramatic and comic effect. In the Terry Gilliam film Brazil , plastic Fresnel screens appear ostensibly as magnifiers for the small CRT monitors used throughout the offices of the Ministry of Information. However, they occasionally appear between the actors and the camera, distorting the scale and composition of the scene to humorous effect. The Pixar movie Wall-E features
8500-408: The subscript of 2 in n 2 {\textstyle \ n_{2}\ } is dropped. As mentioned above, a positive or converging lens in air focuses a collimated beam travelling along the lens axis to a spot (known as the focal point ) at a distance f from the lens. Conversely, a point source of light placed at the focal point is converted into a collimated beam by
8600-470: The technology Phase Fresnel . The Polaroid SX-70 camera used a Fresnel reflector as part of its viewing system. View and large format cameras can utilize a Fresnel lens in conjunction with the ground glass , to increase the perceived brightness of the image projected by a lens onto the ground glass, thus aiding in adjusting focus and composition. The use of Fresnel lenses for image projection reduces image quality, so they tend to occur only where quality
8700-749: The test of the Cordouan lens in Paris, a committee of the Academy of Sciences reported on Fresnel's memoir and supplements on double refraction—which, although less well known to modern readers than his earlier work on diffraction, struck a more decisive blow for the wave theory of light. Between the test and the reassembly at Cordouan, Fresnel submitted his papers on photoelasticity (16 September 1822), elliptical and circular polarization and optical rotation (9 December), and partial reflection and total internal reflection (7 January 1823), essentially completing his reconstruction of physical optics on
8800-862: The thin lens approximation where d → 0 , {\displaystyle \ d\rightarrow 0\ ,} the 2nd term of the RHS (Right Hand Side) is gone, so n 1 u + n 1 v = ( n 2 − n 1 ) ( 1 R 1 − 1 R 2 ) . {\displaystyle \ {\frac {\ n_{1}\ }{u}}+{\frac {\ n_{1}\ }{v}}=\left(n_{2}-n_{1}\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)~.} The focal length f {\displaystyle \ f\ } of
8900-1110: The thin lens is found by limiting u → − ∞ , {\displaystyle \ u\rightarrow -\infty \ ,} n 1 f = ( n 2 − n 1 ) ( 1 R 1 − 1 R 2 ) → 1 f = ( n 2 n 1 − 1 ) ( 1 R 1 − 1 R 2 ) . {\displaystyle \ {\frac {\ n_{1}\ }{\ f\ }}=\left(n_{2}-n_{1}\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)\rightarrow {\frac {1}{\ f\ }}=\left({\frac {\ n_{2}\ }{\ n_{1}\ }}-1\right)\left({\frac {1}{\ R_{1}\ }}-{\frac {1}{\ R_{2}\ }}\right)~.} So,
9000-532: The third surface. The result was the lighthouse lens as we now know it. In 1826 he assembled a small model for use on the Canal Saint-Martin , but he did not live to see a full-sized version: he died on 14 July 1827, at the age of 39. The first stage of the development of lighthouse lenses after the death of Augustin Fresnel consisted in the implementation of his designs. This was driven in part by his younger brother Léonor—who, like Augustin,
9100-1258: The two spherical surfaces of a lens and approximating the lens thickness to zero (so a thin lens) leads to the lensmaker's formula . Applying Snell's law on the spherical surface, n 1 sin i = n 2 sin r . {\displaystyle n_{1}\sin i=n_{2}\sin r\,.} Also in the diagram, tan ( i − θ ) = h u tan ( θ − r ) = h v sin θ = h R {\displaystyle {\begin{aligned}\tan(i-\theta )&={\frac {h}{u}}\\\tan(\theta -r)&={\frac {h}{v}}\\\sin \theta &={\frac {h}{R}}\end{aligned}}} , and using small angle approximation (paraxial approximation) and eliminating i , r , and θ , n 2 v + n 1 u = n 2 − n 1 R . {\displaystyle {\frac {n_{2}}{v}}+{\frac {n_{1}}{u}}={\frac {n_{2}-n_{1}}{R}}\,.} The (effective) focal length f {\displaystyle f} of
9200-418: The two surfaces. A negative meniscus lens has a steeper concave surface (with a shorter radius than the convex surface) and is thinner at the centre than at the periphery. Conversely, a positive meniscus lens has a steeper convex surface (with a shorter radius than the concave surface) and is thicker at the centre than at the periphery. An ideal thin lens with two surfaces of equal curvature (also equal in
9300-467: The use of a corrective lens when he mentions that Nero was said to watch the gladiatorial games using an emerald (presumably concave to correct for nearsightedness , though the reference is vague). Both Pliny and Seneca the Younger (3 BC–65 AD) described the magnifying effect of a glass globe filled with water. Ptolemy (2nd century) wrote a book on Optics , which however survives only in
9400-410: The whole forward hemisphere. The third version, which Stevenson confusingly called a "dioptric holophote", was more innovative: it retained the catadioptric Fresnel lens for the front hemisphere, but replaced the rear hemispherical reflector with a hemispherical array of annular prisms, each of which used two total internal reflections to turn light diverging from the center of the hemisphere back toward
9500-531: Was "temporarily" seconded to the commission on the recommendation of François Arago (a member since 1813), to review possible improvements in lighthouse illumination. By the end of August 1819, unaware of the Buffon-Condorcet-Brewster proposal, Fresnel made his first presentation to the commission, recommending what he called lentilles à échelons ('lenses by steps') to replace the reflectors then in use, which reflected only about half of
9600-405: Was a rotating apparatus with eight "bull's-eye" panels, made in annular arcs by Saint-Gobain , giving eight rotating beams—to be seen by mariners as a periodic flash. Above and behind each main panel was a smaller, sloping bull's-eye panel of trapezoidal outline with trapezoidal elements. This refracted the light to a sloping plane mirror, which then reflected it horizontally, 7 degrees ahead of
9700-467: Was established by Napoleon in 1811, and placed under the authority of French physicist Augustin-Jean Fresnel 's employer, the Corps of Bridges and Roads. As the members of the commission were otherwise occupied, it achieved little in its early years. However, on 21 June 1819—three months after winning the physics Grand Prix of the Academy of Sciences for his celebrated memoir on diffraction —Fresnel
9800-444: Was supplemented by reflecting ( catoptric ) rings above and below the refracting (dioptric) parts, the entire apparatus would look like a beehive. The second Fresnel lens to enter service was indeed a fixed lens, of third order, installed at Dunkirk by 1 February 1825. However, due to the difficulty of fabricating large toroidal prisms, this apparatus had a 16-sided polygonal plan. In 1825 Fresnel extended his fixed-lens design by adding
9900-594: Was trained as a civil engineer but, unlike Augustin, had a strong aptitude for management. Léonor entered the service of the Lighthouse Commission in 1825, and went on to succeed Augustin as Secretary. The first fixed lens to be constructed with toroidal prisms was a first-order apparatus designed by the Scottish engineer Alan Stevenson under the guidance of Léonor Fresnel, and fabricated by Isaac Cookson & Co. using French glass; it entered service at
10000-509: Was witnessed by the Commission—and by Louis XVIII and his entourage—from 32 kilometres (20 mi) away. The apparatus was stored at Bordeaux for the winter, and then reassembled at Cordouan Lighthouse under Fresnel's supervision—in part by Fresnel's own hands. On 25 July 1823, the world's first lighthouse Fresnel lens was lit. As expected, the light was visible to the horizon, more than 32 kilometres (20 mi) out. The day before
#471528