Misplaced Pages

IRS-1A

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an accepted version of this page

#468531

104-522: IRS-1A , Indian Remote Sensing satellite-1A, the first of the series of indigenous state-of-art remote sensing satellites, was successfully launched into a polar Sun-synchronous orbit on 17 March 1988 from the Soviet Cosmodrome at Baikonur . IRS-1A carries two sensors, LISS-1 and LISS-2, with resolutions of 72 m (236 ft) and 36 m (118 ft) respectively with a swath width of about 140 km (87 mi) during each pass over

208-410: A halocline . If a zone undergoes a strong, vertical chemistry gradient with depth, it contains a chemocline . Temperature and salinity control ocean water density. Colder and saltier water is denser, and this density plays a crucial role in regulating the global water circulation within the ocean. The halocline often coincides with the thermocline, and the combination produces a pronounced pycnocline ,

312-493: A mid-ocean ridge , which creates a long mountain range beneath the ocean. Together they form the global mid-oceanic ridge system that features the longest mountain range in the world. The longest continuous mountain range is 65,000 km (40,000 mi). This underwater mountain range is several times longer than the longest continental mountain range – the Andes . Oceanographers state that less than 20% of

416-694: A degree or two with electronic compasses. Compasses can measure not just azimuth (i. e. degrees to magnetic north), but also altitude (degrees above the horizon), since the magnetic field curves into the Earth at different angles at different latitudes. More exact orientations require gyroscopic-aided orientation , periodically realigned by different methods including navigation from stars or known benchmarks. The quality of remote sensing data consists of its spatial, spectral, radiometric and temporal resolutions. In order to create sensor-based maps, most remote sensing systems expect to extrapolate sensor data in relation to

520-595: A gentle breeze on a pond causes ripples to form. A stronger gust blowing over the ocean causes larger waves as the moving air pushes against the raised ridges of water. The waves reach their maximum height when the rate at which they are travelling nearly matches the speed of the wind. In open water, when the wind blows continuously as happens in the Southern Hemisphere in the Roaring Forties , long, organized masses of water called swell roll across

624-554: A great deal of data handling overhead. These data tend to be generally more useful for many applications. The regular spatial and temporal organization of Level 3 datasets makes it feasible to readily combine data from different sources. While these processing levels are particularly suitable for typical satellite data processing pipelines, other data level vocabularies have been defined and may be appropriate for more heterogeneous workflows. Satellite images provide very useful information to produce statistics on topics closely related to

728-825: A large extent of geography. At the same time, the data is often complex to interpret, and bulky to store. Modern systems tend to store the data digitally, often with lossless compression . The difficulty with this approach is that the data is fragile, the format may be archaic, and the data may be easy to falsify. One of the best systems for archiving data series is as computer-generated machine-readable ultrafiche , usually in typefonts such as OCR-B , or as digitized half-tone images. Ultrafiches survive well in standard libraries, with lifetimes of several centuries. They can be created, copied, filed and retrieved by automated systems. They are about as compact as archival magnetic media, and yet can be read by human beings with minimal, standardized equipment. Generally speaking, remote sensing works on

832-484: A legend of mapped classes that suits our purpose, taking again the example of wheat. The straightforward approach is counting the number of pixels classified as wheat and multiplying by the area of each pixel. Many authors have noticed that estimator is that it is generally biased because commission and omission errors in a confusion matrix do not compensate each other The main strength of classified satellite images or other indicators computed on satellite images

936-472: A reference point including distances between known points on the ground. This depends on the type of sensor used. For example, in conventional photographs, distances are accurate in the center of the image, with the distortion of measurements increasing the farther you get from the center. Another factor is that of the platen against which the film is pressed can cause severe errors when photographs are used to measure ground distances. The step in which this problem

1040-403: A result, the photic zone is the most biodiverse and the source of the food supply which sustains most of the ocean ecosystem . Ocean photosynthesis also produces half of the oxygen in the Earth's atmosphere. Light can only penetrate a few hundred more meters; the rest of the deeper ocean is cold and dark (these zones are called mesopelagic and aphotic zones). The continental shelf is where

1144-679: A sample with less accurate, but exhaustive, data for a covariable or proxy that is cheaper to collect. For agricultural statistics, field surveys are usually required, while photo-interpretation may better for land cover classes that can be reliably identified on aerial photographs or high resolution satellite images. Additional uncertainty can appear because of imperfect reference data (ground truth or similar). Some options are: ratio estimator , regression estimator , calibration estimators and small area estimators If we target other variables, such as crop yield or leaf area , we may need different indicators to be computed from images, such as

SECTION 10

#1732783544469

1248-496: A shallow area and this, coupled with a low pressure system, can raise the surface of the ocean dramatically above a typical high tide. The average depth of the oceans is about 4 km. More precisely the average depth is 3,688 meters (12,100 ft). Nearly half of the world's marine waters are over 3,000 meters (9,800 ft) deep. "Deep ocean," which is anything below 200 meters (660 ft), covers about 66% of Earth's surface. This figure does not include seas not connected to

1352-403: A wave-cut platform develops at the foot of the cliff and this has a protective effect, reducing further wave-erosion. Material worn from the margins of the land eventually ends up in the sea. Here it is subject to attrition as currents flowing parallel to the coast scour out channels and transport sand and pebbles away from their place of origin. Sediment carried to the sea by rivers settles on

1456-406: A zone undergoes dramatic changes in temperature with depth, it contains a thermocline , a distinct boundary between warmer surface water and colder deep water. In tropical regions, the thermocline is typically deeper compared to higher latitudes. Unlike polar waters , where solar energy input is limited, temperature stratification is less pronounced, and a distinct thermocline is often absent. This

1560-439: Is a bay , a small bay with a narrow inlet is a cove and a large bay may be referred to as a gulf . Coastlines are influenced by several factors including the strength of the waves arriving on the shore, the gradient of the land margin, the composition and hardness of the coastal rock, the inclination of the off-shore slope and the changes of the level of the land due to local uplift or submergence. Normally, waves roll towards

1664-743: Is about −2 °C (28 °F). In all parts of the ocean, deep ocean temperatures range between −2 °C (28 °F) and 5 °C (41 °F). Constant circulation of water in the ocean creates ocean currents . Those currents are caused by forces operating on the water, such as temperature and salinity differences, atmospheric circulation (wind), and the Coriolis effect . Tides create tidal currents, while wind and waves cause surface currents. The Gulf Stream , Kuroshio Current , Agulhas Current and Antarctic Circumpolar Current are all major ocean currents. Such currents transport massive amounts of water, gases, pollutants and heat to different parts of

1768-444: Is an important reference point for oceanography and geography, particularly as mean sea level . The ocean surface has globally little, but measurable topography , depending on the ocean's volumes. The ocean surface is a crucial interface for oceanic and atmospheric processes. Allowing interchange of particles, enriching the air and water, as well as grounds by some particles becoming sediments . This interchange has fertilized life in

1872-411: Is customarily divided into five principal oceans – listed below in descending order of area and volume: The ocean fills Earth's oceanic basins . Earth's oceanic basins cover different geologic provinces of Earth's oceanic crust as well as continental crust . As such it covers mainly Earth's structural basins , but also continental shelfs . In mid-ocean, magma is constantly being thrust through

1976-562: Is detected by the sensor) and "passive" remote sensing (when the reflection of sunlight is detected by the sensor). Remote sensing can be divided into two types of methods: Passive remote sensing and Active remote sensing. Passive sensors gather radiation that is emitted or reflected by the object or surrounding areas. Reflected sunlight is the most common source of radiation measured by passive sensors. Examples of passive remote sensors include film photography , infrared , charge-coupled devices , and radiometers . Active collection, on

2080-399: Is due to the fact that surface waters in polar latitudes are nearly as cold as deeper waters. Below the thermocline, water everywhere in the ocean is very cold, ranging from −1 °C to 3 °C. Because this deep and cold layer contains the bulk of ocean water, the average temperature of the world ocean is 3.9 °C. If a zone undergoes dramatic changes in salinity with depth, it contains

2184-463: Is further divided into zones based on depth and the amount of light present. The photic zone starts at the surface and is defined to be "the depth at which light intensity is only 1% of the surface value" (approximately 200 m in the open ocean). This is the zone where photosynthesis can occur. In this process plants and microscopic algae (free floating phytoplankton ) use light, water, carbon dioxide, and nutrients to produce organic matter. As

SECTION 20

#1732783544469

2288-604: Is impossible to directly measure temperatures in the upper atmosphere, it is possible to measure the spectral emissions from a known chemical species (such as carbon dioxide) in that region. The frequency of the emissions may then be related via thermodynamics to the temperature in that region. To facilitate the discussion of data processing in practice, several processing "levels" were first defined in 1986 by NASA as part of its Earth Observing System and steadily adopted since then, both internally at NASA (e. g., ) and elsewhere (e. g., ); these definitions are: A Level 1 data record

2392-456: Is irregular, unevenly dominating the Earth's surface . This leads to the distinction of the Earth's surface into a water and land hemisphere , as well as the division of the ocean into different oceans. Seawater covers about 361,000,000 km (139,000,000 sq mi) and the ocean's furthest pole of inaccessibility , known as " Point Nemo ", in a region known as spacecraft cemetery of

2496-454: Is produced and magma is forced up creating underwater mountains, some of which may form chains of volcanic islands near to deep trenches. Near some of the boundaries between the land and sea, the slightly denser oceanic plates slide beneath the continental plates and more subduction trenches are formed. As they grate together, the continental plates are deformed and buckle causing mountain building and seismic activity. Every ocean basin has

2600-418: Is providing cheap information on the whole target area or most of it. This information usually has a good correlation with the target variable (ground truth) that is usually expensive to observe in an unbiased and accurate way. Therefore it can be observed on a probabilistic sample selected on an area sampling frame . Traditional survey methodology provides different methods to combine accurate information on

2704-407: Is pushed across the surface of the ocean by the wind, but this represents a transfer of energy and not horizontal movement of water. As waves approach land and move into shallow water , they change their behavior. If approaching at an angle, waves may bend ( refraction ) or wrap around rocks and headlands ( diffraction ). When the wave reaches a point where its deepest oscillations of the water contact

2808-423: Is reflected back out of the water. Red light is most easily absorbed and thus does not reach great depths, usually to less than 50 meters (164 ft). Blue light, in comparison, can penetrate up to 200 meters (656 ft). Second, water molecules and very tiny particles in ocean water preferentially scatter blue light more than light of other colors. Blue light scattering by water and tiny particles happens even in

2912-450: Is relevant to highlight that probabilistic sampling is not critical for the selection of training pixels for image classification, but it is necessary for accuracy assessment of the classified images and area estimation. Additional care is recommended to ensure that training and validation datasets are not spatially correlated. We suppose now that we have classified images or a land cover map produced by visual photo-interpretation, with

3016-432: Is resolved is called georeferencing and involves computer-aided matching of points in the image (typically 30 or more points per image) which is extrapolated with the use of an established benchmark, "warping" the image to produce accurate spatial data. As of the early 1990s, most satellite images are sold fully georeferenced. In addition, images may need to be radiometrically and atmospherically corrected. Interpretation

3120-480: Is sometimes referred to as the World Ocean, global ocean or the great ocean . The concept of a continuous body of water with relatively unrestricted exchange between its components is critical in oceanography . The word ocean comes from the figure in classical antiquity , Oceanus ( / oʊ ˈ s iː ə n ə s / ; ‹See Tfd› Greek : Ὠκεανός Ōkeanós , pronounced [ɔːkeanós] ),

3224-489: Is that of examined areas or objects that reflect or emit radiation that stand out from surrounding areas. For a summary of major remote sensing satellite systems see the overview table. To coordinate a series of large-scale observations, most sensing systems depend on the following: platform location and the orientation of the sensor. High-end instruments now often use positional information from satellite navigation systems . The rotation and orientation are often provided within

IRS-1A - Misplaced Pages Continue

3328-402: Is that of increasingly smaller sensor pods such as those used by law enforcement and the military, in both manned and unmanned platforms. The advantage of this approach is that this requires minimal modification to a given airframe. Later imaging technologies would include infrared, conventional, Doppler and synthetic aperture radar. The development of artificial satellites in the latter half of

3432-640: Is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation . The term is applied especially to acquiring information about Earth and other planets . Remote sensing is used in numerous fields, including geophysics , geography , land surveying and most Earth science disciplines (e.g. exploration geophysics , hydrology , ecology , meteorology , oceanography , glaciology , geology ). It also has military, intelligence, commercial, economic, planning, and humanitarian applications, among others. In current usage,

3536-442: Is the body of salt water that covers approximately 70.8% of Earth . In English , the term ocean also refers to any of the large bodies of water into which the world ocean is conventionally divided. The following names describe five different areas of the ocean: Pacific , Atlantic , Indian , Antarctic/Southern , and Arctic . The ocean contains 97% of Earth's water and is the primary component of Earth's hydrosphere and

3640-440: Is the critical process of making sense of the data. The first application was that of aerial photographic collection which used the following process; spatial measurement through the use of a light table in both conventional single or stereographic coverage, added skills such as the use of photogrammetry, the use of photomosaics, repeat coverage, Making use of objects' known dimensions in order to detect modifications. Image Analysis

3744-560: Is the most fundamental (i. e., highest reversible level) data record that has significant scientific utility, and is the foundation upon which all subsequent data sets are produced. Level 2 is the first level that is directly usable for most scientific applications; its value is much greater than the lower levels. Level 2 data sets tend to be less voluminous than Level 1 data because they have been reduced temporally, spatially, or spectrally. Level 3 data sets are generally smaller than lower level data sets and thus can be dealt with without incurring

3848-424: Is the recently developed automated computer-aided application that is in increasing use. Object-Based Image Analysis (OBIA) is a sub-discipline of GIScience devoted to partitioning remote sensing (RS) imagery into meaningful image-objects, and assessing their characteristics through spatial, spectral and temporal scale. Old data from remote sensing is often valuable because it may provide the only long-term data for

3952-400: Is thereby essential to life on Earth. The ocean influences climate and weather patterns, the carbon cycle , and the water cycle by acting as a huge heat reservoir . Ocean scientists split the ocean into vertical and horizontal zones based on physical and biological conditions. The pelagic zone is the open ocean's water column from the surface to the ocean floor. The water column

4056-613: The Amazon Basin , glacial features in Arctic and Antarctic regions, and depth sounding of coastal and ocean depths. Military collection during the Cold War made use of stand-off collection of data about dangerous border areas. Remote sensing also replaces costly and slow data collection on the ground, ensuring in the process that areas or objects are not disturbed. Orbital platforms collect and transmit data from different parts of

4160-1023: The EGU or Digital Earth encourage the development of learning modules and learning portals . Examples include: FIS – Remote Sensing in School Lessons , Geospektiv , Ychange , or Spatial Discovery, to promote media and method qualifications as well as independent learning. Remote sensing data are processed and analyzed with computer software, known as a remote sensing application . A large number of proprietary and open source applications exist to process remote sensing data. There are applications of gamma rays to mineral exploration through remote sensing. In 1972 more than two million dollars were spent on remote sensing applications with gamma rays to mineral exploration. Gamma rays are used to search for deposits of uranium. By observing radioactivity from potassium, porphyry copper deposits can be located. A high ratio of uranium to thorium has been found to be related to

4264-495: The Earth . Local equatorial crossing time (ECT) was fixed at around 10:30 of the morning. IRS-1A was launched on 17 March 1988, at 06:43:00 UTC . It had a perigee of 863 km (536 mi), an apogee of 917 km (570 mi), an inclination of 99.01°, and an orbital period of 102.7 minutes. IRS-1A was operated in a Sun-synchronous orbit . IRS-1A successfully completed its mission on 1 July 1992 after operating for 4 years. Remote sensing Remote sensing

IRS-1A - Misplaced Pages Continue

4368-556: The European Commission . Forest area and deforestation estimation have also been a frequent target of remote sensing projects, the same as land cover and land use Ground truth or reference data to train and validate image classification require a field survey if we are targetting annual crops or individual forest species, but may be substituted by photointerpretation if we look at wider classes that can be reliably identified on aerial photos or satellite images. It

4472-579: The Magellan spacecraft provided detailed topographic maps of Venus , while instruments aboard SOHO allowed studies to be performed on the Sun and the solar wind , just to name a few examples. Recent developments include, beginning in the 1960s and 1970s, the development of image processing of satellite imagery . The use of the term "remote sensing" began in the early 1960s when Evelyn Pruitt realized that advances in science meant that aerial photography

4576-536: The MetOp spacecraft of EUMETSAT are all operated at altitudes of about 800 km (500 mi). The Proba-1 , Proba-2 and SMOS spacecraft of European Space Agency are observing the Earth from an altitude of about 700 km (430 mi). The Earth observation satellites of UAE, DubaiSat-1 & DubaiSat-2 are also placed in Low Earth orbits (LEO) orbits and providing satellite imagery of various parts of

4680-537: The NDVI , a good proxy to chlorophyll activity. The modern discipline of remote sensing arose with the development of flight. The balloonist G. Tournachon (alias Nadar ) made photographs of Paris from his balloon in 1858. Messenger pigeons, kites, rockets and unmanned balloons were also used for early images. With the exception of balloons, these first, individual images were not particularly useful for map making or for scientific purposes. Systematic aerial photography

4784-691: The North Sea or the Red Sea . There is no sharp distinction between seas and oceans, though generally seas are smaller, and are often partly (as marginal seas ) or wholly (as inland seas ) bordered by land. The contemporary concept of the World Ocean was coined in the early 20th century by the Russian oceanographer Yuly Shokalsky to refer to the continuous ocean that covers and encircles most of Earth. The global, interconnected body of salt water

4888-481: The South Pacific Ocean , at 48°52.6′S 123°23.6′W  /  48.8767°S 123.3933°W  / -48.8767; -123.3933  ( Point Nemo ) . This point is roughly 2,688 km (1,670 mi) from the nearest land. There are different customs to subdivide the ocean and are adjourned by smaller bodies of water such as, seas , gulfs , bays , bights , and straits . The ocean

4992-592: The Thames Barrier is designed to protect London from a storm surge, while the failure of the dykes and levees around New Orleans during Hurricane Katrina created a humanitarian crisis in the United States. Most of the ocean is blue in color, but in some places the ocean is blue-green, green, or even yellow to brown. Blue ocean color is a result of several factors. First, water preferentially absorbs red light, which means that blue light remains and

5096-406: The coastline and structure of the world ocean. A global ocean has existed in one form or another on Earth for eons. Since its formation the ocean has taken many conditions and shapes with many past ocean divisions and potentially at times covering the whole globe. During colder climatic periods, more ice caps and glaciers form, and enough of the global water supply accumulates as ice to lessen

5200-615: The electromagnetic spectrum , which in conjunction with larger scale aerial or ground-based sensing and analysis, provides researchers with enough information to monitor trends such as El Niño and other natural long and short term phenomena. Other uses include different areas of the earth sciences such as natural resource management , agricultural fields such as land usage and conservation, greenhouse gas monitoring , oil spill detection and monitoring, and national security and overhead, ground-based and stand-off collection on border areas. The basis for multispectral collection and analysis

5304-591: The ocean floor , they begin to slow down. This pulls the crests closer together and increases the waves' height , which is called wave shoaling . When the ratio of the wave's height to the water depth increases above a certain limit, it " breaks ", toppling over in a mass of foaming water. This rushes in a sheet up the beach before retreating into the ocean under the influence of gravity. Earthquakes , volcanic eruptions or other major geological disturbances can set off waves that can lead to tsunamis in coastal areas which can be very dangerous. The ocean's surface

SECTION 50

#1732783544469

5408-622: The 20th century allowed remote sensing to progress to a global scale as of the end of the Cold War. Instrumentation aboard various Earth observing and weather satellites such as Landsat , the Nimbus and more recent missions such as RADARSAT and UARS provided global measurements of various data for civil, research, and military purposes. Space probes to other planets have also provided the opportunity to conduct remote sensing studies in extraterrestrial environments, synthetic aperture radar aboard

5512-442: The Earth's biosphere . Oceanic evaporation , as a phase of the water cycle, is the source of most rainfall (about 90%), causing a global cloud cover of 67% and a consistent oceanic cloud cover of 72%. Ocean temperatures affect climate and wind patterns that affect life on land. One of the most dramatic forms of weather occurs over the oceans: tropical cyclones (also called "typhoons" and "hurricanes" depending upon where

5616-493: The Earth. To get global coverage with a low orbit, a polar orbit is used. A low orbit will have an orbital period of roughly 100 minutes and the Earth will rotate around its polar axis about 25° between successive orbits. The ground track moves towards the west 25° each orbit, allowing a different section of the globe to be scanned with each orbit. Most are in Sun-synchronous orbits . Oceans The ocean

5720-478: The German students use the services of Google Earth ; in 2006 alone the software was downloaded 100 million times. But studies have shown that only a fraction of them know more about the data they are working with. There exists a huge knowledge gap between the application and the understanding of satellite images. Remote sensing only plays a tangential role in schools, regardless of the political claims to strengthen

5824-456: The Moon are 20x stronger than the Moon's tidal forces on the Earth.) The primary effect of lunar tidal forces is to bulge Earth matter towards the near and far sides of the Earth, relative to the moon. The "perpendicular" sides, from which the Moon appears in line with the local horizon, experience "tidal troughs". Since it takes nearly 25 hours for the Earth to rotate under the Moon (accounting for

5928-403: The Moon's 28 day orbit around Earth), tides thus cycle over a course of 12.5 hours. However, the rocky continents pose obstacles for the tidal bulges, so the timing of tidal maxima may not actually align with the Moon in most localities on Earth, as the oceans are forced to "dodge" the continents. Timing and magnitude of tides vary widely across the Earth as a result of the continents. Thus, knowing

6032-471: The Moon's gravity, oceanic tides are also substantially modulated by the Sun's tidal forces, by the rotation of the Earth, and by the shape of the rocky continents blocking oceanic water flow. (Tidal forces vary more with distance than the "base" force of gravity: the Moon's tidal forces on Earth are more than double the Sun's, despite the latter's much stronger gravitational force on Earth. Earth's tidal forces upon

6136-400: The Moon's position does not allow a local to predict tide timings, instead requiring precomputed tide tables which account for the continents and the Sun, among others. During each tidal cycle, at any given place the tidal waters rise to maximum height, high tide, before ebbing away again to the minimum level, low tide. As the water recedes, it gradually reveals the foreshore , also known as

6240-648: The Okeanos is represented with a dragon-tail on some early Greek vases. Scientists believe that a sizable quantity of water would have been in the material that formed Earth. Water molecules would have escaped Earth's gravity more easily when it was less massive during its formation. This is called atmospheric escape . During planetary formation , Earth possibly had magma oceans . Subsequently, outgassing , volcanic activity and meteorite impacts , produced an early atmosphere of carbon dioxide , nitrogen and water vapor , according to current theories. The gases and

6344-741: The World Ocean, such as the Caspian Sea . The deepest region of the ocean is at the Mariana Trench , located in the Pacific Ocean near the Northern Mariana Islands . The maximum depth has been estimated to be 10,971 meters (35,994 ft). The British naval vessel Challenger II surveyed the trench in 1951 and named the deepest part of the trench the " Challenger Deep ". In 1960, the Trieste successfully reached

SECTION 60

#1732783544469

6448-421: The amounts in other parts of the water cycle. The reverse is true during warm periods. During the last ice age, glaciers covered almost one-third of Earth's land mass with the result being that the oceans were about 122 m (400 ft) lower than today. During the last global "warm spell," about 125,000 years ago, the seas were about 5.5 m (18 ft) higher than they are now. About three million years ago

6552-479: The atmosphere are thought to have accumulated over millions of years. After Earth's surface had significantly cooled, the water vapor over time would have condensed, forming Earth's first oceans. The early oceans might have been significantly hotter than today and appeared green due to high iron content. Geological evidence helps constrain the time frame for liquid water existing on Earth. A sample of pillow basalt (a type of rock formed during an underwater eruption)

6656-407: The bottom of the trench, manned by a crew of two men. Oceanographers classify the ocean into vertical and horizontal zones based on physical and biological conditions. The pelagic zone consists of the water column of the open ocean, and can be divided into further regions categorized by light abundance and by depth. The ocean zones can be grouped by light penetration into (from top to bottom):

6760-503: The country. Undertaken by the Indian Space Research Organisation (ISRO). It was a part-operational, part-experimental mission to develop Indian expertise in satellite imagery. The availability of Landsat imagery created a lot of interest in the science community. The Hyderabad ground station started receiving Landsat data on a regular basis in 1978. The Landsat program with its design and potentials

6864-495: The discovery of the Earth's Van Allen radiation belts . The TIROS-1 spacecraft, launched on April 1, 1960, as part of NASA's Television Infrared Observation Satellite (TIROS) program, sent back the first television footage of weather patterns to be taken from space. In 2008, more than 150 Earth observation satellites were in orbit, recording data with both passive and active sensors and acquiring more than 10 terabits of data daily. By 2021, that total had grown to over 950, with

6968-509: The elder of the Titans in classical Greek mythology . Oceanus was believed by the ancient Greeks and Romans to be the divine personification of an enormous river encircling the world. The concept of Ōkeanós has an Indo-European connection. Greek Ōkeanós has been compared to the Vedic epithet ā-śáyāna-, predicated of the dragon Vṛtra-, who captured the cows/rivers. Related to this notion,

7072-642: The farmer who plants his fields in a remote corner of the country knows its value." The development of remote sensing technology reached a climax during the Cold War with the use of modified combat aircraft such as the P-51 , P-38 , RB-66 and the F-4C , or specifically designed collection platforms such as the U2/TR-1 , SR-71 , A-5 and the OV-1 series both in overhead and stand-off collection. A more recent development

7176-417: The fields of media and methods apart from the mere visual interpretation of satellite images. Many teachers have great interest in the subject "remote sensing", being motivated to integrate this topic into teaching, provided that the curriculum is considered. In many cases, this encouragement fails because of confusing information. In order to integrate remote sensing in a sustainable manner organizations like

7280-581: The first commercial satellite (IKONOS) collecting very high resolution imagery was launched. Remote Sensing has a growing relevance in the modern information society. It represents a key technology as part of the aerospace industry and bears increasing economic relevance – new sensors e.g. TerraSAR-X and RapidEye are developed constantly and the demand for skilled labour is increasing steadily. Furthermore, remote sensing exceedingly influences everyday life, ranging from weather forecasts to reports on climate change or natural disasters . As an example, 80% of

7384-412: The formation of unusually high rogue waves . Most waves are less than 3 m (10 ft) high and it is not unusual for strong storms to double or triple that height. Rogue waves, however, have been documented at heights above 25 meters (82 ft). The top of a wave is known as the crest, the lowest point between waves is the trough and the distance between the crests is the wavelength. The wave

7488-421: The interface between water and air is called swell – a term used in sailing , surfing and navigation . These motions profoundly affect ships on the surface of the ocean and the well-being of people on those ships who might suffer from sea sickness . Wind blowing over the surface of a body of water forms waves that are perpendicular to the direction of the wind. The friction between air and water caused by

7592-482: The intertidal zone. The difference in height between the high tide and low tide is known as the tidal range or tidal amplitude. When the sun and moon are aligned (full moon or new moon), the combined effect results in the higher "spring tides", while the sun and moon misaligning (half moons) result in lesser tidal ranges. In the open ocean tidal ranges are less than 1 meter, but in coastal areas these tidal ranges increase to more than 10 meters in some areas. Some of

7696-461: The largest number of satellites operated by US-based company Planet Labs . Most Earth observation satellites carry instruments that should be operated at a relatively low altitude. Most orbit at altitudes above 500 to 600 kilometers (310 to 370 mi). Lower orbits have significant air-drag , which makes frequent orbit reboost maneuvers necessary. The Earth observation satellites ERS-1, ERS-2 and Envisat of European Space Agency as well as

7800-739: The largest tidal ranges in the world occur in the Bay of Fundy and Ungava Bay in Canada, reaching up to 16 meters. Other locations with record high tidal ranges include the Bristol Channel between England and Wales, Cook Inlet in Alaska, and the Río Gallegos in Argentina. Tides are not to be confused with storm surges , which can occur when high winds pile water up against the coast in

7904-465: The launch of the first artificial satellite, Sputnik 1 , by the Soviet Union on October 4, 1957. Sputnik 1 sent back radio signals, which scientists used to study the ionosphere . The United States Army Ballistic Missile Agency launched the first American satellite, Explorer 1 , for NASA's Jet Propulsion Laboratory on January 31, 1958. The information sent back from its radiation detector led to

8008-471: The majority of Earth's surface. It includes the Pacific , Atlantic , Indian , Southern/Antarctic , and Arctic oceans. As a general term, "the ocean" and "the sea" are often interchangeable. Strictly speaking, a "sea" is a body of water (generally a division of the world ocean) partly or fully enclosed by land. The word "sea" can also be used for many specific, much smaller bodies of seawater, such as

8112-408: The ocean faces many environmental threats, such as marine pollution , overfishing , and the effects of climate change . Those effects include ocean warming , ocean acidification and sea level rise . The continental shelf and coastal waters are most affected by human activity. The terms "the ocean" or "the sea" used without specification refer to the interconnected body of salt water covering

8216-423: The ocean meets dry land. It is more shallow, with a depth of a few hundred meters or less. Human activity often has negative impacts on marine life within the continental shelf. Ocean temperatures depend on the amount of solar radiation reaching the ocean surface. In the tropics, surface temperatures can rise to over 30 °C (86 °F). Near the poles where sea ice forms, the temperature in equilibrium

8320-508: The ocean, on land and air. All these processes and components together make up ocean surface ecosystems . Tides are the regular rise and fall in water level experienced by oceans, primarily driven by the Moon 's gravitational tidal forces upon the Earth. Tidal forces affect all matter on Earth, but only fluids like the ocean demonstrate the effects on human timescales. (For example, tidal forces acting on rock may produce tidal locking between two planetary bodies.) Though primarily driven by

8424-469: The ocean. If the wind dies down, the wave formation is reduced, but already-formed waves continue to travel in their original direction until they meet land. The size of the waves depends on the fetch , the distance that the wind has blown over the water and the strength and duration of that wind. When waves meet others coming from different directions, interference between the two can produce broken, irregular seas. Constructive interference can lead to

8528-419: The oceans absorb CO 2 from the atmosphere , a higher concentration leads to ocean acidification (a drop in pH value ). The ocean provides many benefits to humans such as ecosystem services , access to seafood and other marine resources , and a means of transport . The ocean is known to be the habitat of over 230,000 species , but may hold considerably more – perhaps over two million species. Yet,

8632-425: The oceans could have been up to 50 m (165 ft) higher. The entire ocean, containing 97% of Earth's water, spans 70.8% of Earth 's surface, making it Earth's global ocean or world ocean . This makes Earth, along with its vibrant hydrosphere a "water world" or " ocean world ", particularly in Earth's early history when the ocean is thought to have possibly covered Earth completely. The ocean's shape

8736-434: The oceans have been mapped. The zone where land meets sea is known as the coast , and the part between the lowest spring tides and the upper limit reached by splashing waves is the shore . A beach is the accumulation of sand or shingle on the shore. A headland is a point of land jutting out into the sea and a larger promontory is known as a cape . The indentation of a coastline, especially between two headlands,

8840-537: The oceans may have always been on the Earth since the beginning of the planet's formation. In this model, atmospheric greenhouse gases kept the oceans from freezing when the newly forming Sun had only 70% of its current luminosity . The origin of Earth's oceans is unknown. Oceans are thought to have formed in the Hadean eon and may have been the cause for the emergence of life . Plate tectonics , post-glacial rebound , and sea level rise continually change

8944-522: The other hand, emits energy in order to scan objects and areas whereupon a sensor then detects and measures the radiation that is reflected or backscattered from the target. RADAR and LiDAR are examples of active remote sensing where the time delay between emission and return is measured, establishing the location, speed and direction of an object. Remote sensing makes it possible to collect data of dangerous or inaccessible areas. Remote sensing applications include monitoring deforestation in areas such as

9048-451: The photic zone, the mesopelagic zone and the aphotic deep ocean zone: The pelagic part of the aphotic zone can be further divided into vertical regions according to depth and temperature: Distinct boundaries between ocean surface waters and deep waters can be drawn based on the properties of the water. These boundaries are called thermoclines (temperature), haloclines (salinity), chemoclines (chemistry), and pycnoclines (density). If

9152-418: The power of a storm wave impacting on the foot of a cliff has a shattering effect as air in cracks and crevices is compressed and then expands rapidly with release of pressure. At the same time, sand and pebbles have an erosive effect as they are thrown against the rocks. This tends to undercut the cliff, and normal weathering processes such as the action of frost follows, causing further destruction. Gradually,

9256-852: The presence of hydrothermal copper deposits. Radiation patterns have also been known to occur above oil and gas fields, but some of these patterns were thought to be due to surface soils instead of oil and gas. An Earth observation satellite or Earth remote sensing satellite is a satellite used or designed for Earth observation (EO) from orbit , including spy satellites and similar ones intended for non-military uses such as environmental monitoring , meteorology , cartography and others. The most common type are Earth imaging satellites, that take satellite images , analogous to aerial photographs ; some EO satellites may perform remote sensing without forming pictures, such as in GNSS radio occultation . The first occurrence of satellite remote sensing can be dated to

9360-412: The principle of the inverse problem : while the object or phenomenon of interest (the state ) may not be directly measured, there exists some other variable that can be detected and measured (the observation ) which may be related to the object of interest through a calculation. The common analogy given to describe this is trying to determine the type of animal from its footprints. For example, while it

9464-455: The seabed between adjoining plates to form mid-oceanic ridges and here convection currents within the mantle tend to drive the two plates apart. Parallel to these ridges and nearer the coasts, one oceanic plate may slide beneath another oceanic plate in a process known as subduction . Deep trenches are formed here and the process is accompanied by friction as the plates grind together. The movement proceeds in jerks which cause earthquakes, heat

9568-407: The seabed causing deltas to form in estuaries. All these materials move back and forth under the influence of waves, tides and currents. Dredging removes material and deepens channels but may have unexpected effects elsewhere on the coastline. Governments make efforts to prevent flooding of the land by the building of breakwaters , seawalls , dykes and levees and other sea defences. For instance,

9672-401: The shore at the rate of six to eight per minute and these are known as constructive waves as they tend to move material up the beach and have little erosive effect. Storm waves arrive on shore in rapid succession and are known as destructive waves as the swash moves beach material seawards. Under their influence, the sand and shingle on the beach is ground together and abraded. Around high tide,

9776-423: The support for teaching on the subject. A lot of the computer software explicitly developed for school lessons has not yet been implemented due to its complexity. Thereby, the subject is either not at all integrated into the curriculum or does not pass the step of an interpretation of analogue images. In fact, the subject of remote sensing requires a consolidation of physics and mathematics as well as competences in

9880-456: The system forms). As the world's ocean is the principal component of Earth's hydrosphere , it is integral to life on Earth, forms part of the carbon cycle and water cycle , and – as a huge heat reservoir – influences climate and weather patterns. The motions of the ocean surface, known as undulations or wind waves , are the partial and alternate rising and falling of the ocean surface. The series of mechanical waves that propagate along

9984-406: The term remote sensing generally refers to the use of satellite - or aircraft-based sensor technologies to detect and classify objects on Earth. It includes the surface and the atmosphere and oceans , based on propagated signals (e.g. electromagnetic radiation ). It may be split into "active" remote sensing (when a signal is emitted by a satellite or aircraft to the object and its reflection

10088-639: The territory, such as agriculture, forestry or land cover in general. The first large project to apply Landsata 1 images for statistics was LACIE (Large Area Crop Inventory Experiment), run by NASA, NOAA and the USDA in 1974–77. Many other application projects on crop area estimation have followed, including the Italian AGRIT project and the MARS project of the Joint Research Centre (JRC) of

10192-603: The top and a deployable solar panels stowed on either side. Attitude control was provided by four- momentum wheels , two magnetic torques , and a thruster system. Together, they gave an estimated accuracy of better than ± 0.10° in all three axes. IRS-1A carried two "Linear Imaging Self-Scanning Sensor", LISS-1 and LISS-2, with a spatial resolution of 72 m (236 ft) and 36 m (118 ft) respectively. The three-axis-stabilised Sun-synchronous satellite carried LISS sensors which performed " push-broom " scanning in visible and near-infrared bands to acquire images of

10296-434: The very clearest ocean water, and is similar to blue light scattering in the sky . Ocean water represents the largest body of water within the global water cycle (oceans contain 97% of Earth's water ). Evaporation from the ocean moves water into the atmosphere to later rain back down onto land and the ocean. Oceans have a significant effect on the biosphere . The ocean as a whole is thought to cover approximately 90% of

10400-476: The world, and from the surface into the deep ocean. All this has impacts on the global climate system . Ocean water contains dissolved gases, including oxygen , carbon dioxide and nitrogen . An exchange of these gases occurs at the ocean's surface. The solubility of these gases depends on the temperature and salinity of the water. The carbon dioxide concentration in the atmosphere is rising due to CO 2 emissions , mainly from fossil fuel combustion. As

10504-458: Was certainly a great model and yardstick for the IRS programme. IRS-1A was the first remote sensing mission to provide imagery for various land-based applications, such as agriculture, forestry, geology, and hydrology. The mission's long-term objective was to develop indigenous remote sensing capability. The satellite bus , measuring 1.56 m x 1.66 m x 1.10 metres, had the payload module attached on

10608-591: Was developed for military surveillance and reconnaissance purposes beginning in World War I . After WWI, remote sensing technology was quickly adapted to civilian applications. This is demonstrated by the first line of a 1941 textbook titled "Aerophotography and Aerosurverying," which stated the following: "There is no longer any need to preach for aerial photography-not in the United States- for so widespread has become its use and so great its value that even

10712-559: Was no longer an adequate term to describe the data streams being generated by new technologies. With assistance from her fellow staff member at the Office of Naval Research, Walter Bailey, she coined the term "remote sensing". Several research groups in Silicon Valley including NASA Ames Research Center , GTE , and ESL Inc. developed Fourier transform techniques leading to the first notable enhancement of imagery data. In 1999

10816-775: Was recovered from the Isua Greenstone Belt and provides evidence that water existed on Earth 3.8 billion years ago. In the Nuvvuagittuq Greenstone Belt , Quebec , Canada, rocks dated at 3.8 billion years old by one study and 4.28 billion years old by another show evidence of the presence of water at these ages. If oceans existed earlier than this, any geological evidence either has yet to be discovered, or has since been destroyed by geological processes like crustal recycling . However, in August 2020, researchers reported that sufficient water to fill

#468531