134-737: The Oi Formation is a palaeontological formation located in the Ichishi region of Central Japan . It is part of the Miocene Ichishi Group , which dates to the Lower Miocene period. The Kamimitsugano tuffaceous sandstone members of the Oi Formation were found to contain two of the oldest fossils of still existent species (the Ophiomusium lymani and Ophiochiton cf. fastigatus ). This article about
268-471: A jigsaw puzzle . Rocks normally form relatively horizontal layers, with each layer younger than the one underneath it. If a fossil is found between two layers whose ages are known, the fossil's age must lie between the two known ages. Because rock sequences are not continuous, but may be broken up by faults or periods of erosion , it is very difficult to match up rock beds that are not directly next to one another. However, fossils of species that survived for
402-445: A buffer to recruit or titrate ions or antibiotics. Extracellular DNA acts as a functional extracellular matrix component in the biofilms of several bacterial species. It may act as a recognition factor to regulate the attachment and dispersal of specific cell types in the biofilm; it may contribute to biofilm formation; and it may contribute to the biofilm's physical strength and resistance to biological stress. Cell-free fetal DNA
536-462: A cell makes up its genome ; the human genome has approximately 3 billion base pairs of DNA arranged into 46 chromosomes. The information carried by DNA is held in the sequence of pieces of DNA called genes . Transmission of genetic information in genes is achieved via complementary base pairing. For example, in transcription, when a cell uses the information in a gene, the DNA sequence is copied into
670-450: A chain by covalent bonds (known as the phosphodiester linkage ) between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone . The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA. The complementary nitrogenous bases are divided into two groups,
804-552: A collision that formed the Moon about 40 million years later, may have cooled quickly enough to have oceans and an atmosphere about 4,440 million years ago . There is evidence on the Moon of a Late Heavy Bombardment by asteroids from 4,000 to 3,800 million years ago . If, as seems likely, such a bombardment struck Earth at the same time, the first atmosphere and oceans may have been stripped away. Paleontology traces
938-602: A common ancestor. Ideally the "family tree" has only two branches leading from each node ("junction"), but sometimes there is too little information to achieve this, and paleontologists have to make do with junctions that have several branches. The cladistic technique is sometimes fallible, as some features, such as wings or camera eyes , evolved more than once, convergently – this must be taken into account in analyses. Evolutionary developmental biology , commonly abbreviated to "Evo Devo", also helps paleontologists to produce "family trees", and understand fossils. For example,
1072-445: A complementary RNA sequence through the attraction between the DNA and the correct RNA nucleotides. Usually, this RNA copy is then used to make a matching protein sequence in a process called translation , which depends on the same interaction between RNA nucleotides. In an alternative fashion, a cell may copy its genetic information in a process called DNA replication . The details of these functions are covered in other articles; here
1206-456: A constant rate. These " molecular clocks ", however, are fallible, and provide only a very approximate timing: for example, they are not sufficiently precise and reliable for estimating when the groups that feature in the Cambrian explosion first evolved, and estimates produced by different techniques may vary by a factor of two. Earth formed about 4,570 million years ago and, after
1340-403: A data source that is not limited to animals with easily fossilised hard parts, and they reflect organisms' behaviours. Also many traces date from significantly earlier than the body fossils of animals that are thought to have been capable of making them. Whilst exact assignment of trace fossils to their makers is generally impossible, traces may for example provide the earliest physical evidence of
1474-492: A double helix can thus be pulled apart like a zipper, either by a mechanical force or high temperature . As a result of this base pair complementarity, all the information in the double-stranded sequence of a DNA helix is duplicated on each strand, which is vital in DNA replication. This reversible and specific interaction between complementary base pairs is critical for all the functions of DNA in organisms. Most DNA molecules are actually two polymer strands, bound together in
SECTION 10
#17328019190481608-573: A fortunate accident during other research. For example, the 1980 discovery by Luis and Walter Alvarez of iridium , a mainly extraterrestrial metal, in the Cretaceous – Paleogene boundary layer made asteroid impact the most favored explanation for the Cretaceous–Paleogene extinction event – although debate continues about the contribution of volcanism. A complementary approach to developing scientific knowledge, experimental science ,
1742-428: A full set of the mitochondrial genes. Each human mitochondrion contains, on average, approximately 5 such mtDNA molecules. Each human cell contains approximately 100 mitochondria, giving a total number of mtDNA molecules per human cell of approximately 500. However, the amount of mitochondria per cell also varies by cell type, and an egg cell can contain 100,000 mitochondria, corresponding to up to 1,500,000 copies of
1876-439: A helical fashion by noncovalent bonds; this double-stranded (dsDNA) structure is maintained largely by the intrastrand base stacking interactions, which are strongest for G,C stacks. The two strands can come apart—a process known as melting—to form two single-stranded DNA (ssDNA) molecules. Melting occurs at high temperatures, low salt and high pH (low pH also melts DNA, but since DNA is unstable due to acid depurination, low pH
2010-571: A higher number is also possible but this would be against the natural principle of least effort . The phosphate groups of DNA give it similar acidic properties to phosphoric acid and it can be considered as a strong acid . It will be fully ionized at a normal cellular pH, releasing protons which leave behind negative charges on the phosphate groups. These negative charges protect DNA from breakdown by hydrolysis by repelling nucleophiles which could hydrolyze it. Pure DNA extracted from cells forms white, stringy clumps. The expression of genes
2144-667: A long-standing puzzle known as the " C-value enigma ". However, some DNA sequences that do not code protein may still encode functional non-coding RNA molecules, which are involved in the regulation of gene expression . Some noncoding DNA sequences play structural roles in chromosomes. Telomeres and centromeres typically contain few genes but are important for the function and stability of chromosomes. An abundant form of noncoding DNA in humans are pseudogenes , which are copies of genes that have been disabled by mutation. These sequences are usually just molecular fossils , although they can occasionally serve as raw genetic material for
2278-821: A minor group until the first jawed fish appeared in the Late Ordovician . The spread of animals and plants from water to land required organisms to solve several problems, including protection against drying out and supporting themselves against gravity . The earliest evidence of land plants and land invertebrates date back to about 476 million years ago and 490 million years ago respectively. Those invertebrates, as indicated by their trace and body fossils, were shown to be arthropods known as euthycarcinoids . The lineage that produced land vertebrates evolved later but very rapidly between 370 million years ago and 360 million years ago ; recent discoveries have overturned earlier ideas about
2412-409: A narrower, deeper major groove. The A form occurs under non-physiological conditions in partly dehydrated samples of DNA, while in the cell it may be produced in hybrid pairings of DNA and RNA strands, and in enzyme-DNA complexes. Segments of DNA where the bases have been chemically modified by methylation may undergo a larger change in conformation and adopt the Z form . Here, the strands turn about
2546-442: A radius of 10 Å (1.0 nm). According to another study, when measured in a different solution, the DNA chain measured 22–26 Å (2.2–2.6 nm) wide, and one nucleotide unit measured 3.3 Å (0.33 nm) long. The buoyant density of most DNA is 1.7g/cm . DNA does not usually exist as a single strand, but instead as a pair of strands that are held tightly together. These two long strands coil around each other, in
2680-555: A rapid increase in knowledge about the history of life on Earth and to progress in the definition of the geologic time scale , largely based on fossil evidence. Although she was rarely recognised by the scientific community, Mary Anning was a significant contributor to the field of palaeontology during this period; she uncovered multiple novel Mesozoic reptile fossils and deducted that what were then known as bezoar stones are in fact fossilised faeces . In 1822 Henri Marie Ducrotay de Blainville , editor of Journal de Physique , coined
2814-543: A relatively short time can be used to link up isolated rocks: this technique is called biostratigraphy . For instance, the conodont Eoplacognathus pseudoplanus has a short range in the Middle Ordovician period. If rocks of unknown age are found to have traces of E. pseudoplanus , they must have a mid-Ordovician age. Such index fossils must be distinctive, be globally distributed and have a short time range to be useful. However, misleading results are produced if
SECTION 20
#17328019190482948-416: A second protein when read in the opposite direction along the other strand. In bacteria , this overlap may be involved in the regulation of gene transcription, while in viruses, overlapping genes increase the amount of information that can be encoded within the small viral genome. DNA can be twisted like a rope in a process called DNA supercoiling . With DNA in its "relaxed" state, a strand usually circles
3082-445: A simple TTAGGG sequence. These guanine-rich sequences may stabilize chromosome ends by forming structures of stacked sets of four-base units, rather than the usual base pairs found in other DNA molecules. Here, four guanine bases, known as a guanine tetrad , form a flat plate. These flat four-base units then stack on top of each other to form a stable G-quadruplex structure. These structures are stabilized by hydrogen bonding between
3216-576: A specific stratigraphic formation in Japan is a stub . You can help Misplaced Pages by expanding it . Paleontology Paleontology ( / ˌ p eɪ l i ɒ n ˈ t ɒ l ə dʒ i , ˌ p æ l i -, - ən -/ PAY -lee-on- TOL -ə-jee, PAL -ee-, -ən- ), also spelled palaeontology or palæontology , is the scientific study of life that existed prior to the start of the Holocene epoch (roughly 11,700 years before present). It includes
3350-608: A steady increase in brain size after about 3 million years ago . There is a long-running debate about whether modern humans are descendants of a single small population in Africa , which then migrated all over the world less than 200,000 years ago and replaced previous hominine species, or arose worldwide at the same time as a result of interbreeding . Life on earth has suffered occasional mass extinctions at least since 542 million years ago . Despite their disastrous effects, mass extinctions have sometimes accelerated
3484-413: Is a polymer composed of two polynucleotide chains that coil around each other to form a double helix . The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses . DNA and ribonucleic acid (RNA) are nucleic acids . Alongside proteins , lipids and complex carbohydrates ( polysaccharides ), nucleic acids are one of
3618-447: Is called intercalation . Most intercalators are aromatic and planar molecules; examples include ethidium bromide , acridines , daunomycin , and doxorubicin . For an intercalator to fit between base pairs, the bases must separate, distorting the DNA strands by unwinding of the double helix. This inhibits both transcription and DNA replication, causing toxicity and mutations. As a result, DNA intercalators may be carcinogens , and in
3752-435: Is called a polynucleotide . The backbone of the DNA strand is made from alternating phosphate and sugar groups. The sugar in DNA is 2-deoxyribose , which is a pentose (five- carbon ) sugar. The sugars are joined by phosphate groups that form phosphodiester bonds between the third and fifth carbon atoms of adjacent sugar rings. These are known as the 3′-end (three prime end), and 5′-end (five prime end) carbons,
3886-595: Is composed only of eukaryotic cells, and the earliest evidence for it is the Francevillian Group Fossils from 2,100 million years ago , although specialisation of cells for different functions first appears between 1,430 million years ago (a possible fungus) and 1,200 million years ago (a probable red alga ). Sexual reproduction may be a prerequisite for specialisation of cells, as an asexual multicellular organism might be at risk of being taken over by rogue cells that retain
4020-434: Is dependent on ionic strength and the concentration of DNA. As a result, it is both the percentage of GC base pairs and the overall length of a DNA double helix that determines the strength of the association between the two strands of DNA. Long DNA helices with a high GC -content have more strongly interacting strands, while short helices with high AT content have more weakly interacting strands. In biology, parts of
4154-482: Is hard to decide at what level to place a new higher-level grouping, e.g. genus or family or order ; this is important since the Linnaean rules for naming groups are tied to their levels, and hence if a group is moved to a different level it must be renamed. Paleontologists generally use approaches based on cladistics , a technique for working out the evolutionary "family tree" of a set of organisms. It works by
Oi Formation - Misplaced Pages Continue
4288-411: Is influenced by how the DNA is packaged in chromosomes, in a structure called chromatin . Base modifications can be involved in packaging, with regions that have low or no gene expression usually containing high levels of methylation of cytosine bases. DNA packaging and its influence on gene expression can also occur by covalent modifications of the histone protein core around which DNA is wrapped in
4422-432: Is introduced by enzymes called topoisomerases . These enzymes are also needed to relieve the twisting stresses introduced into DNA strands during processes such as transcription and DNA replication . DNA exists in many possible conformations that include A-DNA , B-DNA , and Z-DNA forms, although only B-DNA and Z-DNA have been directly observed in functional organisms. The conformation that DNA adopts depends on
4556-422: Is nothing special about the four natural nucleobases that evolved on Earth. On the other hand, DNA is tightly related to RNA which does not only act as a transcript of DNA but also performs as molecular machines many tasks in cells. For this purpose it has to fold into a structure. It has been shown that to allow to create all possible structures at least four bases are required for the corresponding RNA , while
4690-443: Is often said to work by conducting experiments to disprove hypotheses about the workings and causes of natural phenomena. This approach cannot prove a hypothesis, since some later experiment may disprove it, but the accumulation of failures to disprove is often compelling evidence in favor. However, when confronted with totally unexpected phenomena, such as the first evidence for invisible radiation , experimental scientists often use
4824-432: Is one of four types of nucleobases (or bases ). It is the sequence of these four nucleobases along the backbone that encodes genetic information. RNA strands are created using DNA strands as a template in a process called transcription , where DNA bases are exchanged for their corresponding bases except in the case of thymine (T), for which RNA substitutes uracil (U). Under the genetic code , these RNA strands specify
4958-594: Is one that contained an extinct "crocodile-like" marine reptile, which eventually came to be known as the mosasaurid Mosasaurus of the Cretaceous period. The first half of the 19th century saw geological and paleontological activity become increasingly well organised with the growth of geologic societies and museums and an increasing number of professional geologists and fossil specialists. Interest increased for reasons that were not purely scientific, as geology and paleontology helped industrialists to find and exploit natural resources such as coal. This contributed to
5092-401: Is our only means of giving rocks greater than about 50 million years old an absolute age, and can be accurate to within 0.5% or better. Although radiometric dating requires very careful laboratory work, its basic principle is simple: the rates at which various radioactive elements decay are known, and so the ratio of the radioactive element to the element into which it decays shows how long ago
5226-517: Is rarely used). The stability of the dsDNA form depends not only on the GC -content (% G,C basepairs) but also on sequence (since stacking is sequence specific) and also length (longer molecules are more stable). The stability can be measured in various ways; a common way is the melting temperature (also called T m value), which is the temperature at which 50% of the double-strand molecules are converted to single-strand molecules; melting temperature
5360-428: Is recreated by an enzyme called DNA polymerase . This enzyme makes the complementary strand by finding the correct base through complementary base pairing and bonding it onto the original strand. As DNA polymerases can only extend a DNA strand in a 5′ to 3′ direction, different mechanisms are used to copy the antiparallel strands of the double helix. In this way, the base on the old strand dictates which base appears on
5494-516: Is the largest human chromosome with approximately 220 million base pairs , and would be 85 mm long if straightened. In eukaryotes , in addition to nuclear DNA , there is also mitochondrial DNA (mtDNA) which encodes certain proteins used by the mitochondria. The mtDNA is usually relatively small in comparison to the nuclear DNA. For example, the human mitochondrial DNA forms closed circular molecules, each of which contains 16,569 DNA base pairs, with each such molecule normally containing
Oi Formation - Misplaced Pages Continue
5628-503: Is thought to have been propelled by coevolution with pollinating insects. Social insects appeared around the same time and, although they account for only small parts of the insect "family tree", now form over 50% of the total mass of all insects. Humans evolved from a lineage of upright-walking apes whose earliest fossils date from over 6 million years ago . Although early members of this lineage had chimp -sized brains, about 25% as big as modern humans', there are signs of
5762-489: Is to allow the cell to replicate chromosome ends using the enzyme telomerase , as the enzymes that normally replicate DNA cannot copy the extreme 3′ ends of chromosomes. These specialized chromosome caps also help protect the DNA ends, and stop the DNA repair systems in the cell from treating them as damage to be corrected. In human cells , telomeres are usually lengths of single-stranded DNA containing several thousand repeats of
5896-657: The DNA sequence . Mutagens include oxidizing agents , alkylating agents and also high-energy electromagnetic radiation such as ultraviolet light and X-rays . The type of DNA damage produced depends on the type of mutagen. For example, UV light can damage DNA by producing thymine dimers , which are cross-links between pyrimidine bases. On the other hand, oxidants such as free radicals or hydrogen peroxide produce multiple forms of damage, including base modifications, particularly of guanosine, and double-strand breaks. A typical human cell contains about 150,000 bases that have suffered oxidative damage. Of these oxidative lesions,
6030-582: The Middle Ages the Persian naturalist Ibn Sina , known as Avicenna in Europe, discussed fossils and proposed a theory of petrifying fluids on which Albert of Saxony elaborated in the 14th century. The Chinese naturalist Shen Kuo (1031–1095) proposed a theory of climate change based on the presence of petrified bamboo in regions that in his time were too dry for bamboo. In early modern Europe ,
6164-538: The Neogene - Quaternary . In deeper-level deposits in western Europe are early-aged mammals such as the palaeothere perissodactyl Palaeotherium and the anoplotheriid artiodactyl Anoplotherium , both of which were described earliest after the former two genera, which today are known to date to the Paleogene period. Cuvier figured out that even older than the two levels of deposits with extinct large mammals
6298-637: The Permian–Triassic extinction event . Amphibians Extinct Synapsids Mammals Extinct reptiles Lizards and snakes Extinct Archosaurs Crocodilians Extinct Dinosaurs Birds Naming groups of organisms in a way that is clear and widely agreed is important, as some disputes in paleontology have been based just on misunderstandings over names. Linnaean taxonomy is commonly used for classifying living organisms, but runs into difficulties when dealing with newly discovered organisms that are significantly different from known ones. For example: it
6432-468: The Permian–Triassic extinction event . A relatively recent discipline, molecular phylogenetics , compares the DNA and RNA of modern organisms to re-construct the "family trees" of their evolutionary ancestors. It has also been used to estimate the dates of important evolutionary developments, although this approach is controversial because of doubts about the reliability of the " molecular clock ". Techniques from engineering have been used to analyse how
6566-406: The amino-acid sequences of proteins is determined by the rules of translation , known collectively as the genetic code . The genetic code consists of three-letter 'words' called codons formed from a sequence of three nucleotides (e.g. ACT, CAG, TTT). In transcription, the codons of a gene are copied into messenger RNA by RNA polymerase . This RNA copy is then decoded by a ribosome that reads
6700-469: The cell nucleus as nuclear DNA , and some in the mitochondria as mitochondrial DNA or in chloroplasts as chloroplast DNA . In contrast, prokaryotes ( bacteria and archaea ) store their DNA only in the cytoplasm , in circular chromosomes . Within eukaryotic chromosomes, chromatin proteins, such as histones , compact and organize DNA. These compacting structures guide the interactions between DNA and other proteins, helping control which parts of
6834-454: The embryological development of some modern brachiopods suggests that brachiopods may be descendants of the halkieriids , which became extinct in the Cambrian period. Paleontology seeks to map out how living things have changed through time. A substantial hurdle to this aim is the difficulty of working out how old fossils are. Beds that preserve fossils typically lack the radioactive elements needed for radiometric dating . This technique
SECTION 50
#17328019190486968-526: The " jigsaw puzzles " of biostratigraphy (arrangement of rock layers from youngest to oldest). Classifying ancient organisms is also difficult, as many do not fit well into the Linnaean taxonomy classifying living organisms, and paleontologists more often use cladistics to draw up evolutionary "family trees". The final quarter of the 20th century saw the development of molecular phylogenetics , which investigates how closely organisms are related by measuring
7102-419: The 3′ and 5′ carbons along the sugar-phosphate backbone confers directionality (sometimes called polarity) to each DNA strand. In a nucleic acid double helix , the direction of the nucleotides in one strand is opposite to their direction in the other strand: the strands are antiparallel . The asymmetric ends of DNA strands are said to have a directionality of five prime end (5′ ), and three prime end (3′), with
7236-591: The 5′ end having a terminal phosphate group and the 3′ end a terminal hydroxyl group. One major difference between DNA and RNA is the sugar, with the 2-deoxyribose in DNA being replaced by the related pentose sugar ribose in RNA. The DNA double helix is stabilized primarily by two forces: hydrogen bonds between nucleotides and base-stacking interactions among aromatic nucleobases. The four bases found in DNA are adenine ( A ), cytosine ( C ), guanine ( G ) and thymine ( T ). These four bases are attached to
7370-435: The DNA are transcribed. DNA is a long polymer made from repeating units called nucleotides . The structure of DNA is dynamic along its length, being capable of coiling into tight loops and other shapes. In all species it is composed of two helical chains, bound to each other by hydrogen bonds . Both chains are coiled around the same axis, and have the same pitch of 34 ångströms (3.4 nm ). The pair of chains have
7504-460: The DNA double helix that need to separate easily, such as the TATAAT Pribnow box in some promoters , tend to have a high AT content, making the strands easier to pull apart. In the laboratory, the strength of this interaction can be measured by finding the melting temperature T m necessary to break half of the hydrogen bonds. When all the base pairs in a DNA double helix melt,
7638-555: The Early Cambrian , along with several "weird wonders" that bear little obvious resemblance to any modern animals. There is a long-running debate about whether this Cambrian explosion was truly a very rapid period of evolutionary experimentation; alternative views are that modern-looking animals began evolving earlier but fossils of their precursors have not yet been found, or that the "weird wonders" are evolutionary "aunts" and "cousins" of modern groups. Vertebrates remained
7772-463: The Earth's organic and inorganic past". William Whewell (1794–1866) classified paleontology as one of the historical sciences, along with archaeology , geology, astronomy , cosmology , philology and history itself: paleontology aims to describe phenomena of the past and to reconstruct their causes. Hence it has three main elements: description of past phenomena; developing a general theory about
7906-401: The RNA sequence by base-pairing the messenger RNA to transfer RNA , which carries amino acids. Since there are 4 bases in 3-letter combinations, there are 64 possible codons (4 combinations). These encode the twenty standard amino acids , giving most amino acids more than one possible codon. There are also three 'stop' or 'nonsense' codons signifying the end of the coding region; these are
8040-491: The TAG, TAA, and TGA codons, (UAG, UAA, and UGA on the mRNA). Cell division is essential for an organism to grow, but, when a cell divides, it must replicate the DNA in its genome so that the two daughter cells have the same genetic information as their parent. The double-stranded structure of DNA provides a simple mechanism for DNA replication . Here, the two strands are separated and then each strand's complementary DNA sequence
8174-412: The ability to reproduce. The earliest known animals are cnidarians from about 580 million years ago , but these are so modern-looking that they must be descendants of earlier animals. Early fossils of animals are rare because they had not developed mineralised , easily fossilized hard parts until about 548 million years ago . The earliest modern-looking bilaterian animals appear in
SECTION 60
#17328019190488308-515: The appearance of moderately complex animals (comparable to earthworms ). Geochemical observations may help to deduce the global level of biological activity at a certain period, or the affinity of certain fossils. For example, geochemical features of rocks may reveal when life first arose on Earth, and may provide evidence of the presence of eukaryotic cells, the type from which all multicellular organisms are built. Analyses of carbon isotope ratios may help to explain major transitions such as
8442-625: The atmosphere increased their effectiveness as nurseries of evolution. While eukaryotes , cells with complex internal structures, may have been present earlier, their evolution speeded up when they acquired the ability to transform oxygen from a poison to a powerful source of metabolic energy. This innovation may have come from primitive eukaryotes capturing oxygen-powered bacteria as endosymbionts and transforming them into organelles called mitochondria . The earliest evidence of complex eukaryotes with organelles (such as mitochondria) dates from 1,850 million years ago . Multicellular life
8576-442: The axis of the double helix once every 10.4 base pairs, but if the DNA is twisted the strands become more tightly or more loosely wound. If the DNA is twisted in the direction of the helix, this is positive supercoiling, and the bases are held more tightly together. If they are twisted in the opposite direction, this is negative supercoiling, and the bases come apart more easily. In nature, most DNA has slight negative supercoiling that
8710-415: The bodies of ancient organisms might have worked, for example the running speed and bite strength of Tyrannosaurus , or the flight mechanics of Microraptor . It is relatively commonplace to study the internal details of fossils using X-ray microtomography . Paleontology, biology, archaeology, and paleoneurobiology combine to study endocranial casts (endocasts) of species related to humans to clarify
8844-729: The border between biology and geology , but it differs from archaeology in that it excludes the study of anatomically modern humans . It now uses techniques drawn from a wide range of sciences, including biochemistry , mathematics , and engineering. Use of all these techniques has enabled paleontologists to discover much of the evolutionary history of life , almost back to when Earth became capable of supporting life, nearly 4 billion years ago. As knowledge has increased, paleontology has developed specialised sub-divisions, some of which focus on different types of fossil organisms while others study ecology and environmental history, such as ancient climates . Body fossils and trace fossils are
8978-407: The canonical bases plus uracil. Twin helical strands form the DNA backbone. Another double helix may be found tracing the spaces, or grooves, between the strands. These voids are adjacent to the base pairs and may provide a binding site . As the strands are not symmetrically located with respect to each other, the grooves are unequally sized. The major groove is 22 ångströms (2.2 nm) wide, while
9112-467: The case of thalidomide, a teratogen . Others such as benzo[ a ]pyrene diol epoxide and aflatoxin form DNA adducts that induce errors in replication. Nevertheless, due to their ability to inhibit DNA transcription and replication, other similar toxins are also used in chemotherapy to inhibit rapidly growing cancer cells. DNA usually occurs as linear chromosomes in eukaryotes , and circular chromosomes in prokaryotes . The set of chromosomes in
9246-401: The causes of various types of change; and applying those theories to specific facts. When trying to explain the past, paleontologists and other historical scientists often construct a set of one or more hypotheses about the causes and then look for a " smoking gun ", a piece of evidence that strongly accords with one hypothesis over any others. Sometimes researchers discover a "smoking gun" by
9380-581: The cell (see below) , but the major and minor grooves are always named to reflect the differences in width that would be seen if the DNA was twisted back into the ordinary B form . In a DNA double helix, each type of nucleobase on one strand bonds with just one type of nucleobase on the other strand. This is called complementary base pairing . Purines form hydrogen bonds to pyrimidines, with adenine bonding only to thymine in two hydrogen bonds, and cytosine bonding only to guanine in three hydrogen bonds. This arrangement of two nucleotides binding together across
9514-763: The characteristics and evolution of humans as a species. When dealing with evidence about humans, archaeologists and paleontologists may work together – for example paleontologists might identify animal or plant fossils around an archaeological site , to discover the people who lived there, and what they ate; or they might analyze the climate at the time of habitation. In addition, paleontology often borrows techniques from other sciences, including biology, osteology , ecology, chemistry , physics and mathematics. For example, geochemical signatures from rocks may help to discover when life first arose on Earth, and analyses of carbon isotope ratios may help to identify climate changes and even to explain major transitions such as
9648-619: The chromatin structure or else by remodeling carried out by chromatin remodeling complexes (see Chromatin remodeling ). There is, further, crosstalk between DNA methylation and histone modification, so they can coordinately affect chromatin and gene expression. For one example, cytosine methylation produces 5-methylcytosine , which is important for X-inactivation of chromosomes. The average level of methylation varies between organisms—the worm Caenorhabditis elegans lacks cytosine methylation, while vertebrates have higher levels, with up to 1% of their DNA containing 5-methylcytosine. Despite
9782-520: The chronological order in which rocks were formed, is useful to both paleontologists and geologists. Biogeography studies the spatial distribution of organisms, and is also linked to geology, which explains how Earth's geography has changed over time. Although paleontology became established around 1800, earlier thinkers had noticed aspects of the fossil record. The ancient Greek philosopher Xenophanes (570–480 BCE) concluded from fossil sea shells that some areas of land were once under water. During
9916-480: The conditions found in cells, it is not a well-defined conformation but a family of related DNA conformations that occur at the high hydration levels present in cells. Their corresponding X-ray diffraction and scattering patterns are characteristic of molecular paracrystals with a significant degree of disorder. Compared to B-DNA, the A-DNA form is a wider right-handed spiral, with a shallow, wide minor groove and
10050-405: The creation of new genes through the process of gene duplication and divergence . A gene is a sequence of DNA that contains genetic information and can influence the phenotype of an organism. Within a gene, the sequence of bases along a DNA strand defines a messenger RNA sequence, which then defines one or more protein sequences. The relationship between the nucleotide sequences of genes and
10184-449: The cytoplasm called the nucleoid . The genetic information in a genome is held within genes, and the complete set of this information in an organism is called its genotype . A gene is a unit of heredity and is a region of DNA that influences a particular characteristic in an organism. Genes contain an open reading frame that can be transcribed, and regulatory sequences such as promoters and enhancers , which control transcription of
10318-445: The date when lineages first appeared. For instance, if fossils of B or C date to X million years ago and the calculated "family tree" says A was an ancestor of B and C, then A must have evolved more than X million years ago. It is also possible to estimate how long ago two living clades diverged – i.e. approximately how long ago their last common ancestor must have lived – by assuming that DNA mutations accumulate at
10452-594: The development of mammalian traits such as endothermy and hair. After the Cretaceous–Paleogene extinction event 66 million years ago killed off all the dinosaurs except the birds, mammals increased rapidly in size and diversity, and some took to the air and the sea. Fossil evidence indicates that flowering plants appeared and rapidly diversified in the Early Cretaceous between 130 million years ago and 90 million years ago . Their rapid rise to dominance of terrestrial ecosystems
10586-561: The development of the body plans of most animal phyla . The discovery of fossils of the Ediacaran biota and developments in paleobiology extended knowledge about the history of life back far before the Cambrian. Increasing awareness of Gregor Mendel 's pioneering work in genetics led first to the development of population genetics and then in the mid-20th century to the modern evolutionary synthesis , which explains evolution as
10720-482: The different levels of deposits represented different time periods in the early 19th century. The surface-level deposits in the Americas contained later mammals like the megatheriid ground sloth Megatherium and the mammutid proboscidean Mammut (later known informally as a "mastodon"), which were some of the earliest-named fossil mammal genera with official taxonomic authorities. They today are known to date to
10854-405: The double helix (from six-carbon ring to six-carbon ring) is called a Watson-Crick base pair. DNA with high GC-content is more stable than DNA with low GC -content. A Hoogsteen base pair (hydrogen bonding the 6-carbon ring to the 5-carbon ring) is a rare variation of base-pairing. As hydrogen bonds are not covalent , they can be broken and rejoined relatively easily. The two strands of DNA in
10988-442: The edges of the bases and chelation of a metal ion in the centre of each four-base unit. Other structures can also be formed, with the central set of four bases coming from either a single strand folded around the bases, or several different parallel strands, each contributing one base to the central structure. In addition to these stacked structures, telomeres also form large loop structures called telomere loops, or T-loops. Here,
11122-481: The end of an otherwise complementary double-strand of DNA. However, branched DNA can occur if a third strand of DNA is introduced and contains adjoining regions able to hybridize with the frayed regions of the pre-existing double-strand. Although the simplest example of branched DNA involves only three strands of DNA, complexes involving additional strands and multiple branches are also possible. Branched DNA can be used in nanotechnology to construct geometric shapes, see
11256-409: The end of the 20th century have been particularly important as they have provided new information about the earliest evolution of animals, early fish, dinosaurs and the evolution of birds. The last few decades of the 20th century saw a renewed interest in mass extinctions and their role in the evolution of life on Earth. There was also a renewed interest in the Cambrian explosion that apparently saw
11390-491: The evolution of life on earth. When dominance of an ecological niche passes from one group of organisms to another, this is rarely because the new dominant group outcompetes the old, but usually because an extinction event allows a new group, which may possess an advantageous trait, to outlive the old and move into its niche. DNA Deoxyribonucleic acid ( / d iː ˈ ɒ k s ɪ ˌ r aɪ b oʊ nj uː ˌ k l iː ɪ k , - ˌ k l eɪ -/ ; DNA )
11524-410: The evolution of the human brain. Paleontology even contributes to astrobiology , the investigation of possible life on other planets , by developing models of how life may have arisen and by providing techniques for detecting evidence of life. As knowledge has increased, paleontology has developed specialised subdivisions. Vertebrate paleontology concentrates on fossils from the earliest fish to
11658-466: The evolutionary history of life back to over 3,000 million years ago , possibly as far as 3,800 million years ago . The oldest clear evidence of life on Earth dates to 3,000 million years ago , although there have been reports, often disputed, of fossil bacteria from 3,400 million years ago and of geochemical evidence for the presence of life 3,800 million years ago . Some scientists have proposed that life on Earth
11792-555: The exceptional events that cause quick burial make it difficult to study the normal environments of the animals. The sparseness of the fossil record means that organisms are expected to exist long before and after they are found in the fossil record – this is known as the Signor–Lipps effect . Trace fossils consist mainly of tracks and burrows, but also include coprolites (fossil feces ) and marks left by feeding. Trace fossils are particularly significant because they represent
11926-418: The focus is on the interactions between DNA and other molecules that mediate the function of the genome. Genomic DNA is tightly and orderly packed in the process called DNA condensation , to fit the small available volumes of the cell. In eukaryotes, DNA is located in the cell nucleus , with small amounts in mitochondria and chloroplasts . In prokaryotes, the DNA is held within an irregularly shaped body in
12060-515: The focus of paleontology shifted to understanding evolutionary paths, including human evolution , and evolutionary theory. The last half of the 19th century saw a tremendous expansion in paleontological activity, especially in North America. The trend continued in the 20th century with additional regions of the Earth being opened to systematic fossil collection. Fossils found in China near
12194-449: The following: At the end of the 18th century Georges Cuvier 's work established comparative anatomy as a scientific discipline and, by proving that some fossil animals resembled no living ones, demonstrated that animals could become extinct , leading to the emergence of paleontology. The expanding knowledge of the fossil record also played an increasing role in the development of geology, particularly stratigraphy . Cuvier proved that
12328-580: The fossil record: different environments are more favorable to the preservation of different types of organism or parts of organisms. Further, only the parts of organisms that were already mineralised are usually preserved, such as the shells of molluscs. Since most animal species are soft-bodied, they decay before they can become fossilised. As a result, although there are 30-plus phyla of living animals, two-thirds have never been found as fossils. Occasionally, unusual environments may preserve soft tissues. These lagerstätten allow paleontologists to examine
12462-461: The four major types of macromolecules that are essential for all known forms of life . The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides . Each nucleotide is composed of one of four nitrogen-containing nucleobases ( cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose , and a phosphate group . The nucleotides are joined to one another in
12596-448: The functions of these RNAs are not entirely clear. One proposal is that antisense RNAs are involved in regulating gene expression through RNA-RNA base pairing. A few DNA sequences in prokaryotes and eukaryotes, and more in plasmids and viruses , blur the distinction between sense and antisense strands by having overlapping genes . In these cases, some DNA sequences do double duty, encoding one protein when read along one strand, and
12730-448: The helical axis in a left-handed spiral, the opposite of the more common B form. These unusual structures can be recognized by specific Z-DNA binding proteins and may be involved in the regulation of transcription. For many years, exobiologists have proposed the existence of a shadow biosphere , a postulated microbial biosphere of Earth that uses radically different biochemical and molecular processes than currently known life. One of
12864-687: The history and driving forces behind their evolution. Land plants were so successful that their detritus caused an ecological crisis in the Late Devonian , until the evolution of fungi that could digest dead wood. During the Permian period, synapsids , including the ancestors of mammals , may have dominated land environments, but this ended with the Permian–Triassic extinction event 251 million years ago , which came very close to wiping out all complex life. The extinctions were apparently fairly sudden, at least among vertebrates. During
12998-533: The history of Earth's climate and the mechanisms that have changed it – which have sometimes included evolutionary developments, for example the rapid expansion of land plants in the Devonian period removed more carbon dioxide from the atmosphere, reducing the greenhouse effect and thus helping to cause an ice age in the Carboniferous period. Biostratigraphy , the use of fossils to work out
13132-448: The hydration level, DNA sequence, the amount and direction of supercoiling, chemical modifications of the bases, the type and concentration of metal ions , and the presence of polyamines in solution. The first published reports of A-DNA X-ray diffraction patterns —and also B-DNA—used analyses based on Patterson functions that provided only a limited amount of structural information for oriented fibers of DNA. An alternative analysis
13266-427: The hydrolytic activities of cellular water, etc., also occur frequently. Although most of these damages are repaired, in any cell some DNA damage may remain despite the action of repair processes. These remaining DNA damages accumulate with age in mammalian postmitotic tissues. This accumulation appears to be an important underlying cause of aging. Many mutagens fit into the space between two adjacent base pairs, this
13400-542: The immediate ancestors of modern mammals . Invertebrate paleontology deals with fossils such as molluscs , arthropods , annelid worms and echinoderms . Paleobotany studies fossil plants , algae , and fungi. Palynology , the study of pollen and spores produced by land plants and protists , straddles paleontology and botany , as it deals with both living and fossil organisms. Micropaleontology deals with microscopic fossil organisms of all kinds. Instead of focusing on individual organisms, paleoecology examines
13534-412: The importance of 5-methylcytosine, it can deaminate to leave a thymine base, so methylated cytosines are particularly prone to mutations . Other base modifications include adenine methylation in bacteria, the presence of 5-hydroxymethylcytosine in the brain , and the glycosylation of uracil to produce the "J-base" in kinetoplastids . DNA can be damaged by many sorts of mutagens , which change
13668-434: The index fossils turn out to have longer fossil ranges than first thought. Stratigraphy and biostratigraphy can in general provide only relative dating ( A was before B ), which is often sufficient for studying evolution. However, this is difficult for some time periods, because of the problems involved in matching up rocks of the same age across different continents . Family-tree relationships may also help to narrow down
13802-538: The interactions between different ancient organisms, such as their food chains , and the two-way interactions with their environments. For example, the development of oxygenic photosynthesis by bacteria caused the oxygenation of the atmosphere and hugely increased the productivity and diversity of ecosystems . Together, these led to the evolution of complex eukaryotic cells, from which all multicellular organisms are built. Paleoclimatology , although sometimes treated as part of paleoecology, focuses more on
13936-463: The internal anatomy of animals that in other sediments are represented only by shells, spines, claws, etc. – if they are preserved at all. However, even lagerstätten present an incomplete picture of life at the time. The majority of organisms living at the time are probably not represented because lagerstätten are restricted to a narrow range of environments, e.g. where soft-bodied organisms can be preserved very quickly by events such as mudslides; and
14070-456: The investigation of evolutionary "family trees" by techniques derived from biochemistry , began to make an impact, particularly when it was proposed that the human lineage had diverged from apes much more recently than was generally thought at the time. Although this early study compared proteins from apes and humans, most molecular phylogenetics research is now based on comparisons of RNA and DNA . Fossils of organisms' bodies are usually
14204-409: The logic that, if groups B and C have more similarities to each other than either has to group A, then B and C are more closely related to each other than either is to A. Characters that are compared may be anatomical , such as the presence of a notochord , or molecular , by comparing sequences of DNA or proteins . The result of a successful analysis is a hierarchy of clades – groups that share
14338-441: The minor groove is 12 Å (1.2 nm) in width. Due to the larger width of the major groove, the edges of the bases are more accessible in the major groove than in the minor groove. As a result, proteins such as transcription factors that can bind to specific sequences in double-stranded DNA usually make contact with the sides of the bases exposed in the major groove. This situation varies in unusual conformations of DNA within
14472-516: The mitochondrial genome (constituting up to 90% of the DNA of the cell). A DNA sequence is called a "sense" sequence if it is the same as that of a messenger RNA copy that is translated into protein. The sequence on the opposite strand is called the "antisense" sequence. Both sense and antisense sequences can exist on different parts of the same strand of DNA (i.e. both strands can contain both sense and antisense sequences). In both prokaryotes and eukaryotes, antisense RNA sequences are produced, but
14606-477: The most dangerous are double-strand breaks, as these are difficult to repair and can produce point mutations , insertions , deletions from the DNA sequence, and chromosomal translocations . These mutations can cause cancer . Because of inherent limits in the DNA repair mechanisms, if humans lived long enough, they would all eventually develop cancer. DNA damages that are naturally occurring , due to normal cellular processes that produce reactive oxygen species,
14740-409: The most informative type of evidence. The most common types are wood, bones, and shells. Fossilisation is a rare event, and most fossils are destroyed by erosion or metamorphism before they can be observed. Hence the fossil record is very incomplete, increasingly so further back in time. Despite this, it is often adequate to illustrate the broader patterns of life's history. There are also biases in
14874-464: The new strand, and the cell ends up with a perfect copy of its DNA. Naked extracellular DNA (eDNA), most of it released by cell death, is nearly ubiquitous in the environment. Its concentration in soil may be as high as 2 μg/L, and its concentration in natural aquatic environments may be as high at 88 μg/L. Various possible functions have been proposed for eDNA: it may be involved in horizontal gene transfer ; it may provide nutrients; and it may act as
15008-454: The open reading frame. In many species , only a small fraction of the total sequence of the genome encodes protein. For example, only about 1.5% of the human genome consists of protein-coding exons , with over 50% of human DNA consisting of non-coding repetitive sequences . The reasons for the presence of so much noncoding DNA in eukaryotic genomes and the extraordinary differences in genome size , or C-value , among species, represent
15142-414: The outcome of events such as mutations and horizontal gene transfer , which provide genetic variation , with genetic drift and natural selection driving changes in this variation over time. Within the next few years the role and operation of DNA in genetic inheritance were discovered, leading to what is now known as the "Central Dogma" of molecular biology . In the 1960s molecular phylogenetics ,
15276-428: The place of thymine in RNA and differs from thymine by lacking a methyl group on its ring. In addition to RNA and DNA, many artificial nucleic acid analogues have been created to study the properties of nucleic acids, or for use in biotechnology. Modified bases occur in DNA. The first of these recognized was 5-methylcytosine , which was found in the genome of Mycobacterium tuberculosis in 1925. The reason for
15410-530: The presence of these noncanonical bases in bacterial viruses ( bacteriophages ) is to avoid the restriction enzymes present in bacteria. This enzyme system acts at least in part as a molecular immune system protecting bacteria from infection by viruses. Modifications of the bases cytosine and adenine, the more common and modified DNA bases, play vital roles in the epigenetic control of gene expression in plants and animals. A number of noncanonical bases are known to occur in DNA. Most of these are modifications of
15544-412: The prime symbol being used to distinguish these carbon atoms from those of the base to which the deoxyribose forms a glycosidic bond . Therefore, any DNA strand normally has one end at which there is a phosphate group attached to the 5′ carbon of a ribose (the 5′ phosphoryl) and another end at which there is a free hydroxyl group attached to the 3′ carbon of a ribose (the 3′ hydroxyl). The orientation of
15678-452: The principal types of evidence about ancient life, and geochemical evidence has helped to decipher the evolution of life before there were organisms large enough to leave body fossils. Estimating the dates of these remains is essential but difficult: sometimes adjacent rock layers allow radiometric dating , which provides absolute dates that are accurate to within 0.5%, but more often paleontologists have to rely on relative dating by solving
15812-466: The proposals was the existence of lifeforms that use arsenic instead of phosphorus in DNA . A report in 2010 of the possibility in the bacterium GFAJ-1 was announced, though the research was disputed, and evidence suggests the bacterium actively prevents the incorporation of arsenic into the DNA backbone and other biomolecules. At the ends of the linear chromosomes are specialized regions of DNA called telomeres . The main function of these regions
15946-432: The radioactive element was incorporated into the rock. Radioactive elements are common only in rocks with a volcanic origin, and so the only fossil-bearing rocks that can be dated radiometrically are a few volcanic ash layers. Consequently, paleontologists must usually rely on stratigraphy to date fossils. Stratigraphy is the science of deciphering the "layer-cake" that is the sedimentary record, and has been compared to
16080-701: The same approach as historical scientists: construct a set of hypotheses about the causes and then look for a "smoking gun". Paleontology lies between biology and geology since it focuses on the record of past life, but its main source of evidence is fossils in rocks. For historical reasons, paleontology is part of the geology department at many universities: in the 19th and early 20th centuries, geology departments found fossil evidence important for dating rocks, while biology departments showed little interest. Paleontology also has some overlap with archaeology , which primarily works with objects made by humans and with human remains, while paleontologists are interested in
16214-432: The section on uses in technology below. Several artificial nucleobases have been synthesized, and successfully incorporated in the eight-base DNA analogue named Hachimoji DNA . Dubbed S, B, P, and Z, these artificial bases are capable of bonding with each other in a predictable way (S–B and P–Z), maintain the double helix structure of DNA, and be transcribed to RNA. Their existence could be seen as an indication that there
16348-431: The sequence of amino acids within proteins in a process called translation . Within eukaryotic cells, DNA is organized into long structures called chromosomes . Before typical cell division , these chromosomes are duplicated in the process of DNA replication, providing a complete set of chromosomes for each daughter cell. Eukaryotic organisms ( animals , plants , fungi and protists ) store most of their DNA inside
16482-476: The shape of a double helix . The nucleotide contains both a segment of the backbone of the molecule (which holds the chain together) and a nucleobase (which interacts with the other DNA strand in the helix). A nucleobase linked to a sugar is called a nucleoside , and a base linked to a sugar and to one or more phosphate groups is called a nucleotide . A biopolymer comprising multiple linked nucleotides (as in DNA)
16616-478: The similarity of the DNA in their genomes . Molecular phylogenetics has also been used to estimate the dates when species diverged, but there is controversy about the reliability of the molecular clock on which such estimates depend. The simplest definition of "paleontology" is "the study of ancient life". The field seeks information about several aspects of past organisms: "their identity and origin, their environment and evolution, and what they can tell us about
16750-552: The single-ringed pyrimidines and the double-ringed purines . In DNA, the pyrimidines are thymine and cytosine; the purines are adenine and guanine. Both strands of double-stranded DNA store the same biological information . This information is replicated when the two strands separate. A large part of DNA (more than 98% for humans) is non-coding , meaning that these sections do not serve as patterns for protein sequences . The two strands of DNA run in opposite directions to each other and are thus antiparallel . Attached to each sugar
16884-502: The single-stranded DNA curls around in a long circle stabilized by telomere-binding proteins. At the very end of the T-loop, the single-stranded telomere DNA is held onto a region of double-stranded DNA by the telomere strand disrupting the double-helical DNA and base pairing to one of the two strands. This triple-stranded structure is called a displacement loop or D-loop . In DNA, fraying occurs when non-complementary regions exist at
17018-470: The slow recovery from this catastrophe a previously obscure group, archosaurs , became the most abundant and diverse terrestrial vertebrates. One archosaur group, the dinosaurs, were the dominant land vertebrates for the rest of the Mesozoic , and birds evolved from one group of dinosaurs. During this time mammals' ancestors survived only as small, mainly nocturnal insectivores , which may have accelerated
17152-518: The strands separate and exist in solution as two entirely independent molecules. These single-stranded DNA molecules have no single common shape, but some conformations are more stable than others. In humans, the total female diploid nuclear genome per cell extends for 6.37 Gigabase pairs (Gbp), is 208.23 cm long and weighs 6.51 picograms (pg). Male values are 6.27 Gbp, 205.00 cm, 6.41 pg. Each DNA polymer can contain hundreds of millions of nucleotides, such as in chromosome 1 . Chromosome 1
17286-625: The study of fossils to classify organisms and study their interactions with each other and their environments (their paleoecology ). Paleontological observations have been documented as far back as the 5th century BC. The science became established in the 18th century as a result of Georges Cuvier 's work on comparative anatomy , and developed rapidly in the 19th century. The term has been used since 1822 formed from Greek παλαιός ( 'palaios' , "old, ancient"), ὄν ( 'on' , ( gen. 'ontos' ), "being, creature"), and λόγος ( 'logos' , "speech, thought, study"). Paleontology lies on
17420-469: The sugar-phosphate to form the complete nucleotide, as shown for adenosine monophosphate . Adenine pairs with thymine and guanine pairs with cytosine, forming A-T and G-C base pairs . The nucleobases are classified into two types: the purines , A and G , which are fused five- and six-membered heterocyclic compounds , and the pyrimidines , the six-membered rings C and T . A fifth pyrimidine nucleobase, uracil ( U ), usually takes
17554-629: The systematic study of fossils emerged as an integral part of the changes in natural philosophy that occurred during the Age of Reason . In the Italian Renaissance, Leonardo da Vinci made various significant contributions to the field as well as depicted numerous fossils. Leonardo's contributions are central to the history of paleontology because he established a line of continuity between the two main branches of paleontology – ichnology and body fossil paleontology. He identified
17688-406: The word "palaeontology" to refer to the study of ancient living organisms through fossils. As knowledge of life's history continued to improve, it became increasingly obvious that there had been some kind of successive order to the development of life. This encouraged early evolutionary theories on the transmutation of species . After Charles Darwin published Origin of Species in 1859, much of
17822-454: Was "seeded" from elsewhere , but most research concentrates on various explanations of how life could have arisen independently on Earth. For about 2,000 million years microbial mats , multi-layered colonies of different bacteria, were the dominant life on Earth. The evolution of oxygenic photosynthesis enabled them to play the major role in the oxygenation of the atmosphere from about 2,400 million years ago . This change in
17956-526: Was proposed by Wilkins et al. in 1953 for the in vivo B-DNA X-ray diffraction-scattering patterns of highly hydrated DNA fibers in terms of squares of Bessel functions . In the same journal, James Watson and Francis Crick presented their molecular modeling analysis of the DNA X-ray diffraction patterns to suggest that the structure was a double helix. Although the B-DNA form is most common under
#47952