A clustered file system ( CFS ) is a file system which is shared by being simultaneously mounted on multiple servers . There are several approaches to clustering , most of which do not employ a clustered file system (only direct attached storage for each node). Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.
83-486: The Oracle Cluster File System ( OCFS , in its second version OCFS2 ) is a shared disk file system developed by Oracle Corporation and released under the GNU General Public License . The first version of OCFS was developed with the main focus to accommodate Oracle's database management system that used cluster computing . Because of that it was not a POSIX -compliant file system. With version 2
166-426: A 19-inch rack . The backplanes allowed 25 modules in a single 5-1/4 inch section of rack, and allowed the high densities needed to build a computer. The original laboratory and system module lines were offered in 500 kilocycle, 5 megacycle and 10 megacycle versions. In all cases, the supply voltages were -15 and +10 volts, with logic levels of -3 volts (passive pull-down) and 0 volts (active pull-up). DEC used
249-449: A CPU overhead of running the communication protocol software . Concurrency control becomes an issue when more than one person or client is accessing the same file or block and want to update it. Hence updates to the file from one client should not interfere with access and updates from other clients. This problem is more complex with file systems due to concurrent overlapping writes, where different writers write to overlapping regions of
332-610: A VAX CPU was the VAX-11/780 , announced in October 1977, which DEC referred to as a superminicomputer . Although it was not the first 32-bit minicomputer, the VAX-11/780's combination of features, price, and marketing almost immediately propelled it to a leadership position in the market after it was released in 1978. VAX systems were so successful that in 1983, DEC canceled its Jupiter project , which had been intended to build
415-432: A clustered file system is the amount of time needed to satisfy service requests. In conventional systems, this time consists of a disk-access time and a small amount of CPU -processing time. But in a clustered file system, a remote access has additional overhead due to the distributed structure. This includes the time to deliver the request to a server, the time to deliver the response to the client, and for each direction,
498-469: A database). Distributed file systems may aim for "transparency" in a number of aspects. That is, they aim to be "invisible" to client programs, which "see" a system which is similar to a local file system. Behind the scenes, the distributed file system handles locating files, transporting data, and potentially providing other features listed below. The Incompatible Timesharing System used virtual devices for transparent inter-machine file system access in
581-441: A distributed file system and a distributed data store is that a distributed file system allows files to be accessed using the same interfaces and semantics as local files – for example, mounting/unmounting, listing directories, read/write at byte boundaries, system's native permission model. Distributed data stores, by contrast, require using a different API or library and have different semantics (most often those of
664-447: A file system, like a shared disk file system on top of a storage area network (SAN). NAS typically uses file-based protocols (as opposed to block-based protocols a SAN would use) such as NFS (popular on UNIX systems), SMB/CIFS ( Server Message Block/Common Internet File System ) (used with MS Windows systems), AFP (used with Apple Macintosh computers), or NCP (used with OES and Novell NetWare ). The failure of disk hardware or
747-497: A given storage node in a cluster can create a single point of failure that can result in data loss or unavailability. Fault tolerance and high availability can be provided through data replication of one sort or another, so that data remains intact and available despite the failure of any single piece of equipment. For examples, see the lists of distributed fault-tolerant file systems and distributed parallel fault-tolerant file systems . A common performance measurement of
830-583: A new virtual memory system, and would also improve performance by processing twice as much data at a time. The system would, however, maintain compatibility with the PDP-11, by operating in a second mode that sent its 16-bit words into the 32-bit internals, while mapping the PDP-11's 16-bit memory space into the larger virtual 32-bit space. The result was the VAX architecture, where VAX stands for Virtual Address eXtension (from 16 to 32 bits). The first computer to use
913-476: A new device to be added easily, generally only requiring plugging a hardware interface board into the backplane and possibly adding a jumper to the wire wrapped backplane, and then installing software that read and wrote to the mapped memory to control it. The relative ease of interfacing spawned a huge market of third party add-ons for the PDP-11, which made the machine even more useful. The combination of architectural innovations proved superior to competitors and
SECTION 10
#1732786725976996-467: A profit at the end of its first year. The original Laboratory Modules were soon supplemented with the "Digital System Module " line, which were identical internally but packaged differently. The Systems Modules were designed with all of the connections at the back of the module using 22-pin Amphenol connectors, and were attached to each other by plugging them into a backplane that could be mounted in
1079-438: A selection of System Building Blocks to implement a small 12-bit machine, and attached it to a variety of analog-to-digital (A to D) input/output (I/O) devices that made it easy to interface with various analog lab equipment. The LINC proved to attract intense interest in the scientific community, and has since been referred to as the first real minicomputer , a machine that was small and inexpensive enough to be dedicated to
1162-485: A self-sustaining business, the company would be free to use them to develop a complete computer in their Phase II. The newly christened "Digital Equipment Corporation" received $ 70,000 from AR&D for a 70% share of the company, and began operations in a Civil War -era textile mill in Maynard, Massachusetts , where plenty of inexpensive manufacturing space was available. In early 1958, DEC shipped its first products,
1245-511: A separate input/output processor for further performance gains. Over 400 PDP-15's were ordered in the first eight months of production, and production eventually amounted to 790 examples in 12 basic models. However, by this time other machines in DEC's lineup could fill the same niche at even lower price points, and the PDP-15 would be the last of the 18-bit series. In 1962, Lincoln Laboratory used
1328-485: A single large mainframe case, with a hexagonal control panel containing switches and lights mounted to lie at table-top height at one end of the mainframe. Above the control panel was the system's standard input/output solution, a punched tape reader and writer. Most systems were purchased with two peripherals , the Type 30 vector graphics display, and a Soroban Engineering modified IBM Model B Electric typewriter that
1411-659: A single task even in a small lab. Seeing the success of the LINC, in 1963 DEC took the basic logic design but stripped away the extensive A to D systems to produce the PDP-5 . The new machine, the first outside the PDP-1 mould, was introduced at WESTCON on August 11, 1963. A 1964 ad expressed the main advantage of the PDP-5, "Now you can own the PDP-5 computer for what a core memory alone used to cost: $ 27,000". 116 PDP-5s were produced until
1494-653: A successor to the PDP-10 mainframe, and instead focused on promoting the VAX as the single computer architecture for the company. Supporting the VAX's success was the VT52 , one of the most successful smart terminals . Building on earlier less successful models, the VT05 and VT50 , the VT52 was the first terminal that did everything one might want in a single inexpensive chassis. The VT52
1577-440: A turn to use the stripped-down TX-0, while largely ignoring a faster IBM machine that was also available. The two decided that the draw of interactive computing was so strong that they felt there was a market for a small machine dedicated to this role, essentially a commercialized TX-0. They could sell this to users where the graphical output or real-time operation would be more important than outright performance. Additionally, as
1660-510: Is also known as Common Internet File System (CIFS). In 1986, IBM announced client and server support for Distributed Data Management Architecture (DDM) for the System/36 , System/38 , and IBM mainframe computers running CICS . This was followed by the support for IBM Personal Computer , AS/400 , IBM mainframe computers under the MVS and VSE operating systems, and FlexOS . DDM also became
1743-677: Is most famous as the machine for which the Unix operating system was originally written. Unix ran only on DEC systems until the Interdata 8/32 . A more dramatic upgrade to the PDP-1 series was introduced in August 1966, the PDP-9 . The PDP-9 was instruction-compatible with the PDP-4 and −7, but ran about twice as fast as the −7 and was intended to be used in larger deployments. At only $ 19,900 in 1968,
SECTION 20
#17327867259761826-522: Is no reason for any individual to have a computer in his home." Unsurprisingly, DEC did not put much effort into the microcomputer area in the early days of the market. In 1977, the Heathkit H11 was announced; a PDP-11 in kit form. At the beginning of the 1980s, DEC built the VT180 (codenamed "Robin"), which was a VT100 terminal with an added Z80 -based microcomputer running CP/M , but this product
1909-548: The OpenVMS DLM but is much simpler. Oracle announced version 1.6 in November 2010 which included a copy on write feature called reflink. Shared disk file system A shared-disk file system uses a storage area network (SAN) to allow multiple computers to gain direct disk access at the block level . Access control and translation from file-level operations that applications use to block-level operations used by
1992-727: The SAGE system for the US Air Force , which used large screens and light guns to allow operators to interact with radar data stored in the computer. When the Air Force project wound down, the Lab turned their attention to an effort to build a version of the Whirlwind using transistors in place of vacuum tubes . In order to test their new circuitry, they first built a small 18-bit machine known as TX-0 , which first ran in 1956. When
2075-520: The minicomputer market starting in the early 1960s. The company produced a series of machines known as the PDP line, with the PDP-8 and PDP-11 being among the most successful minis in history. Their success was only surpassed by another DEC product, the late-1970s VAX "supermini" systems that were designed to replace the PDP-11. Although a number of competitors had successfully competed with Digital through
2158-399: The trademark Digital , was a major American company in the computer industry from the 1960s to the 1990s. The company was co-founded by Ken Olsen and Harlan Anderson in 1957. Olsen was president until he was forced to resign in 1992, after the company had gone into precipitous decline. The company produced many different product lines over its history. It is best known for the work in
2241-802: The "11" architecture was soon the industry leader, propelling DEC back to a strong market position. The design was later expanded to allow paged physical memory and memory protection features, useful for multitasking and time-sharing . Some models supported separate instruction and data spaces for an effective virtual address size of 128 KB within a physical address size of up to 4 MB. Smaller PDP-11s, implemented as single-chip CPUs, continued to be produced until 1996, by which time over 600,000 had been sold. The PDP-11 supported several operating systems, including Bell Labs ' new Unix operating system as well as DEC's DOS-11 , RSX-11 , IAS, RT-11 , DSM-11, and RSTS/E . Many early PDP-11 applications were developed using standalone paper-tape utilities. DOS-11
2324-543: The "Digital Laboratory Module" line. The Modules consisted of a number of individual electronic components and germanium transistors mounted to a circuit board , the actual circuits being based on those from the TX-2. The Laboratory Modules were packaged in an extruded aluminum housing, intended to sit on an engineer's workbench, although a rack-mount bay was sold that held nine laboratory modules. They were then connected together using banana plug patch cords inserted at
2407-439: The "sandbox" for a rising generation of engineers and computer scientists. Large numbers of PDP-11/70s were deployed in telecommunications and industrial control applications. AT&T Corporation became DEC's largest customer. RT-11 provided a practical real-time operating system in minimal memory, allowing the PDP-11 to continue DEC's critical role as a computer supplier for embedded systems . Historically, RT-11 also served as
2490-433: The 1950s, wiped out when new technical developments rendered their platforms obsolete, and even large companies like RCA and General Electric were failing to make a profit in the market. The only serious expression of interest came from Georges Doriot and his American Research and Development Corporation (AR&D). Worried that a new computer company would find it difficult to arrange further financing, Doriot suggested
2573-757: The 1960s. More file servers were developed in the 1970s. In 1976, Digital Equipment Corporation created the File Access Listener (FAL), an implementation of the Data Access Protocol as part of DECnet Phase II which became the first widely used network file system. In 1984, Sun Microsystems created the file system called " Network File System " (NFS) which became the first widely used Internet Protocol based network file system. Other notable network file systems are Andrew File System (AFS), Apple Filing Protocol (AFP), NetWare Core Protocol (NCP), and Server Message Block (SMB) which
OCFS2 - Misplaced Pages Continue
2656-399: The 1970s, the VAX cemented the company's place as a leading vendor in the computer space. As microcomputers improved in the late 1980s, especially with the introduction of RISC -based workstation machines, the performance niche of the minicomputer was rapidly eroded. By the early 1990s, the company was in turmoil as their mini sales collapsed and their attempts to address this by entering
2739-572: The 1980s, culminating in the NVAX microprocessor implementation and VAX 7000/10000 series in the early 1990s. When a DEC research group demonstrated two prototype microcomputers in 1974—before the debut of the MITS Altair —Olsen chose to not proceed with the project. The company similarly rejected another personal computer proposal in 1977. At the time these systems were of limited utility, and Olsen famously derided them in 1977, stating "There
2822-450: The CPU which allowed one to easily see the logic modules plugged into the wire-wrapped backplane of the CPU. Sold standard with 4 kWords of 12-bit core memory and a Teletype Model 33 ASR for basic input/output, the machine listed for only $ 18,000. The PDP-8 is referred to as the first real minicomputer because of its sub-$ 25,000 price. Sales were, unsurprisingly, very strong, and helped by
2905-517: The PC, but was more expensive than, and completely incompatible with IBM PC hardware and software, offering far fewer options for customizing a system. Unlike CP/M and DOS microcomputers, every copy of every program for the Professional had to be provided with a unique key for the particular machine and CPU for which it was bought. At that time this was mainstream policy, because most computer software
2988-630: The PDP-8, all in software. Although not a huge seller, 142 LINC-8s were sold starting at $ 38,500. Like the original LINC to PDP-5 evolution, the LINC-8 was then modified into the single-processor PDP-12 , adding another 1000 machines to the 12-bit family. Newer circuitry designs led to the PDP-8/I and PDP-8/L in 1968. In 1975, one year after an agreement between DEC and Intersil , the Intersil 6100 chip
3071-459: The PDP-9 was a big seller, eventually selling 445 machines, more than all of the earlier models combined. Even while the PDP-9 was being introduced, its replacement was being designed, and was introduced as 1969's PDP-15 , which re-implemented the PDP-9 using integrated circuits in place of modules. Much faster than the PDP-9 even in basic form, the PDP-15 also included a floating point unit and
3154-515: The POSIX features were included. OCFS2 (version 2) was integrated into the version 2.6.16 of Linux kernel . Initially, it was marked as "experimental" ( Alpha-test ) code. This restriction was removed in Linux version 2.6.19. With kernel version 2.6.29 in late 2008, more features were included into ocfs2, such as access control lists and quotas. OCFS2 used a distributed lock manager which resembles
3237-700: The Professional was a superior machine, running inferior software. In addition, a new user would have to learn an awkward, slow, and inflexible menu-based user interface which appeared to be radically different from PC DOS or CP/M , which were more commonly used on the 8080- and 8088-based microcomputers of the time. A second offering, the DECmate II was the latest version of the PDP-8-based word processors, but not really suited to general computing, nor competitive with Wang Laboratories ' popular word processing equipment. The most popular early DEC microcomputer
3320-511: The Rainbow, and in its standard form was the first widely marketed diskless workstation . In 1984, DEC launched its first 10 Mbit/s Ethernet . Ethernet allowed scalable networking, and VAXcluster allowed scalable computing. Combined with DECnet and Ethernet-based terminal servers ( LAT ), DEC had produced a networked storage architecture which allowed them to compete directly with IBM. Ethernet replaced Token Ring , and went on to become
3403-684: The SAN must take place on the client node. The most common type of clustered file system, the shared-disk file system – by adding mechanisms for concurrency control – provides a consistent and serializable view of the file system, avoiding corruption and unintended data loss even when multiple clients try to access the same files at the same time. Shared-disk file-systems commonly employ some sort of fencing mechanism to prevent data corruption in case of node failures, because an unfenced device can cause data corruption if it loses communication with its sister nodes and tries to access
OCFS2 - Misplaced Pages Continue
3486-492: The System Modules to build their "Memory Test" machine for testing core memory systems, selling about 50 of these pre-packaged units over the next eight years. The PDP-1 and LINC computers were also built using System Modules (see below). Modules were part of DEC's product line into the 1970s, although they went through several evolutions during this time as technology changed. The same circuits were then packaged as
3569-469: The TX-0 successfully proved the basic concepts, attention turned to a much larger system, the 36-bit TX-2 with a then-enormous 64 kWords of core memory . Core was so expensive that parts of TX-0's memory were stripped for the TX-2, and what remained of the TX-0 was then given to MIT on permanent loan. At MIT, Ken Olsen and Harlan Anderson noticed something odd: students would line up for hours to get
3652-436: The ability to address more memory, often by extending the address format to 18 or 24-bits in machines were otherwise similar to their earlier 16-bit designs. In contrast, DEC decided to make a more radical departure. In 1976, they began the design of a machine whose entire architecture was expanded from the 16-bit PDP-11 to a new 32-bit basis. This would allow the addressing of very large memories, which were to be controlled by
3735-515: The adoption of "\" for pathnames in MS-DOS and Microsoft Windows as opposed to "/" in Unix . The evolution of the PDP-11 followed earlier systems, eventually including a single-user deskside personal computer form, the MicroPDP-11. In total, around 600,000 PDP-11s of all models were sold, and a wide variety of third-party peripheral vendors had also entered the computer product ecosystem. It
3818-512: The basis for the new design, although when they first viewed the proposal, management was not impressed and almost cancelled it. The result was the PDP-11 , released in 1970. It differed from earlier designs considerably. In particular, the new design did not include many of the addressing modes that were intended to make programs smaller in memory, a technique that was widely used on other DEC machines and CISC designs in general. This would mean
3901-451: The better-established vendors like IBM or Honeywell , in spite of its low cost around $ 300,000. Only 23 were sold, or 26 depending on the source, and unlike other models the low sales meant the PDP-6 was not improved with successor versions. However, the PDP-6 is historically important as the platform that introduced "Monitor", an early time-sharing operating system that would evolve into
3984-718: The company's first computer, the PDP-1 . In keeping with Doriot's instructions, the name was an initialism for " Programmable Data Processor ", leaving off the term "computer". As Gurley put it, "We aren't building computers, we're building 'Programmable Data Processors'." The prototype was first shown publicly at the Joint Computer Conference in Boston in December 1959. The first PDP-1 was delivered to Bolt, Beranek and Newman in November 1960, and formally accepted
4067-411: The compatible DECSYSTEM-20 , along with a TOPS-20 operating system that included virtual memory support. The Jupiter Project was supposed to continue the mainframe product line into the future by using gate arrays with an innovative Air Mover Cooling System, coupled with a built-in floating point processing engine called "FBOX". The design was intended for a top tier scientific computing niche, yet
4150-486: The critical performance measurement was based upon COBOL compilation which did not fully utilize the primary design features of Jupiter technology. When the Jupiter Project was cancelled in 1983, some of the engineers adapted aspects of the 36-bit design into a forthcoming 32-bit design, releasing the high-end VAX8600 in 1985. DEC's successful entry into the computer market took place during a fundamental shift in
4233-473: The fact that several competitors had just entered the market with machines aimed directly at the PDP-5's market space, which the PDP-8 trounced. This gave the company two years of unrestricted leadership, and eventually 1450 "straight eight" machines were produced before it was replaced by newer implementations of the same basic design. DEC hit an even lower price-point with the PDP-8/S, the S for "serial". As
SECTION 50
#17327867259764316-582: The file concurrently. This problem is usually handled by concurrency control or locking which may either be built into the file system or provided by an add-on protocol. IBM mainframes in the 1970s could share physical disks and file systems if each machine had its own channel connection to the drives' control units. In the 1980s, Digital Equipment Corporation 's TOPS-20 and OpenVMS clusters (VAX/ALPHA/IA64) included shared disk file systems. Digital Equipment Corporation Digital Equipment Corporation ( DEC / d ɛ k / ), using
4399-475: The first "R" (red) series " Flip-Chip " modules. Later, other Flip-Chip module series provided additional speed, much higher logic density, and industrial I/O capabilities. DEC published extensive data about the modules in free catalogs that became very popular. With the company established and a successful product on the market, DEC turned its attention to the computer market once again as part of its planned "Phase II". In August 1959, Ben Gurley started design of
4482-487: The fledgling company change its business plan to focus less on computers, and even change their name from "Digital Computer Corporation". The pair returned with an updated business plan that outlined two phases for the company's development. They would start by selling computer modules as stand-alone devices that could be purchased separately and wired together to produce a number of different digital systems for lab use. Then, if these "digital modules" were able to build
4565-417: The foundation for Distributed Relational Database Architecture , also known as DRDA. There are many peer-to-peer network protocols for open-source distributed file systems for cloud or closed-source clustered file systems, e. g.: 9P , AFS , Coda , CIFS/SMB , DCE/DFS , WekaFS, Lustre , PanFS, Google File System , Mnet , Chord Project . Network-attached storage (NAS) provides both storage and
4648-411: The front of the modules. Three versions were offered, running at 5 MHz (1957), 500 kHz (1959), or 10 MHz (1960). The Modules proved to be in high demand by other computer companies, who used them to build equipment to test their own systems. Despite the recession of the late 1950s, the company sold $ 94,000 worth of these modules during 1958 alone (equivalent to $ 992,700 in 2023), turning
4731-512: The high-end market with machines like the VAX 9000 were market failures. After several attempts to enter the workstation and file server market, the DEC Alpha product line began to make successful inroads in the mid-1990s, but was too late to save the company. DEC was acquired in June 1998 by Compaq in what was at that time the largest merger in the history of the computer industry. During
4814-413: The inspiration for many microcomputer OS's, as these were generally being written by programmers who cut their teeth on one of the many PDP-11 models. For example, CP/M used a command syntax similar to RT-11's, and even retained the awkward PIP program used to copy data from one computer device to another. As another historical footnote, DEC's use of "/" for "switches" (command-line options) would lead to
4897-490: The lab's various computer projects. The Lab is best known for their work on what would today be known as "interactivity", and their machines were among the first where operators had direct control over programs running in real-time. These had started in 1944 with the famed Whirlwind , which was originally developed to make a flight simulator for the US Navy , although this was never completed. Instead, this effort evolved into
4980-548: The limited information available, they used it to process radar cross section data for the Lockheed A-12 reconnaissance aircraft . Gordon Bell remembered that it was being used in Oregon some time later, but could not recall who was using it. In November 1962, DEC introduced the $ 65,000 PDP-4 . The PDP-4 was similar to the PDP-1 and used a similar instruction set, but used slower memory and different packaging to lower
5063-441: The lines were shut down in early 1967. Like the PDP-1 before it, the PDP-5 inspired a series of newer models based on the same basic design that would go on to be more famous than its parent. On March 22, 1965, DEC introduced the PDP-8 , which replaced the PDP-5's modules with the new R-series modules using Flip Chips. The machine was re-packaged into a small tabletop case, which remains distinctive for its use of smoked plastic over
SECTION 60
#17327867259765146-496: The machine would cost much less than the larger systems then available, it would also be able to serve users that needed a lower-cost solution dedicated to a specific task, where a larger 36-bit machine would not be needed. In 1957, when the pair and Ken's brother Stan sought capital, they found that the American business community was hostile to investing in computer companies. Many smaller computer companies had come and gone in
5229-438: The machine would spend more time accessing memory, which would slow it down. However, the machine also extended the idea of multiple "General Purpose Registers" (GPRs), which gave the programmer flexibility to use these high-speed memory caches as they needed, potentially addressing the performance issues. A major advance in the PDP-11 design was DEC's Unibus , which supported all peripherals through memory mapping . This allowed
5312-425: The name implies the /S used a serial arithmetic unit, which was much slower but reduced costs so much that the system sold for under $ 10,000. DEC then used the new PDP-8 design as the basis for a new LINC, the two-processor LINC-8 . The LINC-8 used one PDP-8 CPU and a separate LINC CPU, and included instructions to switch from one to the other. This allowed customers to run their existing LINC programs, or "upgrade" to
5395-458: The next April. The PDP-1 sold in basic form for $ 120,000 (equivalent to $ 9,269,291 in 2023). By the time production ended in 1969, 53 PDP-1s had been delivered. The PDP-1 was supplied standard with 4096 words of core memory , 18-bits per word, and ran at a basic speed of 100,000 operations per second. It was constructed using many System Building Blocks that were packaged into several 19-inch racks . The racks were themselves packaged into
5478-581: The price. Like the PDP-1, about 54 PDP-4s were eventually sold, most to a customer base similar to the original PDP-1. In 1964, DEC introduced its new Flip Chip module design, and used it to re-implement the PDP-4 as the PDP-7 . The PDP-7 was introduced in December 1964, and about 120 were eventually produced. An upgrade to the Flip Chip led to the R series, which in turn led to the PDP-7A in 1965. The PDP-7
5561-714: The purchase, some parts of DEC were sold to other companies; the compiler business and the Hudson Fab were sold to Intel . At the time, Compaq was focused on the enterprise market and had recently purchased several other large vendors. DEC was a major player overseas where Compaq had less presence. However, Compaq had little idea what to do with its acquisitions, and soon found itself in financial difficulty of its own. Compaq subsequently merged with Hewlett-Packard (HP) in May 2002. Ken Olsen and Harlan Anderson were two engineers who had been working at MIT Lincoln Laboratory on
5644-607: The same design. During construction of the prototype PDP-1, some design work was carried out on a 24-bit PDP-2, and the 36-bit PDP-3. Although the PDP-2 never proceeded beyond the initial design, the PDP-3 found some interest and was designed in full. Only one PDP-3 appears to have been built, in 1960, by the CIA's Scientific Engineering Institute (SEI) in Waltham, Massachusetts . According to
5727-495: The same information other nodes are accessing. The underlying storage area network may use any of a number of block-level protocols, including SCSI , iSCSI , HyperSCSI , ATA over Ethernet (AoE), Fibre Channel , network block device , and InfiniBand . There are different architectural approaches to a shared-disk filesystem. Some distribute file information across all the servers in a cluster (fully distributed). Distributed file systems do not share block level access to
5810-400: The same storage but use a network protocol . These are commonly known as network file systems , even though they are not the only file systems that use the network to send data. Distributed file systems can restrict access to the file system depending on access lists or capabilities on both the servers and the clients, depending on how the protocol is designed. The difference between
5893-489: The underlying organization of the machines from word lengths based on 6-bit characters to those based on 8-bit words needed to support ASCII . DEC began studies of such a machine, the PDP-X, but Ken Olsen did not support it as he could not see how it offered anything their existing 12-bit or 18-bit machines didn't. This led the leaders of the PDP-X project to leave DEC and start Data General , whose 16-bit Data General Nova
5976-467: The widely used TOPS-10 . When newer Flip Chip packaging allowed the PDP-6 to be re-implemented at a much lower cost, DEC took the opportunity to refine their 36-bit design, introducing the PDP-10 in 1968. The PDP-10 was as much a success as the PDP-6 was a commercial failure; about 700 mainframe PDP-10s were sold before production ended in 1984. The PDP-10 was widely used in university settings, and thus
6059-478: Was either bought from the company that built the computer or custom-constructed for one client. However, the emerging third-party software industry disregarded the PDP-11/Professional line and concentrated on other microcomputers where distribution was easier. At DEC itself, creating better programs for the Professional was not a priority, perhaps from fear of cannibalizing the PDP-11 line. As a result,
6142-507: Was even sold in kit form as the Heathkit H11 , although it proved too expensive for Heathkit 's traditional hobbyist market. The introduction of semiconductor memory in the early 1970s, and especially dynamic RAM shortly thereafter, led to dramatic reductions in the price of memory as the effects of Moore's Law were felt. Within years, it was common to equip a machine with all the memory it could address, typically 64 KB on 16-bit machines. This led vendors to introduce new designs with
6225-623: Was eventually ported along with MS-DOS 2.0 and introduced in late 1983. Although the Rainbow generated some press, it was unsuccessful due to its high price and lack of marketing and sales support. By late 1983 IBM was outselling DEC's personal computers by more than ten to one. A further system was introduced in 1986 as the VAXmate , which included Microsoft Windows 1.0 and used VAX/VMS-based file and print servers along with integration into DEC's own DECnet -family, providing LAN/WAN connection from PC to mainframe or supermini. The VAXmate replaced
6308-636: Was followed by the even more successful VT100 and its follow-ons, making DEC one of the largest terminal vendors in the industry. This was supported by a line of inexpensive computer printers , the DECwriter line. With the VT and DECwriter series, DEC could now offer a complete top-to-bottom system from computer to all peripherals, which formerly required collecting the required devices from different suppliers. The VAX processor architecture and family of systems evolved and expanded through several generations during
6391-731: Was initially available only to DEC employees. It was only after IBM had successfully launched the IBM PC in 1981 that DEC responded with their own systems. In 1982, DEC introduced not one, but three incompatible machines which were each tied to different proprietary architectures. The first, the DEC Professional , was based on the PDP-11/23 (and later, the 11/73) running the RSX-11M+ derived, but menu-driven, P/OS ("Professional Operating System"). This DEC machine easily outperformed
6474-498: Was launched, effectively a PDP-8 on a chip. This was a way to allow PDP-8 software to be run even after the official end-of-life announcement for the DEC PDP-8 product line. While the PDP-5 introduced a lower-cost line, 1963's PDP-6 was intended to take DEC into the mainframe market with a 36-bit machine. However, the PDP-6 proved to be a "hard sell" with customers, as it offered few obvious advantages over similar machines from
6557-539: Was released in 1969 and was a huge success. The success of the Nova finally prompted DEC to take the switch seriously, and they began a crash program to introduce a 16-bit machine of their own. The new system was designed primarily by Harold McFarland, Gordon Bell , Roger Cady, and others. The project was able to leap forward in design with the arrival of Harold McFarland, who had been researching 16-bit designs at Carnegie Mellon University . One of his simpler designs became
6640-404: Was the PDP-11's first disk operating system, but was soon supplanted by more capable systems. RSX provided a general-purpose multitasking environment and supported a wide variety of programming languages . IAS was a time-sharing version of RSX-11D. Both RSTS and Unix were time-sharing systems available to educational institutions at little or no cost, and these PDP-11 systems were destined to be
6723-454: Was the basis of many advances in computing and operating system design during the 1970s. DEC later re-branded all of the models in the 36-bit series as the "DECsystem-10", and PDP-10s are generally referred to by the model of their CPU, starting with the "KA10", soon upgraded to the "KI10" (I:Integrated circuit); then to "KL10" (L:Large-scale integration ECL logic ); also the "KS10" (S: Small form factor ). Unified product line upgrades produced
6806-535: Was the dual-processor (Z80 and 8088) Rainbow 100 , which ran the 8-bit CP/M operating system on the Z80 and the 16-bit CP/M-86 operating system on the Intel 8088 processor. It could also run a UNIX System III implementation called VENIX . Applications from standard CP/M could be re-compiled for the Rainbow, but by this time users were expecting custom-built (pre-compiled binary) applications such as Lotus 1-2-3 , which
6889-441: Was used as a printer . The Soroban system was notoriously unreliable, and often replaced with a modified Friden Flexowriter , which also contained its own punched tape system. A variety of more-expensive add-ons followed, including magnetic tape systems, punched card readers and punches, and faster punched tape and printer systems. When DEC introduced the PDP-1, they also mentioned larger machines at 24, 30 and 36 bits, based on
#975024