Misplaced Pages

Oder Dam

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Oder Dam ( German : Odertalsperre ) is a dam in the Harz mountains of Germany . It lies above Bad Lauterberg in the district of Göttingen in Lower Saxony and impounds the river Oder . The dam went into service in 1934 after taking 3 years to build. The owner and operator of the Oder Dam is the Harzwasserwerke .

#446553

107-413: The reservoir serves the following purposes: These functions sometimes create conflicting demands. For flood protection, the reservoir should be as empty as possible; for low water regulation, it is desirable that the reservoir is as full as possible. Accordingly, there are for the water economy an operating plan that is dependent on the time of year and the expected water quantities. e.g. snow meltwaters at

214-407: A 2022 review concluded that every 1 °C (1.8 °F) of global warming would cause 0.04 °C (0.072 °F) and 0.11 °C (0.20 °F) from abrupt thaw by the year 2100 and 2300. Around 4 °C (7.2 °F) of global warming, abrupt (around 50 years) and widespread collapse of permafrost areas could occur, resulting in an additional warming of 0.2–0.4 °C (0.36–0.72 °F). As

321-544: A climate where the mean annual soil surface temperature is between −5 and 0 °C (23 and 32 °F). In the moist-wintered areas mentioned before, there may not even be discontinuous permafrost down to −2 °C (28 °F). Discontinuous permafrost is often further divided into extensive discontinuous permafrost, where permafrost covers between 50 and 90 percent of the landscape and is usually found in areas with mean annual temperatures between −2 and −4 °C (28 and 25 °F), and sporadic permafrost, where permafrost cover

428-418: A dam and the filling of the reservoir behind it places a new weight on the floor and sides of a valley. The stress of the water increases linearly with its depth. Water also pushes against the upstream face of the dam, a nonrigid structure that under stress behaves semiplastically, and causes greater need for adjustment (flexibility) near the base of the dam than at shallower water levels. Thus the stress level of

535-531: A fifth of both the industrial and the polluted sites (1000 and 2200–4800) are expected to start thawing in the future even if the warming does not increase from its 2020 levels. Only about 3% more sites would start thawing between now and 2050 under the climate change scenario consistent with the Paris Agreement goals, RCP2.6 , but by 2100, about 1100 more industrial facilities and 3500 to 5200 contaminated sites are expected to start thawing even then. Under

642-541: A further $ 1.32 billion. In particular, fewer than 20% of railways would be at high risk by 2100 under 1.5 °C (2.7 °F), yet this increases to 60% at 2 °C (3.6 °F), while under SSP5-8.5, this level of risk is met by mid-century. For much of the 20th century, it was believed that permafrost would "indefinitely" preserve anything buried there, and this made deep permafrost areas popular locations for hazardous waste disposal. In places like Canada's Prudhoe Bay oil field, procedures were developed documenting

749-645: A major climate tipping point in what was known as a clathrate gun hypothesis , but are now no longer believed to play any role in projected climate change. At the Last Glacial Maximum , continuous permafrost covered a much greater area than it does today, covering all of ice-free Europe south to about Szeged (southeastern Hungary ) and the Sea of Azov (then dry land) and East Asia south to present-day Changchun and Abashiri . In North America, only an extremely narrow belt of permafrost existed south of

856-541: A minimum thickness of at least 2 m and a short diameter of at least 10 m. First recorded North American observations of this phenomenon were by European scientists at Canning River (Alaska) in 1919. Russian literature provides an earlier date of 1735 and 1739 during the Great North Expedition by P. Lassinius and Khariton Laptev , respectively. Russian investigators including I.A. Lopatin, B. Khegbomov, S. Taber and G. Beskow had also formulated

963-434: A simple embankment of well-compacted earth. A homogeneous rolled-earth dam is entirely constructed of one type of material but may contain a drain layer to collect seep water. A zoned-earth dam has distinct parts or zones of dissimilar material, typically a shell of locally plentiful material with a watertight clay core. Modern zoned-earth embankments employ filter and drain zones to collect and remove seep water and preserve

1070-404: A small sustained overtopping flow can remove thousands of tons of overburden soil from the mass of the dam within hours. The removal of this mass unbalances the forces that stabilize the dam against its reservoir as the mass of water still impounded behind the dam presses against the lightened mass of the embankment, made lighter by surface erosion. As the mass of the dam erodes, the force exerted by

1177-407: A stable mass rather than by the use of a cementing substance. Embankment dams come in two types: the earth-filled dam (also called an earthen dam or terrain dam ) made of compacted earth, and the rock-filled dam . A cross-section of an embankment dam shows a shape like a bank, or hill. Most have a central section or core composed of an impermeable material to stop water from seeping through

SECTION 10

#1732782820447

1284-473: A storage power station with a Francis turbine . The dam was rehabilitated from 2010 to 2018. The lake is open to watersports such as angling , sailing and surfing . There is also a local restaurant and a campsite . "Angeln im Harz" (in German). Archived from the original on 2022-11-28. Embankment dam An embankment dam is a large artificial dam . It is typically created by

1391-686: A thick suspension of earth, rocks and water. Therefore, safety requirements for the spillway are high, and require it to be capable of containing a maximum flood stage. It is common for its specifications to be written such that it can contain at least a one-hundred-year flood. A number of embankment dam overtopping protection systems were developed in the early 21st century. These techniques include concrete overtopping protection systems, timber cribs , sheet-piles , riprap and gabions , Reinforced Earth , minimum energy loss weirs , embankment overflow stepped spillways , and precast concrete block protection systems. All dams are prone to seepage underneath

1498-605: A year. In 2006, the cost of adapting Inuvialuit homes to permafrost thaw was estimated at $ 208/m if they were built at pile foundations, and $ 1,000/m if they didn't. At the time, the average area of a residential building in the territory was around 100 m . Thaw-induced damage is also unlikely to be covered by home insurance , and to address this reality, territorial government currently funds Contributing Assistance for Repairs and Enhancements (CARE) and Securing Assistance for Emergencies (SAFE) programs, which provide long- and short-term forgivable loans to help homeowners adapt. It

1605-630: Is a large dam on the Indus River in Pakistan , about 50 km (31 mi) northwest of Islamabad . Its height of 485 ft (148 m) above the river bed and 95 sq mi (250 km ) reservoir make it the largest earth-filled dam in the world. The principal element of the project is an embankment 9,000 feet (2,700 m) long with a maximum height of 465 feet (142 m). The dam used approximately 200 million cubic yards (152.8 million cu. meters) of fill, which makes it one of

1712-538: Is already considered "warm" permafrost, making it particularly unstable. Qinghai–Tibet Plateau has a population of over 10 million people – double the population of permafrost regions in the Arctic – and over 1 million m of buildings are located in its permafrost area, as well as 2,631 km of power lines , and 580 km of railways. There are also 9,389 km of roads, and around 30% are already sustaining damage from permafrost thaw. Estimates suggest that under

1819-473: Is also possible for subsurface alpine permafrost to be covered by warmer, vegetation-supporting soil. Alpine permafrost is particularly difficult to study, and systematic research efforts did not begin until the 1970s. Consequently, there remain uncertainties about its geography. As recently as 2009, permafrost had been discovered in a new area – Africa's highest peak, Mount Kilimanjaro (4,700 m (15,400 ft) above sea level and approximately 3° south of

1926-419: Is associated with a wide range of issues, and International Permafrost Association (IPA) exists to help address them. It convenes International Permafrost Conferences and maintains Global Terrestrial Network for Permafrost , which undertakes special projects such as preparing databases, maps, bibliographies, and glossaries, and coordinates international field programmes and networks. As recent warming deepens

2033-405: Is at risk by 2050, and that the associated costs could rise to tens of billions of dollars in the second half of the century. Furthermore, between 13,000 and 20,000 sites contaminated with toxic waste are present in the permafrost, as well as the natural mercury deposits, which are all liable to leak and pollute the environment as the warming progresses. Lastly, concerns have been raised about

2140-444: Is because carbon can be released through either aerobic or anaerobic respiration , which results in carbon dioxide (CO 2 ) or methane (CH 4 ) emissions, respectively. While methane lasts less than 12 years in the atmosphere, its global warming potential is around 80 times larger than that of CO 2 over a 20-year period and about 28 times larger over a 100-year period. While only a small fraction of permafrost carbon will enter

2247-429: Is decreasing as well; as of 2019, ~97% of permafrost under Arctic ice shelves is becoming warmer and thinner. Based on high agreement across model projections, fundamental process understanding, and paleoclimate evidence, it is virtually certain that permafrost extent and volume will continue to shrink as the global climate warms, with the extent of the losses determined by the magnitude of warming. Permafrost thaw

SECTION 20

#1732782820447

2354-455: Is defined as a continuous permafrost zone, where 90%–100% of the land is underlain by permafrost. Around 20% is instead defined as discontinuous permafrost, where the coverage is between 50% and 90%. Finally, the remaining <30% of permafrost regions consists of areas with 10%–50% coverage, which are defined as sporadic permafrost zones, and some areas that have isolated patches of permafrost covering 10% or less of their area. Most of this area

2461-507: Is difficult because the heat of the building (or pipeline ) can spread to the soil, thawing it. As ice content turns to water, the ground's ability to provide structural support is weakened, until the building is destabilized. For instance, during the construction of the Trans-Siberian Railway , a steam engine factory complex built in 1901 began to crumble within a month of operations for these reasons. Additionally, there

2568-459: Is difficult to accurately predict how much greenhouse gases the permafrost releases because of the different thaw processes are still uncertain. There is widespread agreement that the emissions will be smaller than human-caused emissions and not large enough to result in runaway warming . Instead, the annual permafrost emissions are likely comparable with global emissions from deforestation , or to annual emissions of large countries such as Russia ,

2675-620: Is expected that cumulative greenhouse gas emissions from permafrost thaw will be smaller than the cumulative anthropogenic emissions, yet still substantial on a global scale, with some experts comparing them to emissions caused by deforestation . The IPCC Sixth Assessment Report estimates that carbon dioxide and methane released from permafrost could amount to the equivalent of 14–175 billion tonnes of carbon dioxide per 1 °C (1.8 °F) of warming. For comparison, by 2019, annual anthropogenic emissions of carbon dioxide alone stood around 40 billion tonnes. A major review published in

2782-420: Is expected to be lost "over decades and centuries". The exact amount of carbon that will be released due to warming in a given permafrost area depends on depth of thaw, carbon content within the thawed soil, physical changes to the environment, and microbial and vegetation activity in the soil. Notably, estimates of carbon release alone do not fully represent the impact of permafrost thaw on climate change. This

2889-435: Is expected to thaw, affecting all their inhabitants (currently 3.3 million people). Consequently, a wide range of infrastructure in permafrost areas is threatened by the thaw. By 2050, it's estimated that nearly 70% of global infrastructure located in the permafrost areas would be at high risk of permafrost thaw, including 30–50% of "critical" infrastructure. The associated costs could reach tens of billions of dollars by

2996-494: Is found in Siberia, northern Canada, Alaska and Greenland. Beneath the active layer annual temperature swings of permafrost become smaller with depth. The greatest depth of permafrost occurs right before the point where geothermal heat maintains a temperature above freezing. Above that bottom limit there may be permafrost with a consistent annual temperature—"isothermal permafrost". Permafrost typically forms in any climate where

3103-517: Is generated by radioactive decay of unstable isotopes and flows to the surface by conduction at a rate of ~47 terawatts (TW). Away from tectonic plate boundaries, this is equivalent to an average heat flow of 25–30 °C/km (124–139 °F/mi) near the surface. When the ice content of a permafrost exceeds 250 percent (ice to dry soil by mass) it is classified as massive ice. Massive ice bodies can range in composition, in every conceivable gradation from icy mud to pure ice. Massive icy beds have

3210-561: Is less than 50 percent of the landscape and typically occurs at mean annual temperatures between 0 and −2 °C (32 and 28 °F). In soil science, the sporadic permafrost zone is abbreviated SPZ and the extensive discontinuous permafrost zone DPZ . Exceptions occur in un-glaciated Siberia and Alaska where the present depth of permafrost is a relic of climatic conditions during glacial ages where winters were up to 11 °C (20 °F) colder than those of today. At mean annual soil surface temperatures below −5 °C (23 °F)

3317-467: Is no groundwater available in an area underlain with permafrost. Any substantial settlement or installation needs to make some alternative arrangement to obtain water. A common solution is placing foundations on wood piles , a technique pioneered by Soviet engineer Mikhail Kim in Norilsk. However, warming-induced change of friction on the piles can still cause movement through creep , even as

Oder Dam - Misplaced Pages Continue

3424-454: Is possible that in the future, mandatory relocation would instead take place as the cheaper option. However, it would effectively tear the local Inuit away from their ancestral homelands. Right now, their average personal income is only half that of the median NWT resident, meaning that adaptation costs are already disproportionate for them. By 2022, up to 80% of buildings in some Northern Russia cities had already experienced damage. By 2050,

3531-526: Is related to the tundra. Alpine permafrost also occurred in the Drakensberg during glacial maxima above about 3,000 metres (9,840 ft). Permafrost extends to a base depth where geothermal heat from the Earth and the mean annual temperature at the surface achieve an equilibrium temperature of 0 °C (32 °F). This base depth of permafrost can vary wildly – it is less than a meter (3 ft) in

3638-595: Is subdivided into intrusive, injection and segregational ice. The latter is the dominant type, formed after crystallizational differentiation in wet sediments , which occurs when water migrates to the freezing front under the influence of van der Waals forces . This is a slow process, which primarily occurs in silts with salinity less than 20% of seawater : silt sediments with higher salinity and clay sediments instead have water movement prior to ice formation dominated by rheological processes. Consequently, it takes between 1 and 1000 years to form intrasedimental ice in

3745-433: Is the ongoing "greening" of the Arctic. As climate change warms the air and the soil, the region becomes more hospitable to plants, including larger shrubs and trees which could not survive there before. Thus, the Arctic is losing more and more of its tundra biomes, yet it gains more plants, which proceed to absorb more carbon. Some of the emissions caused by permafrost thaw will be offset by this increased plant growth, but

3852-534: Is unknown. Notable sites with known ancient ice deposits include Yenisei River valley in Siberia , Russia as well as Banks and Bylot Island in Canada's Nunavut and Northwest Territories . Some of the buried ice sheet remnants are known to host thermokarst lakes . Intrasedimental or constitutional ice has been widely observed and studied across Canada. It forms when subterranean waters freeze in place, and

3959-719: The Northern and Southern Hemisphere are cold enough to support perennially frozen ground: some of the best-known examples include the Canadian Rockies , the European Alps , Himalaya and the Tien Shan . In general, it has been found that extensive alpine permafrost requires mean annual air temperature of −3 °C (27 °F), though this can vary depending on local topography , and some mountain areas are known to support permafrost at −1 °C (30 °F). It

4066-545: The Northern Hemisphere is ~145 centimetres (4.76 ft), but there are significant regional differences. Northeastern Siberia , Alaska and Greenland have the most solid permafrost with the lowest extent of active layer (less than 50 centimetres (1.6 ft) on average, and sometimes only 30 centimetres (0.98 ft)), while southern Norway and the Mongolian Plateau are the only areas where

4173-466: The Pleistocene . Base depth is affected by the underlying geology, and particularly by thermal conductivity , which is lower for permafrost in soil than in bedrock . Lower conductivity leaves permafrost less affected by the geothermal gradient , which is the rate of increasing temperature with respect to increasing depth in the Earth's interior. It occurs as the Earth's internal thermal energy

4280-605: The Southern Hemisphere , where it is consigned to mountain slopes like in the Andes of Patagonia , the Southern Alps of New Zealand, or the highest mountains of Antarctica . Permafrost contains large amounts of dead biomass that have accumulated throughout millennia without having had the chance to fully decompose and release their carbon , making tundra soil a carbon sink . As global warming heats

4387-539: The United States or China . Apart from its climate impact, permafrost thaw brings more risks. Formerly frozen ground often contains enough ice that when it thaws, hydraulic saturation is suddenly exceeded, so the ground shifts substantially and may even collapse outright. Many buildings and other infrastructure were built on permafrost when it was frozen and stable, and so are vulnerable to collapse if it thaws. Estimates suggest nearly 70% of such infrastructure

Oder Dam - Misplaced Pages Continue

4494-509: The continental shelves of the polar regions. These areas formed during the last Ice Age , when a larger portion of Earth's water was bound up in ice sheets on land and when sea levels were low. As the ice sheets melted to again become seawater during the Holocene glacial retreat , coastal permafrost became submerged shelves under relatively warm and salty boundary conditions, compared to surface permafrost. Since then, these conditions led to

4601-403: The equator ). In 2014, a collection of regional estimates of alpine permafrost extent had established a global extent of 3,560,000 km (1,370,000 sq mi). Yet, by 2014, alpine permafrost in the Andes has not been fully mapped, although its extent has been modeled to assess the amount of water bound up in these areas. Subsea permafrost occurs beneath the seabed and exists in

4708-408: The ice sheet at about the latitude of New Jersey through southern Iowa and northern Missouri , but permafrost was more extensive in the drier western regions where it extended to the southern border of Idaho and Oregon . In the Southern Hemisphere , there is some evidence for former permafrost from this period in central Otago and Argentine Patagonia , but was probably discontinuous, and

4815-586: The pressure melting point throughout, may have liquid water at the interface with the ground and are therefore free of underlying permafrost. "Fossil" cold anomalies in the geothermal gradient in areas where deep permafrost developed during the Pleistocene persist down to several hundred metres. This is evident from temperature measurements in boreholes in North America and Europe. The below-ground temperature varies less from season to season than

4922-438: The pumped-storage power station . Immediately below the dam is the lower reservoir with a 7.5 m high earth dam that acted as a stilling basin. The power station is also located at the foot of the dam. It has 2 turbines with a combined output of 5.04  MW (possibly as much as 6.2 MW). The pumped-storage facility has not been used since the 1990s as it was no longer economical. The power station now operates simply as

5029-539: The southern hemisphere , most of the equivalent line would fall within the Southern Ocean if there were land there. Most of the Antarctic continent is overlain by glaciers, under which much of the terrain is subject to basal melting . The exposed land of Antarctica is substantially underlain with permafrost, some of which is subject to warming and thawing along the coastline. A range of elevations in both

5136-458: The "appropriate" way to inject waste beneath the permafrost. This means that as of 2023, there are ~4500 industrial facilities in the Arctic permafrost areas which either actively process or store hazardous chemicals. Additionally, there are between 13,000 and 20,000 sites which have been heavily contaminated, 70% of them in Russia, and their pollution is currently trapped in the permafrost. About

5243-415: The 1990s. Between 2000 and 2018, the average active layer thickness had increased from ~127 centimetres (4.17 ft) to ~145 centimetres (4.76 ft), at an average annual rate of ~0.65 centimetres (0.26 in). In Yukon , the zone of continuous permafrost might have moved 100 kilometres (62 mi) poleward since 1899, but accurate records only go back 30 years. The extent of subsea permafrost

5350-415: The U.S. Bureau of Reclamation Permafrost Permafrost (from perma-  ' permanent ' and frost ) is soil or underwater sediment which continuously remains below 0 °C (32 °F) for two years or more: the oldest permafrost had been continuously frozen for around 700,000 years. Whilst the shallowest permafrost has a vertical extent of below a meter (3 ft),

5457-503: The United States, while under the scenario of high global warming and worst-case permafrost feedback response, they would approach year 2019 emissions of China. Fewer studies have attempted to describe the impact directly in terms of warming. A 2018 paper estimated that if global warming was limited to 2 °C (3.6 °F), gradual permafrost thaw would add around 0.09 °C (0.16 °F) to global temperatures by 2100, while

SECTION 50

#1732782820447

5564-412: The active layer subject to permafrost thaw, this exposes formerly stored carbon to biogenic processes which facilitate its entrance into the atmosphere as carbon dioxide and methane . Because carbon emissions from permafrost thaw contribute to the same warming which facilitates the thaw, it is a well-known example of a positive climate change feedback . Permafrost thaw is sometimes included as one of

5671-443: The air temperature, with mean annual temperatures tending to increase with depth due to the geothermal crustal gradient. Thus, if the mean annual air temperature is only slightly below 0 °C (32 °F), permafrost will form only in spots that are sheltered (usually with a northern or southern aspect , in the north and south hemispheres respectively) creating discontinuous permafrost. Usually, permafrost will remain discontinuous in

5778-429: The areas where it is shallowest, yet reaches 1,493 m (4,898 ft) in the northern Lena and Yana River basins in Siberia . Calculations indicate that the formation time of permafrost greatly slows past the first several metres. For instance, over half a million years was required to form the deep permafrost underlying Prudhoe Bay, Alaska , a time period extending over several glacial and interglacial cycles of

5885-637: The asphalt make such dams especially suited to earthquake regions. For the Moglicë Hydro Power Plant in Albania the Norwegian power company Statkraft built an asphalt-core rock-fill dam. Upon completion in 2018 the 320 m long, 150 m high and 460 m wide dam is anticipated to be the world's highest of its kind. A concrete-face rock-fill dam (CFRD) is a rock-fill dam with concrete slabs on its upstream face. This design provides

5992-511: The atmosphere as methane, those emissions will cause 40-70% of the total warming caused by permafrost thaw during the 21st century. Much of the uncertainty about the eventual extent of permafrost methane emissions is caused by the difficulty of accounting for the recently discovered abrupt thaw processes, which often increase the fraction of methane emitted over carbon dioxide in comparison to the usual gradual thaw processes. Another factor which complicates projections of permafrost carbon emissions

6099-554: The atmosphere, as well as the transfer of carbon between land and water as methane, dissolved organic carbon , dissolved inorganic carbon , particulate inorganic carbon and particulate organic carbon . Most of the bacteria and fungi found in permafrost cannot be cultured in the laboratory, but the identity of the microorganisms can be revealed by DNA -based techniques. For instance, analysis of 16S rRNA genes from late Pleistocene permafrost samples in eastern Siberia 's Kolyma Lowland revealed eight phylotypes , which belonged to

6206-439: The average active layer is deeper than 600 centimetres (20 ft), with the record of 10 metres (33 ft). The border between active layer and permafrost itself is sometimes called permafrost table. Around 15% of Northern Hemisphere land that is not completely covered by ice is directly underlain by permafrost; 22% is defined as part of a permafrost zone or region. This is because only slightly more than half of this area

6313-421: The coast of Tuktoyaktuk in western Arctic Canada , where the remains of Laurentide Ice Sheet are located. Buried surface ice may derive from snow, frozen lake or sea ice , aufeis (stranded river ice) and even buried glacial ice from the former Pleistocene ice sheets. The latter hold enormous value for paleoglaciological research, yet even as of 2022, the total extent and volume of such buried ancient ice

6420-405: The coldest regions, the depth of continuous permafrost can exceed 1,400 m (4,600 ft). It typically exists beneath the so-called active layer , which freezes and thaws annually, and so can support plant growth, as the roots can only take hold in the soil that's thawed. Active layer thickness is measured during its maximum extent at the end of summer: as of 2018, the average thickness in

6527-549: The concrete slab as an impervious wall to prevent leakage and also a structure without concern for uplift pressure. In addition, the CFRD design is flexible for topography, faster to construct and less costly than earth-fill dams. The CFRD concept originated during the California Gold Rush in the 1860s when miners constructed rock-fill timber-face dams for sluice operations . The timber was later replaced by concrete as

SECTION 60

#1732782820447

6634-406: The core is separated using a filter. Filters are specifically graded soil designed to prevent the migration of fine grain soil particles. When suitable building material is at hand, transport is minimized, leading to cost savings during construction. Rock-fill dams are resistant to damage from earthquakes . However, inadequate quality control during construction can lead to poor compaction and sand in

6741-406: The dam must be calculated in advance of building to ensure that its break level threshold is not exceeded. Overtopping or overflow of an embankment dam beyond its spillway capacity will cause its eventual failure . The erosion of the dam's material by overtopping runoff will remove masses of material whose weight holds the dam in place and against the hydraulic forces acting to move the dam. Even

6848-490: The dam, but embankment dams are prone to seepage through the dam as well; for example, the Usoi landslide dam leaks 35-80 cubic meters per second. Sufficiently fast seepage can dislodge a dam's component particles, which results in faster seepage, which turns into a runaway feedback loop that can destroy the dam in a piping-type failure. Seepage monitoring is therefore an essential safety consideration. gn and Construction in

6955-491: The dam. The core can be of clay, concrete, or asphalt concrete . This type of dam is a good choice for sites with wide valleys. They can be built on hard rock or softer soils. For a rock-fill dam, rock-fill is blasted using explosives to break the rock. Additionally, the rock pieces may need to be crushed into smaller grades to get the right range of size for use in an embankment dam. Earth-fill dams, also called earthen dams, rolled-earth dams or earth dams, are constructed as

7062-704: The damage to buildings ($ 2.8 billion), but there's also damage to roads ($ 700 million), railroads ($ 620 million), airports ($ 360 million) and pipelines ($ 170 million). Similar estimates were done for RCP4.5, a less intense scenario which leads to around 2.5 °C (4.5 °F) by 2100, a level of warming similar to the current projections. In that case, total damages from permafrost thaw are reduced to $ 3 billion, while damages to roads and railroads are lessened by approximately two-thirds (from $ 700 and $ 620 million to $ 190 and $ 220 million) and damages to pipelines are reduced more than ten-fold, from $ 170 million to $ 16 million. Unlike

7169-486: The damage to residential infrastructure may reach $ 15 billion, while total public infrastructure damages could amount to 132 billion. This includes oil and gas extraction facilities, of which 45% are believed to be at risk. Outside of the Arctic, Qinghai–Tibet Plateau (sometimes known as "the Third Pole"), also has an extensive permafrost area. It is warming at twice the global average rate, and 40% of it

7276-403: The deepest is greater than 1,500 m (4,900 ft). Similarly, the area of individual permafrost zones may be limited to narrow mountain summits or extend across vast Arctic regions. The ground beneath glaciers and ice sheets is not usually defined as permafrost, so on land, permafrost is generally located beneath a so-called active layer of soil which freezes and thaws depending on

7383-456: The design was applied to irrigation and power schemes. As CFRD designs grew in height during the 1960s, the fill was compacted and the slab's horizontal and vertical joints were replaced with improved vertical joints. In the last few decades, design has become popular. The tallest CFRD in the world is the 233 m-tall (764 ft) Shuibuya Dam in China , completed in 2008. The building of

7490-605: The discontinuous zone. Observed warming was up to 3 °C (5.4 °F) in parts of Northern Alaska (early 1980s to mid-2000s) and up to 2 °C (3.6 °F) in parts of the Russian European North (1970–2020). This warming inevitably causes permafrost to thaw: active layer thickness has increased in the European and Russian Arctic across the 21st century and at high elevation areas in Europe and Asia since

7597-439: The ecosystem, frozen soil thaws and becomes warm enough for decomposition to start anew, accelerating the permafrost carbon cycle . Depending on conditions at the time of thaw, decomposition can release either carbon dioxide or methane , and these greenhouse gas emissions act as a climate change feedback . The emissions from thawing permafrost will have a sufficient impact on the climate to impact global carbon budgets . It

7704-578: The embankment which can lead to liquefaction of the rock-fill during an earthquake. Liquefaction potential can be reduced by keeping susceptible material from being saturated, and by providing adequate compaction during construction. An example of a rock-fill dam is New Melones Dam in California or the Fierza Dam in Albania . A core that is growing in popularity is asphalt concrete . The majority of such dams are built with rock and/or gravel as

7811-476: The end of winter, droughts in summer. The actual barrage is an embankment dam made of rubble (crushed stone) with a central concrete core and a grout curtain of clay . The concrete wall has joints that follow the shape of the whole dam, without leaking. The design is very similar in many respects to the Söse Dam built shortly beforehand. The reservoir of the dam originally acted as the upper reservoir of

7918-431: The exact proportion is uncertain. It is considered very unlikely that this greening could offset all of the emissions from permafrost thaw during the 21st century, and even less likely that it could continue to keep pace with those emissions after the 21st century. Further, climate change also increases the risk of wildfires in the Arctic, which can substantially accelerate emissions of permafrost carbon. Altogether, it

8025-473: The formation of frozen debris lobes (FDLs), which are defined as "slow-moving landslides composed of soil, rocks, trees, and ice". This is a notable issue in the Alaska 's southern Brooks Range , where some FDLs measured over 100 m (110 yd) in width, 20 m (22 yd) in height, and 1,000 m (1,100 yd) in length by 2012. As of December 2021, there were 43 frozen debris lobes identified in

8132-425: The gradual and ongoing decline of subsea permafrost extent. Nevertheless, its presence remains an important consideration for the "design, construction, and operation of coastal facilities, structures founded on the seabed, artificial islands , sub-sea pipelines , and wells drilled for exploration and production". Subsea permafrost can also overlay deposits of methane clathrate , which were once speculated to be

8239-411: The influence of aspect can never be sufficient to thaw permafrost and a zone of continuous permafrost (abbreviated to CPZ ) forms. A line of continuous permafrost in the Northern Hemisphere represents the most southern border where land is covered by continuous permafrost or glacial ice. The line of continuous permafrost varies around the world northward or southward due to regional climatic changes. In

8346-453: The integrity of the downstream shell zone. An outdated method of zoned earth dam construction used a hydraulic fill to produce a watertight core. Rolled-earth dams may also employ a watertight facing or core in the manner of a rock-fill dam. The frozen-core dam is a temporary earth dam occasionally used in high latitudes by circulating a coolant through pipes inside the dam to maintain a watertight region of permafrost within it. Tarbela Dam

8453-449: The largest man-made structures in the world. Because earthen dams can be constructed from local materials, they can be cost-effective in regions where the cost of producing or bringing in concrete would be prohibitive. Rock -fill dams are embankments of compacted free-draining granular earth with an impervious zone. The earth used often contains a high percentage of large particles, hence the term "rock-fill". The impervious zone may be on

8560-502: The major tipping points in the climate system due to the exhibition of local thresholds and its effective irreversibility. However, while there are self-perpetuating processes that apply on the local or regional scale, it is debated as to whether it meets the strict definition of a global tipping point as in aggregate permafrost thaw is gradual with warming. In the northern circumpolar region, permafrost contains organic matter equivalent to 1400–1650 billion tons of pure carbon, which

8667-594: The mean annual air temperature is lower than the freezing point of water. Exceptions are found in humid boreal forests , such as in Northern Scandinavia and the North-Eastern part of European Russia west of the Urals , where snow acts as an insulating blanket. Glaciated areas may also be exceptions. Since all glaciers are warmed at their base by geothermal heat, temperate glaciers , which are near

8774-403: The original theories for ice inclusion in freezing soils. While there are four categories of ice in permafrost – pore ice, ice wedges (also known as vein ice), buried surface ice and intrasedimental (sometimes also called constitutional ) ice – only the last two tend to be large enough to qualify as massive ground ice. These two types usually occur separately, but may be found together, like on

8881-529: The other costs stemming from climate change in Alaska, such as damages from increased precipitation and flooding, climate change adaptation is not a viable way to reduce damages from permafrost thaw, as it would cost more than the damage incurred under either scenario. In Canada, Northwest Territories have a population of only 45,000 people in 33 communities, yet permafrost thaw is expected to cost them $ 1.3 billion over 75 years, or around $ 51 million

8988-514: The other hands, disturbance of formerly hard soil increases drainage of water reservoirs in northern wetlands . This can dry them out and compromise the survival of plants and animals used to the wetland ecosystem. In high mountains, much of the structural stability can be attributed to glaciers and permafrost. As climate warms, permafrost thaws, decreasing slope stability and increasing stress through buildup of pore-water pressure, which may ultimately lead to slope failure and rockfalls . Over

9095-697: The past century, an increasing number of alpine rock slope failure events in mountain ranges around the world have been recorded, and some have been attributed to permafrost thaw induced by climate change. The 1987 Val Pola landslide that killed 22 people in the Italian Alps is considered one such example. In 2002, massive rock and ice falls (up to 11.8 million m ), earthquakes (up to 3.9 Richter ), floods (up to 7.8 million m water), and rapid rock-ice flow to long distances (up to 7.5 km at 60 m/s) were attributed to slope instability in high mountain permafrost. Permafrost thaw can also result in

9202-491: The phyla Actinomycetota and Pseudomonadota . "Muot-da-Barba-Peider", an alpine permafrost site in eastern Switzerland, was found to host a diverse microbial community in 2016. Prominent bacteria groups included phylum Acidobacteriota , Actinomycetota , AD3, Bacteroidota , Chloroflexota , Gemmatimonadota , OD1, Nitrospirota , Planctomycetota , Pseudomonadota , and Verrucomicrobiota , in addition to eukaryotic fungi like Ascomycota , Basidiomycota , and Zygomycota . In

9309-524: The pipeline from sinking and the Qingzang railway in Tibet employs a variety of methods to keep the ground cool, both in areas with frost-susceptible soil . Permafrost may necessitate special enclosures for buried utilities, called " utilidors ". Globally, permafrost warmed by about 0.3 °C (0.54 °F) between 2007 and 2016, with stronger warming observed in the continuous permafrost zone relative to

9416-413: The placement and compaction of a complex semi- plastic mound of various compositions of soil or rock. It has a semi-pervious waterproof natural covering for its surface and a dense, impervious core. This makes the dam impervious to surface or seepage erosion . Such a dam is composed of fragmented independent material particles. The friction and interaction of particles binds the particles together into

9523-443: The potential for pathogenic microorganisms surviving the thaw and contributing to future pandemics . However, this is considered unlikely, and a scientific review on the subject describes the risks as "generally low". Permafrost is soil , rock or sediment that is frozen for more than two consecutive years. In practice, this means that permafrost occurs at a mean annual temperature of −2 °C (28.4 °F) or below. In

9630-595: The presence of permafrost. Black spruce tolerates limited rooting zones, and dominates flora where permafrost is extensive. Likewise, animal species which live in dens and burrows have their habitat constrained by the permafrost, and these constraints also have a secondary impact on interactions between species within the ecosystem . While permafrost soil is frozen, it is not completely inhospitable to microorganisms , though their numbers can vary widely, typically from 1 to 1000 million per gram of soil. The permafrost carbon cycle (Arctic Carbon Cycle) deals with

9737-549: The presently living species, scientists observed a variety of adaptations for sub-zero conditions, including reduced and anaerobic metabolic processes. There are only two large cities in the world built in areas of continuous permafrost (where the frozen soil forms an unbroken, below-zero sheet) and both are in Russia – Norilsk in Krasnoyarsk Krai and Yakutsk in the Sakha Republic . Building on permafrost

9844-424: The primary fill. Almost 100 dams of this design have now been built worldwide since the first such dam was completed in 1962. All asphalt-concrete core dams built so far have an excellent performance record. The type of asphalt used is a viscoelastic - plastic material that can adjust to the movements and deformations imposed on the embankment as a whole, and to settlement of the foundation. The flexible properties of

9951-501: The reservoir begins to move the entire structure. The embankment, having almost no elastic strength, would begin to break into separate pieces, allowing the impounded reservoir water to flow between them, eroding and removing even more material as it passes through. In the final stages of failure, the remaining pieces of the embankment would offer almost no resistance to the flow of the water and continue to fracture into smaller and smaller sections of earth or rock until they disintegrate into

10058-427: The scenario most similar to today, SSP2-4.5 , around 60% of the current infrastructure would be at high risk by 2090 and simply maintaining it would cost $ 6.31 billion, with adaptation reducing these costs by 20.9% at most. Holding the global warming to 2 °C (3.6 °F) would reduce these costs to $ 5.65 billion, and fulfilling the optimistic Paris Agreement target of 1.5 °C (2.7 °F) would save

10165-486: The season. Around 15% of the Northern Hemisphere or 11% of the global surface is underlain by permafrost, covering a total area of around 18 million km (6.9 million sq mi). This includes large areas of Alaska , Canada , Greenland , and Siberia . It is also located in high mountain regions, with the Tibetan Plateau being a prominent example. Only a minority of permafrost exists in

10272-419: The second half of the century. Reducing greenhouse gas emissions in line with the Paris Agreement is projected to stabilize the risk after mid-century; otherwise, it'll continue to worsen. In Alaska alone, damages to infrastructure by the end of the century would amount to $ 4.6 billion (at 2015 dollar value) if RCP8.5 , the high-emission climate change scenario , were realized. Over half stems from

10379-628: The soil remains frozen. The Melnikov Permafrost Institute in Yakutsk found that pile foundations should extend down to 15 metres (49 ft) to avoid the risk of buildings sinking. At this depth the temperature does not change with the seasons, remaining at about −5 °C (23 °F). Two other approaches are building on an extensive gravel pad (usually 1–2 m (3 ft 3 in – 6 ft 7 in) thick); or using anhydrous ammonia heat pipes . The Trans-Alaska Pipeline System uses heat pipes built into vertical supports to prevent

10486-702: The southern Brooks Range, where they could potentially threaten both the Trans Alaska Pipeline System (TAPS) corridor and the Dalton Highway , which is the main transport link between the Interior Alaska and the Alaska North Slope . As of 2021, there are 1162 settlements located directly atop the Arctic permafrost, which host an estimated 5 million people. By 2050, permafrost layer below 42% of these settlements

10593-474: The surface. However, only a fraction of this stored carbon is expected to enter the atmosphere. In general, the volume of permafrost in the upper 3 m of ground is expected to decrease by about 25% per 1 °C (1.8 °F) of global warming, yet even under the RCP8.5 scenario associated with over 4 °C (7.2 °F) of global warming by the end of the 21st century, about 5% to 15% of permafrost carbon

10700-537: The surrounding ground begins to jut outward at a slope. This can eventually result in the formation of large-scale land forms around this core of permafrost, such as palsas – long (15–150 m (49–492 ft)), wide (10–30 m (33–98 ft)) yet shallow (<1–6 m (3 ft 3 in – 19 ft 8 in) tall) peat mounds – and the even larger pingos , which can be 3–70 m (10–230 ft) high and 30–1,000 m (98–3,281 ft) in diameter . Only plants with shallow roots can survive in

10807-859: The top 2.5 meters of clay sediments, yet it takes between 10 and 10,000 years for peat sediments and between 1,000 and 1,000,000 years for silt sediments. Permafrost processes such as thermal contraction generating cracks which eventually become ice wedges and solifluction – gradual movement of soil down the slope as it repeatedly freezes and thaws – often lead to the formation of ground polygons, rings, steps and other forms of patterned ground found in arctic, periglacial and alpine areas. In ice-rich permafrost areas, melting of ground ice initiates thermokarst landforms such as thermokarst lakes , thaw slumps, thermal-erosion gullies, and active layer detachments. Notably, unusually deep permafrost in Arctic moorlands and bogs often attracts meltwater in warmer seasons, which pools and freezes to form ice lenses , and

10914-435: The transfer of carbon from permafrost soils to terrestrial vegetation and microbes, to the atmosphere, back to vegetation, and finally back to permafrost soils through burial and sedimentation due to cryogenic processes. Some of this carbon is transferred to the ocean and other portions of the globe through the global carbon cycle. The cycle includes the exchange of carbon dioxide and methane between terrestrial components and

11021-404: The upstream face and made of masonry , concrete , plastic membrane, steel sheet piles, timber or other material. The impervious zone may also be inside the embankment, in which case it is referred to as a "core". In the instances where clay is used as the impervious material, the dam is referred to as a "composite" dam. To prevent internal erosion of clay into the rock fill due to seepage forces,

11128-424: The very high emission scenario RCP8.5, 46% of industrial and contaminated sites would start thawing by 2050, and virtually all of them would be affected by the thaw by 2100. Organochlorines and other persistent organic pollutants are of a particular concern, due to their potential to repeatedly reach local communities after their re-release through biomagnification in fish. At worst, future generations born in

11235-444: The water drains or evaporates, soil structure weakens and sometimes becomes viscous until it regains strength with decreasing moisture content. One visible sign of permafrost degradation is the random displacement of trees from their vertical orientation in permafrost areas. Global warming has been increasing permafrost slope disturbances and sediment supplies to fluvial systems, resulting in exceptional increases in river sediment. On

11342-469: The year 2022 concluded that if the goal of preventing 2 °C (3.6 °F) of warming was realized, then the average annual permafrost emissions throughout the 21st century would be equivalent to the year 2019 annual emissions of Russia. Under RCP4.5, a scenario considered close to the current trajectory and where the warming stays slightly below 3 °C (5.4 °F), annual permafrost emissions would be comparable to year 2019 emissions of Western Europe or

11449-528: Was built up over thousands of years. This amount equals almost half of all organic material in all soils , and it is about twice the carbon content of the atmosphere , or around four times larger than the human emissions of carbon between the start of the Industrial Revolution and 2011. Further, most of this carbon (~1,035 billion tons) is stored in what is defined as the near-surface permafrost, no deeper than 3 metres (9.8 ft) below

#446553