Stoichiometry ( / ˌ s t ɔɪ k i ˈ ɒ m ɪ t r i / ) is the relationships among the weights of reactants and products before, during, and following chemical reactions .
139-511: Gasoline direct injection ( GDI ), also known as petrol direct injection ( PDI ), is a mixture formation system for internal combustion engines that run on gasoline (petrol), where fuel is injected into the combustion chamber . This is distinct from manifold injection systems, which inject fuel into the intake manifold (inlet manifold). The use of GDI can help increase engine efficiency and specific power output as well as reduce exhaust emissions. The first GDI engine to reach production
278-433: A carburetor or fuel injection as port injection or direct injection . Most SI engines have a single spark plug per cylinder but some have 2 . A head gasket prevents the gas from leaking between the cylinder head and the engine block. The opening and closing of the valves is controlled by one or several camshafts and springs—or in some engines—a desmodromic mechanism that uses no springs. The camshaft may press directly
417-409: A deflector head . Pistons are open at the bottom and hollow except for an integral reinforcement structure (the piston web). When an engine is working, the gas pressure in the combustion chamber exerts a force on the piston crown which is transferred through its web to a gudgeon pin . Each piston has rings fitted around its circumference that mostly prevent the gases from leaking into the crankcase or
556-428: A gas engine . Also in 1794, Robert Street patented an internal combustion engine, which was also the first to use liquid fuel , and built an engine around that time. In 1798, John Stevens built the first American internal combustion engine. In 1807, French engineers Nicéphore Niépce (who went on to invent photography ) and Claude Niépce ran a prototype internal combustion engine, using controlled dust explosions,
695-470: A locomotive operated by electricity.) In boating, an internal combustion engine that is installed in the hull is referred to as an engine, but the engines that sit on the transom are referred to as motors. Reciprocating piston engines are by far the most common power source for land and water vehicles , including automobiles , motorcycles , ships and to a lesser extent, locomotives (some are electrical but most use diesel engines ). Rotary engines of
834-594: A battery and charging system; nevertheless, this system is secondary and is added by manufacturers as a luxury for the ease of starting, turning fuel on and off (which can also be done via a switch or mechanical apparatus), and for running auxiliary electrical components and accessories. Most new engines rely on electrical and electronic engine control units (ECU) that also adjust the combustion process to increase efficiency and reduce emissions. Surfaces in contact and relative motion to other surfaces require lubrication to reduce wear, noise and increase efficiency by reducing
973-404: A carefully timed high-voltage to the proper cylinder. This spark, via the spark plug, ignites the air-fuel mixture in the engine's cylinders. While gasoline internal combustion engines are much easier to start in cold weather than diesel engines, they can still have cold weather starting problems under extreme conditions. For years, the solution was to park the car in heated areas. In some parts of
1112-427: A catalyst, may produce singly methylated ( C 6 H 5 CH 3 ), doubly methylated ( C 6 H 4 (CH 3 ) 2 ), or still more highly methylated ( C 6 H 6− n (CH 3 ) n ) products, as shown in the following example, In this example, which reaction takes place is controlled in part by the relative concentrations of the reactants. In lay terms, the stoichiometric coefficient of any given component
1251-499: A common power source for lawnmowers , string trimmers , chain saws , leafblowers , pressure washers , snowmobiles , jet skis , outboard motors , mopeds , and motorcycles . There are several possible ways to classify internal combustion engines. By number of strokes: By type of ignition: By mechanical/thermodynamic cycle (these cycles are infrequently used but are commonly found in hybrid vehicles , along with other vehicles manufactured for fuel efficiency ): The base of
1390-442: A direct-injected engine refers to how the fuel is distributed throughout the combustion chamber: In the homogeneous charge mode , the engine operates on a homogeneous air/fuel mixture ( λ = 1 {\displaystyle \lambda =1} ), meaning, that there is an (almost) perfect mixture of fuel and air in the cylinder. The fuel is injected at the very beginning of the intake stroke in order to give injected fuel
1529-489: A given reaction. Describing the quantitative relationships among substances as they participate in chemical reactions is known as reaction stoichiometry . In the example above, reaction stoichiometry measures the relationship between the quantities of methane and oxygen that react to form carbon dioxide and water. Because of the well known relationship of moles to atomic weights , the ratios that are arrived at by stoichiometry can be used to determine quantities by weight in
SECTION 10
#17327808729721668-452: A hand crank. Larger engines typically power their starting motors and ignition systems using the electrical energy stored in a lead–acid battery . The battery's charged state is maintained by an automotive alternator or (previously) a generator which uses engine power to create electrical energy storage. The battery supplies electrical power for starting when the engine has a starting motor system, and supplies electrical power when
1807-667: A lesser amount of PbO is produced for the 200.0 g of PbS, it is clear that PbS is the limiting reagent. In reality, the actual yield is not the same as the stoichiometrically-calculated theoretical yield. Percent yield, then, is expressed in the following equation: If 170.0 g of lead(II) oxide is obtained, then the percent yield would be calculated as follows: Consider the following reaction, in which iron(III) chloride reacts with hydrogen sulfide to produce iron(III) sulfide and hydrogen chloride : The stoichiometric masses for this reaction are: Suppose 90.0 g of FeCl 3 reacts with 52.0 g of H 2 S . To find
1946-488: A major cause of pollution for the region. Internal combustion engine An internal combustion engine ( ICE or IC engine ) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high- temperature and high- pressure gases produced by combustion applies direct force to some component of
2085-408: A problem would occur as the compression ratio increased as the fuel was igniting due to the rise in temperature that resulted. Charles Kettering developed a lead additive which allowed higher compression ratios, which was progressively abandoned for automotive use from the 1970s onward, partly due to lead poisoning concerns. The fuel mixture is ignited at different progressions of the piston in
2224-418: A reaction described by a balanced equation. This is called composition stoichiometry . Gas stoichiometry deals with reactions involving gases, where the gases are at a known temperature, pressure, and volume and can be assumed to be ideal gases . For gases, the volume ratio is ideally the same by the ideal gas law , but the mass ratio of a single reaction has to be calculated from the molecular masses of
2363-731: A reciprocating internal combustion engine is the engine block , which is typically made of cast iron (due to its good wear resistance and low cost) or aluminum . In the latter case, the cylinder liners are made of cast iron or steel, or a coating such as nikasil or alusil . The engine block contains the cylinders . In engines with more than one cylinder they are usually arranged either in 1 row ( straight engine ) or 2 rows ( boxer engine or V engine ); 3 or 4 rows are occasionally used ( W engine ) in contemporary engines, and other engine configurations are possible and have been used. Single-cylinder engines (or thumpers ) are common for motorcycles and other small engines found in light machinery. On
2502-415: A richer air-fuel ratio at higher loads. In theory, a stratified charge mode can further improve fuel efficiency and reduce exhaust emissions, however, in practice, the stratified charge concept has not proved to have significant efficiency advantages over a conventional homogeneous charge concept, but due to its inherent lean burn, more nitrogen oxides are formed, which sometimes require a NOx adsorber in
2641-422: A separate ICE as an auxiliary power unit . Wankel engines are fitted to many unmanned aerial vehicles . ICEs drive large electric generators that power electrical grids. They are found in the form of combustion turbines with a typical electrical output in the range of some 100 MW. Combined cycle power plants use the high temperature exhaust to boil and superheat water steam to run a steam turbine . Thus,
2780-481: A separate blower avoids many of the shortcomings of crankcase scavenging, at the expense of increased complexity which means a higher cost and an increase in maintenance requirement. An engine of this type uses ports or valves for intake and valves for exhaust, except opposed piston engines , which may also use ports for exhaust. The blower is usually of the Roots-type but other types have been used too. This design
2919-416: A separate crankcase ventilation system. The cylinder head is attached to the engine block by numerous bolts or studs . It has several functions. The cylinder head seals the cylinders on the side opposite to the pistons; it contains short ducts (the ports ) for intake and exhaust and the associated intake valves that open to let the cylinder be filled with fresh air and exhaust valves that open to allow
SECTION 20
#17327808729723058-454: A single molecule reacts with another molecule. As the reacting molecules (or moieties) consist of a definite set of atoms in an integer ratio, the ratio between reactants in a complete reaction is also in integer ratio. A reaction may consume more than one molecule, and the stoichiometric number counts this number, defined as positive for products (added) and negative for reactants (removed). The unsigned coefficients are generally referred to as
3197-464: A small amount of nitrogen-15, and natural hydrogen includes hydrogen-2 ( deuterium ). A stoichiometric reactant is a reactant that is consumed in a reaction, as opposed to a catalytic reactant , which is not consumed in the overall reaction because it reacts in one step and is regenerated in another step. Stoichiometry is not only used to balance chemical equations but also used in conversions, i.e., converting from grams to moles using molar mass as
3336-420: A spark-plug (due to a lack of fuel), the charge needs to be stratified (e. g. a small zone of fuel/air mixture around the spark plug needs to be created). To achieve such a charge, a stratified charge engine injects the fuel during the latter stages of the compression stroke. A "swirl cavity" in the top of the piston is often used to direct the fuel into the zone surrounding the spark plug . This technique enables
3475-510: A special swirl or tumble movement in order to direct the fuel towards the spark plug. This swirl or tumble movement must be retained for a relatively long period of time, so that all of the fuel is getting pushed towards the spark plug. This however reduces the engine's charging efficiency and thus power output. In practice, a combination of air-guided and wall-guided injection is used. There exists only one engine that only relies on air-guided injection. In engines with spray-guided direct injection,
3614-565: A study published in January 2020 in the journal Environmental Science and Technology , a team of researchers at the University of Georgia (USA) predicted that the increase in black carbon emissions from GDI-powered vehicles will increase climate warming in urban areas of the U.S. by an amount that significantly exceeds the cooling associated with a reduction in CO 2 . The researchers also believe
3753-438: A very high air ratio at its edges. The fuel can only be ignited in between these two "zones". Ignition takes place almost immediately after injection to increase engine efficiency. The spark plug must be placed in such a way, that it is exactly in the zone where the mixture is ignitable. This means that the production tolerances need to be very low, because only very little misalignment can result in drastic combustion decline. Also,
3892-439: Is 2:1. In stoichiometric compounds, the molar proportions are whole numbers. Stoichiometry can also be used to find the quantity of a product yielded by a reaction. If a piece of solid copper (Cu) were added to an aqueous solution of silver nitrate ( AgNO 3 ), the silver (Ag) would be replaced in a single displacement reaction forming aqueous copper(II) nitrate ( Cu(NO 3 ) 2 ) and solid silver. How much silver
4031-405: Is a fly-back system, using interruption of electrical primary system current through some type of synchronized interrupter. The interrupter can be either contact points or a power transistor. The problem with this type of ignition is that as RPM increases the availability of electrical energy decreases. This is especially a problem, since the amount of energy needed to ignite a more dense fuel mixture
4170-409: Is achieved in two-stroke GDI engines by injecting oil into the crankcase, resulting in a lower oil consumption than the older method of injecting oil mixed with fuel into the crankcase. Two types of GDI are used in two-strokes: low-pressure air-assisted, and high-pressure. The low-pressure systems—as used on the 1992 Aprilia SR50 motor scooter—uses a crankshaft-driven air compressor to inject air into
4309-421: Is also why diesel and HCCI engines are more susceptible to cold-starting issues, although they run just as well in cold weather once started. Light duty diesel engines with indirect injection in automobiles and light trucks employ glowplugs (or other pre-heating: see Cummins ISB#6BT ) that pre-heat the combustion chamber just before starting to reduce no-start conditions in cold weather. Most diesels also have
Gasoline direct injection - Misplaced Pages Continue
4448-566: Is an improved version of the Ficht system, which was released in 2003 and won an EPA Clean Air Excellence Award in 2004. Envirofit International , an American non-profit organisation, has developed direct injection retrofit kits for two-stroke motorcycles (using technology developed by Orbital Corporation Limited ) in a project to reduce air pollution in Southeast Asia. The 100-million two-stroke taxis and motorcycles in Southeast Asia are
4587-503: Is commonplace in CI engines, and has been occasionally used in SI engines. CI engines that use a blower typically use uniflow scavenging . In this design the cylinder wall contains several intake ports placed uniformly spaced along the circumference just above the position that the piston crown reaches when at BDC. An exhaust valve or several like that of 4-stroke engines is used. The final part of
4726-495: Is completely consumed when the reaction is complete. An excess reactant is a reactant that is left over once the reaction has stopped due to the limiting reactant being exhausted. Consider the equation of roasting lead(II) sulfide (PbS) in oxygen ( O 2 ) to produce lead(II) oxide (PbO) and sulfur dioxide ( SO 2 ): To determine the theoretical yield of lead(II) oxide if 200.0 g of lead(II) sulfide and 200.0 g of oxygen are heated in an open container: Because
4865-738: Is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids for external combustion engines include air, hot water, pressurized water or even boiler -heated liquid sodium . While there are many stationary applications, most ICEs are used in mobile applications and are the primary power supply for vehicles such as cars , aircraft and boats . ICEs are typically powered by hydrocarbon -based fuels like natural gas , gasoline , diesel fuel , or ethanol . Renewable fuels like biodiesel are used in compression ignition (CI) engines and bioethanol or ETBE (ethyl tert-butyl ether) produced from bioethanol in spark ignition (SI) engines. As early as 1900
5004-542: Is driven downward with power, it first uncovers the exhaust port where the burned fuel is expelled under high pressure and then the intake port where the process has been completed and will keep repeating. Later engines used a type of porting devised by the Deutz company to improve performance. It was called the Schnurle Reverse Flow system. DKW licensed this design for all their motorcycles. Their DKW RT 125
5143-811: Is given by the Avogadro constant , exactly 6.022 140 76 × 10 mol since the 2019 revision of the SI . Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each reactant per mole of reaction. The mass ratios can be calculated by dividing each by the total in the whole reaction. Elements in their natural state are mixtures of isotopes of differing mass; thus, atomic masses and thus molar masses are not exactly integers. For instance, instead of an exact 14:3 proportion, 17.04 g of ammonia consists of 14.01 g of nitrogen and 3 × 1.01 g of hydrogen, because natural nitrogen includes
5282-415: Is held in place relative to the engine block by main bearings , which allow it to rotate. Bulkheads in the crankcase form a half of every main bearing; the other half is a detachable cap. In some cases a single main bearing deck is used rather than several smaller caps. A connecting rod is connected to offset sections of the crankshaft (the crankpins ) in one end and to the piston in the other end through
5421-406: Is higher. The result was often a high RPM misfire. Capacitor discharge ignition was developed. It produces a rising voltage that is sent to the spark plug. CD system voltages can reach 60,000 volts. CD ignitions use step-up transformers . The step-up transformer uses energy stored in a capacitance to generate electric spark . With either system, a mechanical or electrical control system provides
5560-440: Is illustrated in the image here, where the balanced equation is: Here, one molecule of methane reacts with two molecules of oxygen gas to yield one molecule of carbon dioxide and two molecules of water . This particular chemical equation is an example of complete combustion . Stoichiometry measures these quantitative relationships, and is used to determine the amount of products and reactants that are produced or needed in
5699-406: Is more limited for GDI, since there is a shorter period of time available to inject the required quantity of fuel. In manifold injection (as well as carburetors and throttle-body fuel injection), fuel can be added to the intake air mixture at any time. However a GDI engine is limited to injecting fuel during the intake and compression phases. This becomes a restriction at high engine speeds (RPM), when
Gasoline direct injection - Misplaced Pages Continue
5838-445: Is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consists of: While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either
5977-404: Is produced if 16.00 grams of Cu is added to the solution of excess silver nitrate? The following steps would be used: The complete balanced equation would be: For the mass to mole step, the mass of copper (16.00 g) would be converted to moles of copper by dividing the mass of copper by its molar mass : 63.55 g/mol. Now that the amount of Cu in moles (0.2518) is found, we can set up
6116-442: Is shown below using the thermite reaction , This equation shows that 1 mole of iron(III) oxide and 2 moles of aluminum will produce 1 mole of aluminium oxide and 2 moles of iron . So, to completely react with 85.0 g of iron(III) oxide (0.532 mol), 28.7 g (1.06 mol) of aluminium are needed. The limiting reagent is the reagent that limits the amount of product that can be formed and
6255-514: Is the Wärtsilä-Sulzer RTA96-C turbocharged 2-stroke diesel, used in large container ships. It is the most efficient and powerful reciprocating internal combustion engine in the world with a thermal efficiency over 50%. For comparison, the most efficient small four-stroke engines are around 43% thermally-efficient (SAE 900648); size is an advantage for efficiency due to the increase in the ratio of volume to surface area. See
6394-403: Is the number of molecules and/or formula units that participate in the reaction as written. A related concept is the stoichiometric number (using IUPAC nomenclature), wherein the stoichiometric coefficient is multiplied by +1 for all products and by −1 for all reactants. For example, in the reaction CH 4 + 2 O 2 → CO 2 + 2 H 2 O , the stoichiometric number of CH 4 is −1,
6533-448: Is the progress variable or extent of reaction . The stoichiometric number ν i {\displaystyle \nu _{i}} represents the degree to which a chemical species participates in a reaction. The convention is to assign negative numbers to reactants (which are consumed) and positive ones to products , consistent with the convention that increasing the extent of reaction will correspond to shifting
6672-618: The Pyréolophore , which was granted a patent by Napoleon Bonaparte . This engine powered a boat on the Saône river in France. In the same year, Swiss engineer François Isaac de Rivaz invented a hydrogen-based internal combustion engine and powered the engine by electric spark. In 1808, De Rivaz fitted his invention to a primitive working vehicle – "the world's first internal combustion powered automobile". In 1823, Samuel Brown patented
6811-608: The Wankel rotary engine . A second class of internal combustion engines use continuous combustion: gas turbines , jet engines and most rocket engines , each of which are internal combustion engines on the same principle as previously described. ( Firearms are also a form of internal combustion engine, though of a type so specialized that they are commonly treated as a separate category, along with weaponry such as mortars and anti-aircraft cannons.) In contrast, in external combustion engines , such as steam or Stirling engines , energy
6950-473: The external links for an in-cylinder combustion video in a 2-stroke, optically accessible motorcycle engine. Dugald Clerk developed the first two-cycle engine in 1879. It used a separate cylinder which functioned as a pump in order to transfer the fuel mixture to the cylinder. In 1899 John Day simplified Clerk's design into the type of 2 cycle engine that is very widely used today. Day cycle engines are crankcase scavenged and port timed. The crankcase and
7089-403: The stoichiometric coefficients . Each element has an atomic mass , and considering molecules as collections of atoms, compounds have a definite molecular mass , which when expressed in daltons is numerically equal to the molar mass in g / mol . By definition, the atomic mass of carbon-12 is 12 Da , giving a molar mass of 12 g/mol. The number of molecules per mole in a substance
SECTION 50
#17327808729727228-423: The two-stroke oil in the air-fuel-oil mixture which is then burned along with the fuel. The valve train may be contained in a compartment flooded with lubricant so that no oil pump is required. Stoichiometry#Stoichiometric air-to-fuel ratios of common fuels Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equals the total mass of the products, leading to
7367-527: The 1970s, the United States manufacturers American Motors Corporation and Ford developed prototype mechanical GDI systems called Straticharge and Programmed Combustion (PROCO) respectively. Neither of these systems reached production. The 1996 Japanese-market Mitsubishi Galant was the first mass-produced car to use a GDI engine, when a GDI version of the Mitsubishi 4G93 inline-four engine
7506-619: The Wankel design are used in some automobiles, aircraft and motorcycles. These are collectively known as internal-combustion-engine vehicles (ICEV). Where high power-to-weight ratios are required, internal combustion engines appear in the form of combustion turbines , or sometimes Wankel engines. Powered aircraft typically use an ICE which may be a reciprocating engine. Airplanes can instead use jet engines and helicopters can instead employ turboshafts ; both of which are types of turbines. In addition to providing propulsion, aircraft may employ
7645-564: The air, as would be the case in a conventional Otto cycle engine, but is instead injected during the compression stroke a little in advance of the spark. Hesselman engines could use a wide variety of fuels, including gasoline, but generally ran on conventional diesel fuels. During World War II, most of the German aircraft engines used GDI, such as the BMW 801 radial engine, the German inverted V12 Daimler-Benz DB 601 , DB 603 and DB 605 engines, and
7784-416: The amount of each element must be the same throughout the overall reaction. For example, the number of atoms of a given element X on the reactant side must equal the number of atoms of that element on the product side, whether or not all of those atoms are actually involved in a reaction. Chemical reactions, as macroscopic unit operations, consist of simply a very large number of elementary reactions , where
7923-489: The associated process. While an engine is in operation, the crankshaft rotates continuously at a nearly constant speed . In a 4-stroke ICE, each piston experiences 2 strokes per crankshaft revolution in the following order. Starting the description at TDC, these are: The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it
8062-406: The balanced chemical equation is: The mass of water formed if 120 g of propane ( C 3 H 8 ) is burned in excess oxygen is then Stoichiometry is also used to find the right amount of one reactant to "completely" react with the other reactant in a chemical reaction – that is, the stoichiometric amounts that would result in no leftover reactants when the reaction takes place. An example
8201-619: The combustion gases to escape. The valves are often poppet valves but they can also be rotary valves or sleeve valves . However, 2-stroke crankcase scavenged engines connect the gas ports directly to the cylinder wall without poppet valves; the piston controls their opening and occlusion instead. The cylinder head also holds the spark plug in the case of spark ignition engines and the injector for engines that use direct injection. All CI (compression ignition) engines use fuel injection, usually direct injection but some engines instead use indirect injection . SI (spark ignition) engines can use
8340-413: The composition from reactants towards products. However, any reaction may be viewed as going in the reverse direction, and in that point of view, would change in the negative direction in order to lower the system's Gibbs free energy. Whether a reaction actually will go in the arbitrarily selected forward direction or not depends on the amounts of the substances present at any given time, which determines
8479-455: The compressed air and combustion products and slide continuously within it while the engine is in operation. In smaller engines, the pistons are made of aluminum; while in larger applications, they are typically made of cast iron. In performance applications, pistons can also be titanium or forged steel for greater strength. The top surface of the piston is called its crown and is typically flat or concave. Some two-stroke engines use pistons with
SECTION 60
#17327808729728618-432: The compressed charge, four-cycle engine. In 1879, Karl Benz patented a reliable two-stroke gasoline engine. Later, in 1886, Benz began the first commercial production of motor vehicles with an internal combustion engine, in which a three-wheeled, four-cycle engine and chassis formed a single unit. In 1892, Rudolf Diesel developed the first compressed charge, compression ignition engine. In 1926, Robert Goddard launched
8757-406: The conversion factor, or from grams to milliliters using density . For example, to find the amount of NaCl (sodium chloride) in 2.00 g, one would do the following: In the above example, when written out in fraction form, the units of grams form a multiplicative identity, which is equivalent to one (g/g = 1), with the resulting amount in moles (the unit that was needed), as shown in
8896-410: The corresponding ports. The intake manifold connects to the air filter directly, or to a carburetor when one is present, which is then connected to the air filter . It distributes the air incoming from these devices to the individual cylinders. The exhaust manifold is the first component in the exhaust system . It collects the exhaust gases from the cylinders and drives it to the following component in
9035-400: The crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging. SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging. Some SI engines are crankcase scavenged and do not use poppet valves. Instead, the crankcase and the part of
9174-401: The crankcase pressure is slightly below intake pressure, to let it be filled with a new charge; this happens when the piston is moving upwards. When the piston is moving downwards the pressure in the crankcase increases and the reed valve closes promptly, then the charge in the crankcase is compressed. When the piston is moving downwards, it also uncovers the exhaust port and the transfer port and
9313-413: The crankcase to the port in the cylinder to provide for intake and another from the exhaust port to the exhaust pipe. The height of the port in relationship to the length of the cylinder is called the "port timing". On the first upstroke of the engine there would be no fuel inducted into the cylinder as the crankcase was empty. On the downstroke, the piston now compresses the fuel mix, which has lubricated
9452-431: The cylinder below the piston is used as a pump. The intake port is connected to the crankcase through a reed valve or a rotary disk valve driven by the engine. For each cylinder, a transfer port connects in one end to the crankcase and in the other end to the cylinder wall. The exhaust port is connected directly to the cylinder wall. The transfer and exhaust port are opened and closed by the piston. The reed valve opens when
9591-411: The cylinder block has fins protruding away from it to cool the engine by directly transferring heat to the air. The cylinder walls are usually finished by honing to obtain a cross hatch , which is able to retain more oil. A too rough surface would quickly harm the engine by excessive wear on the piston. The pistons are short cylindrical parts which seal one end of the cylinder from the high pressure of
9730-526: The cylinder head. A low-pressure injector then sprays fuel into the combustion chamber, where it vaporizes as it mixes with the compressed air. A high-pressure GDI system was developed by German company Ficht GmbH in the 1990s and introduced for marine engines by Outboard Marine Corporation (OMC) in 1997, in order to meet stricter emissions regulations. However, the engines had reliability problems and OMC declared bankruptcy in December 2000. The Evinrude E-Tec
9869-442: The cylinder, which can force the ignitable parts of the mixture so far away from the spark plug, that it cannot ignite the air/fuel mixture anymore. Other devices which are used to complement GDI in creating a stratified charge include variable valve timing , variable valve lift , and variable length intake manifold . Also, exhaust gas recirculation can be used to reduce the high nitrogen oxide (NOx) emissions that can result from
10008-407: The cylinder. Because there is no obstruction in the cylinder of the fuel to move directly out of the exhaust port prior to the piston rising far enough to close the port, early engines used a high domed piston to slow down the flow of fuel. Later the fuel was "resonated" back into the cylinder using an expansion chamber design. When the piston rose close to TDC, a spark ignited the fuel. As the piston
10147-414: The cylinder. At low rpm, the spark is timed to occur close to the piston achieving top dead center. In order to produce more power, as rpm rises the spark is advanced sooner during piston movement. The spark occurs while the fuel is still being compressed progressively more as rpm rises. The necessary high voltage, typically 10,000 volts, is supplied by an induction coil or transformer. The induction coil
10286-400: The desired distribution of fuel throughout the combustion chamber are either spray-guided , air-guided , or wall-guided injection. The trend in recent years is towards spray-guided injection, since it currently results in a higher fuel efficiency. In engines with wall-guided injection, the distance between spark plug and injection nozzle is relatively high. In order to get the fuel close to
10425-413: The distance between spark plug and injection nozzle is relatively high. However, unlike in wall-guided injection engines, the fuel does not get in contact with (relatively) cold engine parts such as cylinder wall and piston. Instead of spraying the fuel against a swirl cavity, in air-guided injection engines the fuel is guided towards the spark plug solely by the intake air. The intake air must therefore have
10564-425: The distance between spark plug and injection nozzle is relatively low. Both the injection nozzle and spark plug are located in between the cylinder's valves. The fuel is injected during the latter stages of the compression stroke, causing very quick (and inhomogeneous) mixture formation. This results in large fuel stratification gradients, meaning that there is a cloud of fuel with a very low air ratio in its centre, and
10703-458: The duration of each combustion cycle is shorter. To overcome this limitation, some GDI engines (such as the Toyota 2GR-FSE V6 and Volkswagen EA888 I4 engines) also have a set of manifold fuel injectors to provide additional fuel at high RPM. These manifold fuel injectors also assist in cleaning carbon deposits from the intake system. Gasoline does not provide the same level of lubrication for
10842-413: The early engines which used Hot Tube ignition. When Bosch developed the magneto it became the primary system for producing electricity to energize a spark plug. Many small engines still use magneto ignition. Small engines are started by hand cranking using a recoil starter or hand crank. Prior to Charles F. Kettering of Delco's development of the automotive starter all gasoline engined automobiles used
10981-453: The efficiency is higher because more energy is extracted from the fuel than what could be extracted by the combustion engine alone. Combined cycle power plants achieve efficiencies in the range of 50–60%. In a smaller scale, stationary engines like gas engines or diesel generators are used for backup or for providing electrical power to areas not connected to an electric grid . Small engines (usually 2‐stroke gasoline/petrol engines) are
11120-543: The engine is off. The battery also supplies electrical power during rare run conditions where the alternator cannot maintain more than 13.8 volts (for a common 12 V automotive electrical system). As alternator voltage falls below 13.8 volts, the lead-acid storage battery increasingly picks up electrical load. During virtually all running conditions, including normal idle conditions, the alternator supplies primary electrical power. Some systems disable alternator field (rotor) power during wide-open throttle conditions. Disabling
11259-416: The engine, therefore Junkers developed a GDI system to prevent this issue. A demonstration of this prototype engine to aviation officials was performed shortly before development ceased due to the end of World War I. The Hesselman engine is a hybrid engine design which was in production by various manufacturers from 1925 to 1951. In a Hesselman engine fuel is not injected during the suction stroke along with
11398-415: The engine. The force is typically applied to pistons ( piston engine ), turbine blades ( gas turbine ), a rotor (Wankel engine) , or a nozzle ( jet engine ). This force moves the component over a distance. This process transforms chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to. The first commercially successful internal combustion engine
11537-509: The exhaust system to meet emissions regulations. The use of NOx adsorbers can require low sulphur fuels, since sulphur prevents NOx adsorbers from functioning properly. GDI engines with stratified fuel injection can also produce higher quantities of particulate matter than manifold injected engines, sometimes requiring particulate filters in the exhaust (similar to a diesel particulate filter ) in order to meet vehicle emissions regulations. Therefore several European car manufacturers have abandoned
11676-435: The field reduces alternator pulley mechanical loading to nearly zero, maximizing crankshaft power. In this case, the battery supplies all primary electrical power. Gasoline engines take in a mixture of air and gasoline and compress it by the movement of the piston from bottom dead center to top dead center when the fuel is at maximum compression. The reduction in the size of the swept area of the cylinder and taking into account
11815-671: The first internal combustion engine to be applied industrially. In 1854, in the UK, the Italian inventors Eugenio Barsanti and Felice Matteucci obtained the certification: "Obtaining Motive Power by the Explosion of Gases". In 1857 the Great Seal Patent Office conceded them patent No.1655 for the invention of an "Improved Apparatus for Obtaining Motive Power from Gases". Barsanti and Matteucci obtained other patents for
11954-595: The first liquid-fueled rocket. In 1939, the Heinkel He 178 became the world's first jet aircraft . At one time, the word engine (via Old French , from Latin ingenium , "ability") meant any piece of machinery —a sense that persists in expressions such as siege engine . A "motor" (from Latin motor , "mover") is any machine that produces mechanical power . Traditionally, electric motors are not referred to as "engines"; however, combustion engines are often referred to as "motors". (An electric engine refers to
12093-524: The first successful prototype in 1894. An early prototype of a GDI engine was built in Germany in 1916 for the Junkers airplane. The engine was initially designed as a diesel engine, however it switched to being designed for gasoline when the German ministry of war decreed that aircraft engines must run on either gasoline or benzene. Being a crankcase-compression two-stroke design, a misfire could destroy
12232-604: The following conditions: The main advantage of 2-stroke engines of this type is mechanical simplicity and a higher power-to-weight ratio than their 4-stroke counterparts. Despite having twice as many power strokes per cycle, less than twice the power of a comparable 4-stroke engine is attainable in practice. In the US, 2-stroke engines were banned for road vehicles due to the pollution. Off-road only motorcycles are still often 2-stroke but are rarely road legal. However, many thousands of 2-stroke lawn maintenance engines are in use. Using
12371-503: The following equation, Stoichiometry is often used to balance chemical equations (reaction stoichiometry). For example, the two diatomic gases, hydrogen and oxygen , can combine to form a liquid, water, in an exothermic reaction , as described by the following equation: Reaction stoichiometry describes the 2:1:2 ratio of hydrogen, oxygen, and water molecules in the above equation. The molar ratio allows for conversion between moles of one substance and moles of another. For example, in
12510-457: The following years. The Mitsubishi GDI technology was also licensed by Peugeot, Citroën, Hyundai, Volvo and Volkswagen. The 2005 Toyota 2GR-FSE V6 engine was the first to combine both direct and indirect injection. The system (called "D-4S") uses two fuel injectors per cylinder: a traditional manifold fuel injector (low pressure) and a direct fuel injector (high-pressure) and is used in most Toyota engines. In Formula One racing, direct injection
12649-441: The fuel cools down the spark plug, immediately before it is exposed to combustion heat. Thus, the spark plug needs to be able to withstand thermal shocks very well. At low piston (and engine) speeds, the relative air/fuel velocity is low, which can cause fuel to not vaporise properly, resulting in a very rich mixture. Rich mixtures do not combust properly, and cause carbon build-up. At high piston speeds, fuel gets spread further within
12788-492: The fuel on the relatively cold piston cool down so much, that they cannot combust properly. When switching from low engine load to medium engine load (and thus advancing the injection timing), some parts of the fuel can end up getting injected behind the swirl cavity, also resulting in incomplete combustion. Engines with wall-guided direct injection can therefore suffer from high hydrocarbon emissions. Like in engines with wall-guided injection, in engines with air-guided injection,
12927-401: The gasoline fuel separately pressurised to 1000psi and admitted into the cylinder 'at the moment of highest compression' by a small rotary valve, with simultaneous ignition by a spark plug and trembler coil allowing sparking to continue throughout the combustion phase. The fuel being injected was described as being in vapour phase having been heated by the engine cylinder. The pressure of the fuel
13066-517: The gudgeon pin and thus transfers the force and translates the reciprocating motion of the pistons to the circular motion of the crankshaft. The end of the connecting rod attached to the gudgeon pin is called its small end, and the other end, where it is connected to the crankshaft, the big end. The big end has a detachable half to allow assembly around the crankshaft. It is kept together to the connecting rod by removable bolts. The cylinder head has an intake manifold and an exhaust manifold attached to
13205-505: The high temperature and pressure created by the engine in its compression process. The compression level that occurs is usually twice or more than a gasoline engine. Diesel engines take in air only, and shortly before peak compression, spray a small quantity of diesel fuel into the cylinder via a fuel injector that allows the fuel to instantly ignite. HCCI type engines take in both air and fuel, but continue to rely on an unaided auto-combustion process, due to higher pressures and temperature. This
13344-416: The higher pressure of the charge in the crankcase makes it enter the cylinder through the transfer port, blowing the exhaust gases. Lubrication is accomplished by adding two-stroke oil to the fuel in small ratios. Petroil refers to the mix of gasoline with the aforesaid oil. This kind of 2-stroke engine has a lower efficiency than comparable 4-strokes engines and releases more polluting exhaust gases for
13483-451: The highest thermal efficiencies among internal combustion engines of any kind. Some diesel–electric locomotive engines operate on the 2-stroke cycle. The most powerful of them have a brake power of around 4.5 MW or 6,000 HP . The EMD SD90MAC class of locomotives are an example of such. The comparable class GE AC6000CW , whose prime mover has almost the same brake power, uses a 4-stroke engine. An example of this type of engine
13622-593: The homogeneous charge mode. The stratified charge mode creates a small zone of fuel/air mixture around the spark plug, which is surrounded by air in the rest of the cylinder. This results in less fuel being injected into the cylinder, leading to very high overall air-fuel ratios of λ > 8 {\displaystyle \lambda >8} , with mean air-fuel ratios of λ = 3...5 {\displaystyle \lambda =3...5} at medium load, and λ = 1 {\displaystyle \lambda =1} at full load. Ideally,
13761-572: The injector components as diesel, which sometimes becomes a limiting factor in the injection pressures used by GDI engines. The injection pressure of a GDI engine is typically limited to approximately 20 MPa (2.9 ksi), to prevent excessive wear on the injectors. While this technology is credited with boosting fuel efficiency and reducing CO 2 emissions, GDI engines produce more black carbon aerosols than traditional port fuel injection engines. A strong absorber of solar radiation, black carbon possesses significant climate-warming properties. In
13900-420: The insight that the relations among quantities of reactants and products typically form a ratio of positive integers. This means that if the amounts of the separate reactants are known, then the amount of the product can be calculated. Conversely, if one reactant has a known quantity and the quantity of the products can be empirically determined, then the amount of the other reactants can also be calculated. This
14039-443: The intake and exhaust ports open during the exhaust stroke, in order to improve the flushing of exhaust gases from the cylinder. This results in some of the fuel/air mixture entering the cylinder and then exiting the cylinder, unburned, through the exhaust port. With direct injection, only air (and usually some oil) comes from the crankcase, and fuel is not injected until the piston rises and all ports are closed. Crankcase lubrication
14178-419: The intake manifold is an air sleeve that feeds the intake ports. The intake ports are placed at a horizontal angle to the cylinder wall (I.e: they are in plane of the piston crown) to give a swirl to the incoming charge to improve combustion. The largest reciprocating IC are low speed CI engines of this type; they are used for marine propulsion (see marine diesel engine ) or electric power generation and achieve
14317-429: The inventor of the diesel engine, Rudolf Diesel , was using peanut oil to run his engines. Renewable fuels are commonly blended with fossil fuels. Hydrogen , which is rarely used, can be obtained from either fossil fuels or renewable energy. Various scientists and engineers contributed to the development of internal combustion engines. In 1791, John Barber developed the gas turbine . In 1794 Thomas Mead patented
14456-405: The limiting reagent and the mass of HCl produced by the reaction, we change the above amounts by a factor of 90/324.41 and obtain the following amounts: The limiting reactant (or reagent) is FeCl 3 , since all 90.00 g of it is used up while only 28.37 g H 2 S are consumed. Thus, 52.0 − 28.4 = 23.6 g H 2 S left in excess. The mass of HCl produced is 60.7 g. By looking at
14595-560: The misleading title of Forced Induction Engine whereas it was only the admission of the fuel that was forced. He revealed details of his prototype engine early in 1912, and the design was further developed by the large scale engine builder F. E. Baker Ltd during 1912 and the results displayed on their stand at the Olympia Motor Cycle show in November 1912. The engine was a high compression four-stroke motorcycle engine, with
14734-408: The mole ratio. This is found by looking at the coefficients in the balanced equation: Cu and Ag are in a 1:2 ratio. Now that the moles of Ag produced is known to be 0.5036 mol, we convert this amount to grams of Ag produced to come to the final answer: This set of calculations can be further condensed into a single step: For propane ( C 3 H 8 ) reacting with oxygen gas ( O 2 ),
14873-435: The most time to mix with the air, so that a homogeneous air/fuel mixture is formed. This mode allows using a conventional three-way catalyst for exhaust gas treatment. Compared with manifold injection, the fuel efficiency is only very slightly increased, but the specific power output is better, which is why the homogeneous mode is useful for so-called engine downsizing . Most direct-injected passenger car petrol engines use
15012-407: The oil into the combustion chamber. A ventilation system drives the small amount of gas that escapes past the pistons during normal operation (the blow-by gases) out of the crankcase so that it does not accumulate contaminating the oil and creating corrosion. In two-stroke gasoline engines the crankcase is part of the air–fuel path and due to the continuous flow of it, two-stroke engines do not need
15151-402: The outer side of the cylinder, passages that contain cooling fluid are cast into the engine block whereas, in some heavy duty engines, the passages are the types of removable cylinder sleeves which can be replaceable. Water-cooled engines contain passages in the engine block where cooling fluid circulates (the water jacket ). Some small engines are air-cooled, and instead of having a water jacket
15290-460: The part of the cylinder below the exhaust port is used as a pump. The operation of the Day cycle engine begins when the crankshaft is turned so that the piston moves from BDC upward (toward the head) creating a vacuum in the crankcase/cylinder area. The carburetor then feeds the fuel mixture into the crankcase through a reed valve or a rotary disk valve (driven by the engine). There are cast in ducts from
15429-427: The path. The exhaust system of an ICE may also include a catalytic converter and muffler . The final section in the path of the exhaust gases is the tailpipe . The top dead center (TDC) of a piston is the position where it is nearest to the valves; bottom dead center (BDC) is the opposite position where it is furthest from them. A stroke is the movement of a piston from TDC to BDC or vice versa, together with
15568-412: The piston in the cylinder and the bearings due to the fuel mix having oil added to it. As the piston moves downward it first uncovers the exhaust, but on the first stroke there is no burnt fuel to exhaust. As the piston moves downward further, it uncovers the intake port which has a duct that runs to the crankcase. Since the fuel mix in the crankcase is under pressure, the mix moves through the duct and into
15707-409: The power wasting in overcoming friction , or to make the mechanism work at all. Also, the lubricant used can reduce excess heat and provide additional cooling to components. At the very least, an engine requires lubrication in the following parts: In 2-stroke crankcase scavenged engines, the interior of the crankcase, and therefore the crankshaft, connecting rod and bottom of the pistons are sprayed by
15846-583: The reactants and products. In practice, because of the existence of isotopes , molar masses are used instead in calculating the mass ratio. The term stoichiometry was first used by Jeremias Benjamin Richter in 1792 when the first volume of Richter's Anfangsgründe der Stöchyometrie oder Meßkunst chymischer Elemente ( Fundamentals of Stoichiometry, or the Art of Measuring the Chemical Elements )
15985-405: The reaction the amount of water that will be produced by the combustion of 0.27 moles of CH 3 OH is obtained using the molar ratio between CH 3 OH and H 2 O of 2 to 4. The term stoichiometry is also often used for the molar proportions of elements in stoichiometric compounds (composition stoichiometry). For example, the stoichiometry of hydrogen and oxygen in H 2 O
16124-452: The same invention in France, Belgium and Piedmont between 1857 and 1859. In 1860, Belgian engineer Jean Joseph Etienne Lenoir produced a gas-fired internal combustion engine. In 1864, Nicolaus Otto patented the first atmospheric gas engine. In 1872, American George Brayton invented the first commercial liquid-fueled internal combustion engine. In 1876, Nicolaus Otto began working with Gottlieb Daimler and Wilhelm Maybach , patented
16263-414: The shift from traditional port fuel injection (PFI) engines to the use of GDI technology will nearly double the premature mortality rate associated with vehicle emissions, from 855 deaths annually in the United States to 1,599. They estimate the annual social cost of these premature deaths at $ 5.95 billion. One of the early inventors trying gasoline direct injection was Dr Archibald Low who gave his engine
16402-565: The similar-layout Junkers Jumo 210 G, Jumo 211 and Jumo 213 inverted V12 engines. Allied aircraft engines that used GDI fuel injection systems were the Soviet Union Shvetsov ASh-82 FNV radial engine and the American 54.9 litre displacement Wright R-3350 Duplex Cyclone 18-cylinder radial engine. The German company Bosch had been developing a mechanical GDI system for cars since the 1930s and in 1952 it
16541-516: The spark plug, it is sprayed against a swirl cavity on top of the piston (as seen in the picture of the Ford EcoBoost engine on the right), which guides the fuel towards the spark plug. Special swirl or tumble air intake ports aid this process. The injection timing depends upon the piston speed, therefore, at higher piston speeds, the injection timing, and ignition timing need to be advanced very precisely. At low engine temperatures, some parts of
16680-400: The stem of the valve or may act upon a rocker arm , again, either directly or through a pushrod . The crankcase is sealed at the bottom with a sump that collects the falling oil during normal operation to be cycled again. The cavity created between the cylinder block and the sump houses a crankshaft that converts the reciprocating motion of the pistons to rotational motion. The crankshaft
16819-404: The stoichiometric number of O 2 is −2, for CO 2 it would be +1 and for H 2 O it is +2. In more technically precise terms, the stoichiometric number in a chemical reaction system of the i -th component is defined as or where N i {\displaystyle N_{i}} is the number of molecules of i , and ξ {\displaystyle \xi }
16958-446: The stoichiometry of the reaction, one might have guessed FeCl 3 being the limiting reactant; three times more FeCl 3 is used compared to H 2 S (324 g vs 102 g). Often, more than one reaction is possible given the same starting materials. The reactions may differ in their stoichiometry. For example, the methylation of benzene ( C 6 H 6 ), through a Friedel–Crafts reaction using AlCl 3 as
17097-475: The stratified charge concept or never used it in the first place, such as the 2000 Renault 2.0 IDE petrol engine ( F5R ), which never came with a stratified charge mode, or the 2009 BMW N55 and 2017 Mercedes-Benz M256 engines dropping the stratified charge mode used by their predecessors. The Volkswagen Group had used fuel stratified injection in naturally aspirated engines labelled FSI , however, these engines have received an engine control unit update to disable
17236-431: The stratified charge mode. Turbocharged Volkswagen engines labelled TFSI and TSI have always used the homogeneous mode. Like the latter VW engines, newer direct injected petrol engines (from 2017 onwards) usually also use the more conventional homogeneous charge mode, in conjunction with variable valve timing, to obtain good efficiency. Stratified charge concepts have mostly been abandoned. Common techniques for creating
17375-433: The throttle valve remains open as much as possible to avoid throttling losses. The torque is then set solely by means of quality torque controlling, meaning that only the amount of injected fuel, but not the amount of intake air is manipulated in order to set the engine's torque. Stratified charge mode also keeps the flame away from the cylinder walls, reducing the thermal losses. Since mixtures too lean cannot be ignited with
17514-615: The ultra lean combustion. Gasoline direct injection does not have the valve cleaning action that is provided when fuel is introduced to the engine upstream of the cylinder. In non-GDI engines, the gasoline traveling through the intake port acts as a cleaning agent for contamination, such as atomized oil. The lack of a cleaning action can cause increased carbon deposits in GDI engines. Third party manufacturers sell oil catch tanks which are supposed to prevent or reduce those carbon deposits. The ability to produce peak power at high engine speeds (RPM)
17653-514: The use of ultra-lean mixtures that would be impossible with carburetors or conventional manifold fuel injection. The stratified charge mode (also called "ultra lean-burn" mode) is used at low loads, in order to reduce fuel consumption and exhaust emissions. However, the stratified charge mode is disabled for higher loads, with the engine switching to the homogeneous mode with a stoichiometric air-fuel ratio of λ = 1 {\displaystyle \lambda =1} for moderate loads and
17792-421: The very basic laws that help to understand it better, i.e., law of conservation of mass , the law of definite proportions (i.e., the law of constant composition ), the law of multiple proportions and the law of reciprocal proportions . In general, chemical reactions combine in definite ratios of chemicals. Since chemical reactions can neither create nor destroy matter, nor transmute one element into another,
17931-423: The volume of the combustion chamber is described by a ratio. Early engines had compression ratios of 6 to 1. As compression ratios were increased, the efficiency of the engine increased as well. With early induction and ignition systems the compression ratios had to be kept low. With advances in fuel technology and combustion management, high-performance engines can run reliably at 12:1 ratio. With low octane fuel,
18070-549: The world, the oil was actually drained and heated overnight and returned to the engine for cold starts. In the early 1950s, the gasoline Gasifier unit was developed, where, on cold weather starts, raw gasoline was diverted to the unit where part of the fuel was burned causing the other part to become a hot vapor sent directly to the intake valve manifold. This unit was quite popular until electric engine block heaters became standard on gasoline engines sold in cold climates. For ignition, diesel, PPC and HCCI engines rely solely on
18209-424: Was automatically added to the fuel mixture, obviating the need for owners to mix their own two-stroke fuel blend. The 1955 Mercedes-Benz 300SL also used an early Bosch mechanical GDI system, therefore becoming the first four-stroke engine to use GDI. Up until the mid-2010s, most fuel-injected cars used manifold injection, making it quite unusual that these early cars used an arguably more advanced GDI system. During
18348-456: Was created by Étienne Lenoir around 1860, and the first modern internal combustion engine, known as the Otto engine , was created in 1876 by Nicolaus Otto . The term internal combustion engine usually refers to an engine in which combustion is intermittent , such as the more familiar two-stroke and four-stroke piston engines, along with variants, such as the six-stroke piston engine and
18487-487: Was introduced in 1925 for a low-compression truck engine. Several German cars used a Bosch mechanical GDI system in the 1950s, however usage of the technology remained rare until an electronic GDI system was introduced in 1996 by Mitsubishi for mass-produced cars. GDI has seen rapid adoption by the automotive industry in recent years, increasing in the United States from 2.3% of production for model year 2008 vehicles to approximately 50% for model year 2016. The 'charge mode' of
18626-480: Was introduced on the two-stroke engines in the Goliath GP700 and Gutbrod Superior. This system was basically a high-pressure diesel direct-injection pump with an intake throttle valve set up. These engines gave good performance and had up to 30% less fuel consumption over the carburetor version, primarily under low engine loads. An added benefit of the system was having a separate tank for the engine oil which
18765-512: Was introduced. It was subsequently brought to Europe in 1997 in the Carisma . It also developed the first six-cylinder GDI engine, the Mitsubishi 6G74 V6 engine, in 1997. Mitsubishi applied this technology widely, producing over one million GDI engines in four families by 2001. Although in use for many years, on 11 September 2001 MMC claimed a trademark for the acronym 'GDI'. Several other Japanese and European manufacturers introduced GDI engines in
18904-436: Was made compulsory for the 2014 season , with regulation 5.10.2 stating: "There may only be one direct injector per cylinder and no injectors are permitted upstream of the intake valves or downstream of the exhaust valves." There are additional benefits of GDI for two-stroke engines , relating to scavenging of the exhaust gases and lubrication of the crankcase. The scavenging aspect is that most two-stroke engines have both
19043-405: Was one of the first motor vehicles to achieve over 100 mpg as a result. Internal combustion engines require ignition of the mixture, either by spark ignition (SI) or compression ignition (CI) . Before the invention of reliable electrical methods, hot tube and flame methods were used. Experimental engines with laser ignition have been built. The spark-ignition engine was a refinement of
19182-471: Was published. The term is derived from the Ancient Greek words στοιχεῖον stoikheîon "element" and μέτρον métron "measure". L. Darmstaedter and Ralph E. Oesper has written a useful account on this. A stoichiometric amount or stoichiometric ratio of a reagent is the optimum amount or ratio where, assuming that the reaction proceeds to completion: Stoichiometry rests upon
19321-399: Was regulated at the fuel pump, and the amount of fuel admitted was controlled by mechanical means at the rotary admission valve. It seems this radical design wasn't taken further by F. E. Baker. Although direct injection has only become commonly used in gasoline engines since 2000, diesel engines have used fuel directly injected into the combustion chamber (or a pre-combustion chamber) since
#971028