The Kanembu are an ethnic group of Chad , generally considered the modern descendants of the Kanem–Bornu Empire . The Kanembu are estimated to number 1,815,270 people, located primarily in Chad's Lac Prefecture but also in Chari-Baguirmi and Kanem prefectures. They speak the Kanembu language , which the Kanuri language is closely related to, with many speaking Arabic and sometimes nowadays French as a second language.
48-422: (Redirected from Kanembou ) Kanembu may refer to: Kanembu people Kanembu language Tumari Kanuri , another language known as Kanembu Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Kanembu . If an internal link led you here, you may wish to change the link to point directly to
96-558: A "rapid diversification process of K-M526 likely occurred in Southeast Asia , with subsequent westward expansions of the ancestors of haplogroups R and Q ". However the oldest example of R* has been found in an Ancient North Eurasian sample from Siberia ( Mal'ta boy , 24,000 years ago), and its precursor P1 has been found in another Ancient North Eurasian sample from northern Siberia ( Yana RHS ) dating from c. 31,600 years ago. Three genetic studies in 2015 gave support to
144-775: A Y-STR cluster marked by DYS390=19, DYS389=14-16 (or 14–15 in the case of the Altaian individual), and DYS385=13-13. Dulik et al. (2012) found R-M73 in 35.3% (6/17) of a sample of the Kumandin of the Altai Republic in Russia. Three of these six Kumandins share an identical 15-loci Y-STR haplotype, and another two differ only at the DYS458 locus, having DYS458=18 instead of DYS458=17. This pair of Kumandin R-M73 haplotypes resembles
192-466: A high frequency of R-M73 among their sample of Bashkirs from southeast Bashkortostan (77/329 = 23.4% R1b-M73), in agreement with the earlier study of Bashkirs. Besides the high frequency of R-M73 in southeastern Bashkirs, Myres et al. also reported finding R-M73 in the following samples: 10.3% (14/136) of Balkars from the northwest Caucasus, 9.4% (8/85) of the HGDP samples from northern Pakistan (these are
240-409: A possibility that some, or even most of these cases, may be R-L278* (R1b*), R-L389* (R1b1a*), R-P297* (R1b1a1*), R-V1636 (R1b1a2), R-PH155 (R1b2), R1b* (R-M343*), R1a* (R-M420*), an otherwise undocumented branch of R1 (R-M173), and/or back-mutations of a marker, from a positive to a negative ancestral state, and hence constitute undocumented subclades of R1b. A compilation of previous studies regarding
288-747: A sample of Uyghurs from Xinjiang Uyghur Autonomous Region, 3.4% (1/29) of a sample of Kazakhs from Kazakhstan, 2.3% (3/129) of a sample of Selkups, 2.3% (1/44) of a sample of Turkmens from Turkmenistan, and 0.7% (1/136) of a sample of Iranians from Iran. Four of these individuals (one of the Teleuts, one of the Uyghurs, the Kazakh, and the Iranian) appear to belong to the aforementioned cluster marked by DYS390=19 (the Kumandin-Mongol R-M73 cluster);
336-611: A study of 322 people from the Dniester – Carpathian Mountains region, who were P25 positive, but M269 negative. Cases from older studies are mainly from Africa, the Middle East or Mediterranean, and are discussed below as probable cases of R1b1b (R-V88). R-L754 contains the vast majority of R1b. The only known example of R-L754* (xL389, V88) is also the earliest known individual to carry R1b: " Villabruna 1 ", who lived circa 14,000 years BP (north east Italy). Villabruna 1 belonged to
384-647: A thousand years the Kanem–Bornu Empire was a dominant power over central North Africa. Its sphere of influence covered Eastern Nigeria and Niger, the Northern half of Chad, Cameroon, and Libya. Its inhabitants traded with Egypt and sponsored Islamic schools as far as Alexandria. Its camel caravans reached the Muslim holy cities of Mecca and Medina. Until the beginning of the 1900s and the French conquest of this area,
432-804: Is a human Y-chromosome haplogroup . It is the most frequently occurring paternal lineage in Western Europe , as well as some parts of Russia (e.g. the Bashkirs ) and across the Sahel in Central Africa , namely: Cameroon , Chad , Guinea , Mauritania , Mali , Niger , Nigeria and Senegal (concentrated in parts of Chad with concentration in the Hausa Tribe and among the Chadic-speaking ethnic groups of Cameroon). The clade
480-570: Is also notable for its high level of R-M73 (R1b1a1a1), at 23.4%. ) Five individuals out of 110 tested in the Ararat Valley of Armenia belonged to R-M269(xL23) and 36 to R-L23*, with none belonging to known subclades of L23. In 2009, DNA extracted from the femur bones of 6 skeletons in an early-medieval burial place in Ergolding (Bavaria, Germany) dated to around AD 670 yielded the following results: 4 were found to be haplogroup R1b with
528-470: Is also present at lower frequencies throughout Eastern Europe , Western Asia , Central Asia as well as parts of North Africa , South Asia and Central Asia . R1b has two primary branches: R1b1-L754 and R1b2-PH155. R1b1-L754 has two major subclades: R1b1a1b-M269, which predominates in Western Europe, and R1b1b-V88, which is today common in parts of Central Africa. The other branch, R1b2-PH155,
SECTION 10
#1732772225515576-734: Is carried by an estimated 110 million males in Europe. R-M269 has received significant scientific and popular interest due to its possible connection to the Indo-European expansion in Europe. Specifically the R-Z2103 subclade has been found to be prevalent in ancient DNA associated with the Yamna culture . All seven individuals in one were determined to belong to the R1b-M269 subclade. Older research, published before researchers could study
624-628: Is often impossible to tell whether or not the ancients carried the mutations that define subclades. Some examples described in older articles, for example two found in Turkey, are now thought to be mostly in the more recently discovered sub-clade R1b1b (R-V88). Most examples of R1b therefore fall into subclades R1b1b (R-V88) or R1b1a (R-P297). Cruciani et al. in the large 2010 study found 3 cases amongst 1173 Italians, 1 out of 328 West Asians and 1 out of 156 East Asians. Varzari found 3 cases in Ukraine , in
672-687: Is probably ascribable to the habit that was popular for a while of labeling R-M269 as "R1b" or "R(xR1a)," with any members of R-M343 (xM269) being placed in a polyphyletic, catch-all "R*" or "P" category. Myres et al. (2011), Di Cristofaro et al. (2013), and Lippold et al. (2014) all agree that the Y-DNA of 32% (8/25) of the HGDP sample of Pakistani Hazara should belong to haplogroup R-M478/M73. Likewise, most Bashkir males have been found to belong to U-152 (R1b1a1a2a1a2b) and some, mostly from southeastern Bashkortostan, belonged to Haplogroup Q-M25 (Q1a1b) rather than R1b; contra this, Myres et al. (2011) found
720-624: Is rare, it does not preclude membership of rare and/or subsequently-discovered, relatively basal subclades of R1b, such as R-L278* (R1b*), R-L389* (R1b1a*), R-P297* (R1b1a1*), R-V1636 (R1b1a2) or R-PH155 (R1b2). The population believed to have the highest proportion of R-M343 (xM73, M269, V88) are the Kurds of southeastern Kazakhstan with 13%. However, more recently, a large study of Y-chromosome variation in Iran , revealed R-M343 (xV88, M73, M269) as high as 4.3% among Iranian sub-populations. It remains
768-577: Is removed completely. For example, before 2005, R1b was synonymous with R-P25, which was later reclassified as R1b1; in 2016, R-P25 was removed completely as a defining SNP, due to a significant rate of back-mutation. (Below is the basic outline of R1b according to the ISOGG Tree as it stood on January 30, 2017. ) R-M343* (R1b*). No cases have been reported. R-PH155 (R1b2) has been found in individuals from Albania, Bahrain , Bhutan , China, Germany, India, Italy, Singapore, Tajikistan , Turkey ,
816-638: Is so rare and widely dispersed that it is difficult to draw any conclusions about its origins. It has been found in Bahrain , India , Nepal , Bhutan , Ladakh , Tajikistan , Turkey , and Western China . According to ancient DNA studies, most R1a and R1b lineages would have expanded from the Pontic Steppe along with the Indo-European languages . The age of R1 was estimated by Tatiana Karafet et al. (2008) at between 12,500 and 25,700 BP , and most probably occurred about 18,500 years ago. Since
864-502: The Bashkirs of the Perm region (84.0%). This marker is present in China and India at frequencies of less than one percent. In North Africa and adjoining islands, while R-V88 (R1b1b) is more strongly represented, R-M269 appears to have been present since antiquity. R-M269 has been found, for instance, at a rate of ~44% among remains dating from the 11th to 13th centuries at Punta Azul , in
912-726: The Canary Islands . These remains have been linked to the Bimbache (or Bimape), a subgroup of the Guanche. In living males, it peaks in parts of North Africa, especially Algeria , at a rate of 10%. In Sub-Saharan Africa, R-M269 appears to peak in Namibia , at a rate of 8% among Herero males. In western Asia, R-M269 has been reported in 40% of Armenian males and over 35% in Turkmen males. (The table below lists in more detail
960-541: The Dominican Republic , Canada , Germany , Valais , Israel , and Armenia . Subclades of R-M73 (R1b1a1a) are rare overall, with most cases being observed in the Caucasus , Siberia , Central Asia , and Mongolia . Subclades of R-M269 (R1b1a1b; previously R1b1a1a2) are now extremely common throughout Western Europe , but are also found at lower levels in many other parts of Western Eurasia and
1008-464: The Epigravettian culture. R-L389, also known as R1b1a (L388/PF6468, L389/PF6531), contains the very common subclade R-P297 and the rare subclade R-V1636. It is unknown whether all previously reported R-L389* (xP297) belong to R-V1636 or not. The SNP marker P297 was recognised in 2008 as ancestral to the significant subclades M73 and M269, combining them into one cluster. This had been given
SECTION 20
#17327722255151056-531: The Hazara of Afghanistan and the Bashkirs of the Ural Mountains, this has apparently been overturned. For example, supporting material from a 2010 study by Behar et al. suggested that Sengupta et al. (2006) might have misidentified Hazara individuals, who instead belonged to "PQR2" as opposed to "R(xR1a)." However, the assignment of these Hazaras' Y-DNA to the "PQR2" category by Behar et al. (2010)
1104-890: The Kurgan hypothesis of Marija Gimbutas regarding the Proto-Indo-European homeland . According to those studies, haplogroups R1b-M269 and R1a, now the most common in Europe (R1a is also common in South Asia) would have expanded from the West Eurasian Steppe, along with the Indo-European languages ; they also detected an autosomal component present in modern Europeans which was not present in Neolithic Europeans , which would have been introduced with paternal lineages R1b and R1a, as well as Indo-European languages. Analysis of ancient Y-DNA from
1152-629: The Sayfawa dynasty , who reigned from 1221 to 1259. He was the first of the Kanembu to convert to Islam, he declared jihad against the surrounding tribes and initiated an extended period of conquest. After consolidating their territory around Lake Chad they struck north at the Fezzan and west at the Hausa lands. By the end of the fourteenth century, however, internal division had severely weakened
1200-914: The DNA of ancient remains, proposed that R-M269 likely originated in Western Asia and was present in Europe by the Neolithic period. But results based on actual ancient DNA noticed that there was a dearth of R-M269 in Europe before the Bronze Age, and the distribution of subclades within Europe is substantially due to the various migrations of the Bronze and Iron Age . Likewise, the oldest samples classified as belonging to R-M269, have been found in Eastern Europe and Pontic-Caspian steppe, not Western Asia. Western European populations are divided between
1248-700: The Kanem empire, forcing the Sayfawa dynasty to relocate to Borno on the western shore of Lake Chad . The intermarriage of the Kanem with the local people of this area created a new ethnic group, the Kanuri ; the Kanembu retain close family ties with the Kanuri to this day. Today the Kanembu people are one group of the descendants of this once highly successful empire, and their sultans and traditional rulers are still more influential than government authorities. Along with
1296-546: The Kanem-Bornu Empire was the major power in the heart of central North Africa. At the end of the twelfth century, the Kanembu moved into what is today Kanem Prefecture . They gradually became sedentary and established a capital at Njimi ; at the same time, they continued military expansion establishing the Kanem Empire . The peak of this early kingdom came with the rule of Mai (King) Dunama Dabbalemi of
1344-477: The Mediterranean. No confirmed cases of R1b* (R-M343*) – that is R1b (xR1b1, R1b2), also known as R-M343 (xL754, PH155) – have been reported in peer-reviewed literature. In early research, because R-M269, R-M73 and R-V88 are by far the most common forms of R1b, examples of R1b (xM73, xM269) were sometimes assumed to signify basal examples of "R1b*". However, while the paragroup R-M343 (xM73, M269, V88)
1392-540: The Qypshaq (12/29 = 41.4%), Ysty (6/57 = 10.5%), Qongyrat (8/95 = 8.4%), Oshaqty (2/29 = 6.9%), Kerey (1/28 = 3.6%), and Jetyru (3/86 = 3.5%) tribes . A Chinese paper published in 2018 found haplogroup R1b-M478 Y-DNA in 9.2% (7/76) of a sample of Dolan Uyghurs from Horiqol township, Awat County , Xinjiang. R-M269, or R1b1a1b (as of 2018) amongst other names, is now the most common Y-DNA lineage in European males. It
1440-1314: The R-P312/S116 and R-U106/S21 subclades of R-M412 (R-L51). Distribution of R-M269 in Europe increases in frequency from east to west. It peaks at the national level in Wales at a rate of 92%, at 82% in Ireland , 70% in Scotland , 68% in Spain , 60% in France (76% in Normandy ), about 60% in Portugal , 50% in Germany , 50% in the Netherlands , 47% in Italy , 45% in Eastern England and 42% in Iceland . R-M269 reaches levels as high as 95% in parts of Ireland. It has also been found at lower frequencies throughout central Eurasia , but with relatively high frequency among
1488-694: The Teleut and the Uyghur also share the modal values at the DYS385 and the DYS389 loci. The Iranian differs from the modal for this cluster by having 13-16 (or 13–29) at DYS389 instead of 14-16 (or 14–30). The Kazakh differs from the modal by having 13–14 at DYS385 instead of 13-13. The other fourteen Teleuts and the three Selkups appear to belong to the Teleut-Shor-Khakassian R-M73 cluster from
Kanembu - Misplaced Pages Continue
1536-629: The UK, and the USA. R-V88 (R1b1b): the most common forms of R1b found among males native to Sub-Saharan Africa , also found rarely elsewhere. R-V1636 (R1b1a2) is rare, but has been found in China , Bulgaria , Belarus , Southern Finland , Turkey , Iraq , Lebanon , Kuwait , Qatar , Saudi Arabia , Russia (including a Tomsk Tatar ), Italy (including one from the Province of Salerno ), Puerto Rico ,
1584-407: The aforementioned Pakistani Hazaras), 5.8% (4/69) of Karachays from the northwest Caucasus, 2.6% (1/39) of Tatars from Bashkortostan, 1.9% (1/54) of Bashkirs from southwest Bashkortostan, 1.5% (1/67) of Megrels from the south Caucasus, 1.4% (1/70) of Bashkirs from north Bashkortostan, 1.3% (1/80) of Tatars from Kazan, 1.1% (1/89) of a sample from Cappadocia, Turkey, 0.7% (1/141) of Kabardians from
1632-426: The branching of haplogroups, or the phylogenetic tree. An alternative way of naming the same haplogroups and subclades refers to their defining SNP mutations: for example, R-M343 is equivalent to R1b. Phylogenetic names change with new discoveries and SNP-based names are consequently reclassified within the phylogenetic tree. In some cases, an SNP is found to be unreliable as a defining mutation and an SNP-based name
1680-448: The data set of Malyarchuk et al. (2011); this cluster has the modal values of DYS390=22 (but 21 in the case of two Teleuts and one Khakassian), DYS385=13-16, and DYS389=13-17 (or 13–30, but 14–31 in the case of one Selkup). A Kazakhstani paper published in 2017 found haplogroup R1b-M478 Y-DNA in 3.17% (41/1294) of a sample of Kazakhs from Kazakhstan, with this haplogroup being observed with greater than average frequency among members of
1728-595: The distribution of R1b can be found in Cruciani et al. (2010). It is summarised in the table following. (Cruciani did not include some studies suggesting even higher frequencies of R1b1a1b [R-M269] in some parts of Western Europe.) R-L278 among modern men falls into the R-L754 and R-PH155 subclades, though it is possible some very rare R-L278* may exist as not all examples have been tested for both branches. Examples may also exist in ancient DNA, though due to poor quality it
1776-482: The earliest known example has been dated at circa 14,000 BP, and belongs to R1b1 (R-L754), R1b must have arisen relatively soon after the emergence of R1. Early human remains found to carry R1b include: R1b is a subclade within the "macro- haplogroup " K (M9), the most common group of human male lines outside of Africa. K is believed to have originated in Asia (as is the case with an even earlier ancestral haplogroup, F (F-M89). Karafet T. et al. (2014) suggested that
1824-399: The early Bronze Age. The broader haplogroup R (M207) is a primary subclade of haplogroup P1 (M45) itself a primary branch of P (P295), which is also known as haplogroup K2b2. R-M207 is therefore a secondary branch of K2b (P331), and a direct descendant of K2 (M526). Names such as R1b, R1b1 and so on are phylogenetic (i.e. "family tree") names which make clear their place within
1872-551: The frequencies of M269 in regions in Asia, Europe, and Africa.) Apart from basal R-M269* which has not diverged, there are (as of 2017) two primary branches of R-M269: R-L23 (Z2105/Z2103; a.k.a. R1b1a1b1) has been reported among the peoples of the Idel-Ural (by Trofimova et al. 2015): 21 out of 58 (36.2%) of Burzyansky District Bashkirs, 11 out of 52 (21.2%) of Udmurts , 4 out of 50 (8%) of Komi , 4 out of 59 (6.8%) of Mordvins , 2 out of 53 (3.8%) of Besermyan and 1 out of 43 (2.3%) of Chuvash were R1b-L23. Subclades within
1920-420: The haplotypes of two Kalmyks, two Tuvinians, and one Altaian whose Y-DNA has been analyzed by Malyarchuk et al. (2011). The remaining R-M73 Kumandin has a Y-STR haplotype that is starkly different from the haplotypes of the other R-M73 Kumandins, resembling instead the haplotypes of five Shors, five Teleuts, and two Khakassians. While early research into R-M73 claimed that it was significantly represented among
1968-403: The individual from southwest Kyrgyzstan, the individual from Gilan, and one of the Uzbeks from Jawzjan belong to the same Y-STR haplotype cluster as five of six Kumandin members of R-M73 studied by Dulik et al. (2012). This cluster's most distinctive Y-STR value is DYS390=19. Karafet et al. (2018) found R-M73 in 37.5% (15/40) of a sample of Teleuts from Bekovo, Kemerovo oblast, 4.5% (3/66) of
Kanembu - Misplaced Pages Continue
2016-402: The intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Kanembu&oldid=1191151056 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Kanembu people The word Kanembu means "the people [ bu ] of Kanem ." For over
2064-458: The lake, but as the country is landlocked and has a poor road system, little agricultural trade has developed. As they live on the edge of the Sahara, famine is also a frequent threat to them with rain only coming during July, August and part of September. According to one study, just one ( R1b ) Y-DNA haplogroup brougt by Baggara Arabs makes up 50% of the Kanembu. R1b Haplogroup R1b ( R-M343 ), previously known as Hg1 and Eu18 ,
2112-633: The northwest Caucasus, 0.6% (3/522) of a pool of samples from Turkey, and 0.38% (1/263) of Russians from Central Russia. Besides the aforementioned Pakistani Hazaras, Di Cristofaro et al. (2013) found R-M478/M73 in 11.1% (2/18) of Mongols from central Mongolia, 5.0% (1/20) of Kyrgyz from southwest Kyrgyzstan, 4.3% (1/23) of Mongols from southeast Mongolia, 4.3% (4/94) of Uzbeks from Jawzjan, Afghanistan, 3.7% (1/27) of Iranians from Gilan , 2.5% (1/40) of Kyrgyz from central Kyrgyzstan, 2.1% (2/97) of Mongols from northwest Mongolia, and 1.4% (1/74) of Turkmens from Jawzjan, Afghanistan. The Mongols as well as
2160-502: The paragroup R-M269(xL23) – that is, R-M269* and/or R-PF7558 – appear to be found at their highest frequency in the central Balkans , especially Kosovo with 7.9%, North Macedonia 5.1% and Serbia 4.4%. Unlike most other areas with significant percentages of R-L23, Kosovo , Poland and the Bashkirs of south-east Bashkortostan are notable in having a high percentage of R-L23 (xM412) – at rates of 11.4% (Kosovo), 2.4% (Poland) and 2.4% south-east Bashkortostan. (This Bashkir population
2208-632: The phylogenetic name R1b1a1a (and, previously, R1b1a). A majority of Eurasian R1b falls within this subclade, representing a very large modern population. Although P297 itself has not yet been much tested for, the same population has been relatively well studied in terms of other markers. Therefore, the branching within this clade can be explained in relatively high detail below. Malyarchuk et al. (2011) found R-M73 in 13.2% (5/38) of Shors, 11.4% (5/44) of Teleuts, 3.3% (2/60) of Kalmyks, 3.1% (2/64) of Khakassians, 1.9% (2/108) of Tuvinians, and 1.1% (1/89) of Altaians. The Kalmyks, Tuvinians, and Altaian belong to
2256-492: The related language group Kanuri, they make up the majority population found in a band between the Northern shores of Lake Chad and the Sahara Desert. Their culture of housing and clothing hasn't changed much since the imperial period. The Kanembu are Chad's merchant tribe. 75 to 80% of all merchants in Chad are Kanembu, making them, one of Chad's wealthiest groups. They are a sedentary group who also engage in agriculture and raising livestock. Wheat, millet and corn are raised near
2304-400: The remains from early Neolithic Central and North European Linear Pottery culture settlements have not yet found males belonging to haplogroup R1b-M269. Olalde et al. (2017) trace the spread of haplogroup R1b-M269 in western Europe, particularly Britain, to the spread of the Beaker culture , with a sudden appearance of many R1b-M269 haplogroups in Western Europe ca. 5000–4500 years BP during
#514485