A locker is a small, usually narrow storage compartment. They are commonly found in dedicated cabinets, very often in large numbers, in various public places such as locker rooms , workplaces , schools , transport hubs and the like. They vary in size, purpose, construction, and security.
77-712: Lockers are normally quite narrow, of varying heights and tier arrangements. Width and depth usually conform to standard measurements, although non-standard sizes are occasionally found. Public places with lockers often contain large numbers of them, such as in a school. They are usually made of painted sheet metal. The characteristics that usually distinguish them from other types of cabinet or cupboard or storage container are: Lockers are usually physically joined side by side in banks, and are commonly made from steel , although wood , laminate , and plastic are other materials sometimes found. Steel lockers which are banked together share side walls, and are constructed by starting with
154-569: A bus garage . A bus station is larger than a bus stop , which is usually simply a place on the roadside, where buses can stop. It may be intended as a terminal station for a number of routes, or as a transfer station where the routes continue. Bus station platforms may be assigned to fixed bus lines, or variable in combination with a dynamic passenger information system. The latter requires fewer platforms, but does not provide consistent locations for passengers. Kilambakkam bus terminus in Chennai
231-412: A BOS process is manufactured in one-twelfth the time. Today, electric arc furnaces (EAF) are a common method of reprocessing scrap metal to create new steel. They can also be used for converting pig iron to steel, but they use a lot of electrical energy (about 440 kWh per metric ton), and are thus generally only economical when there is a plentiful supply of cheap electricity. The steel industry
308-713: A carbon-intermediate steel by the 1st century AD. There is evidence that carbon steel was made in Western Tanzania by the ancestors of the Haya people as early as 2,000 years ago by a complex process of "pre-heating" allowing temperatures inside a furnace to reach 1300 to 1400 °C. Evidence of the earliest production of high carbon steel in South Asia is found in Kodumanal in Tamil Nadu ,
385-444: A change of volume. In this case, expansion occurs. Internal stresses from this expansion generally take the form of compression on the crystals of martensite and tension on the remaining ferrite, with a fair amount of shear on both constituents. If quenching is done improperly, the internal stresses can cause a part to shatter as it cools. At the very least, they cause internal work hardening and other microscopic imperfections. It
462-430: A complete locker; further lockers may then be added by constructing the floor, roof, rear wall, door, and just one extra side wall, the existing side wall of the previous locker serving as the other side wall of the new one. The walls, floors, and roof of lockers may be either riveted together (the more traditional method) or, more recently, welded together. Locker doors usually have some kind of ventilation to provide for
539-428: A ferrite BCC crystal form, but at higher carbon content it takes a body-centred tetragonal (BCT) structure. There is no thermal activation energy for the transformation from austenite to martensite. There is no compositional change so the atoms generally retain their same neighbours. Martensite has a lower density (it expands during the cooling) than does austenite, so that the transformation between them results in
616-445: A hard but brittle martensitic structure. The steel is then tempered, which is just a specialized type of annealing, to reduce brittleness. In this application the annealing (tempering) process transforms some of the martensite into cementite, or spheroidite and hence it reduces the internal stresses and defects. The result is a more ductile and fracture-resistant steel. When iron is smelted from its ore, it contains more carbon than
693-644: A lock’ type device likely used for sporting purposes. The ‘locker room’ was a place for athletes to store their clothing, belongings and equipment temporarily. People could retrieve their items by using their specific key assigned to them when they selected the locker space. As lockers became more commonplace, they started appearing in educational facilities, hospitals, gymnasiums and in the workplace. Lockers initially were cabinet-like and made of wood and later made of steel and metal. Lockers have since evolved with peoples needs and breakthrough technologies. Today lockers can be manufactured out of various materials and to suit
770-412: A narrow range of concentrations of mixtures of carbon and iron that make steel, several different metallurgical structures, with very different properties can form. Understanding such properties is essential to making quality steel. At room temperature , the most stable form of pure iron is the body-centred cubic (BCC) structure called alpha iron or α-iron. It is a fairly soft metal that can dissolve only
847-517: A number of features or characteristics which may vary in lockers. Because purchasers will need to specify what they want in each of these when ordering, it is more common to order a particular configuration rather than buy "off the shelf" in a shop, although certain very common configurations can be found in shops fairly easily. These features include: Historically, lockers have been a space to store personal belongings secured by various locking mechanisms. The earliest modern lockers were simple ‘box with
SECTION 10
#1732775929678924-534: A small concentration of carbon, no more than 0.005% at 0 °C (32 °F) and 0.021 wt% at 723 °C (1,333 °F). The inclusion of carbon in alpha iron is called ferrite . At 910 °C, pure iron transforms into a face-centred cubic (FCC) structure, called gamma iron or γ-iron. The inclusion of carbon in gamma iron is called austenite. The more open FCC structure of austenite can dissolve considerably more carbon, as much as 2.1%, (38 times that of ferrite) carbon at 1,148 °C (2,098 °F), which reflects
1001-453: A steel's final rolling, it is heat treated for strength; however, this is relatively rare. Steel was known in antiquity and was produced in bloomeries and crucibles . The earliest known production of steel is seen in pieces of ironware excavated from an archaeological site in Anatolia ( Kaman-Kalehöyük ) which are nearly 4,000 years old, dating from 1800 BC. Wootz steel
1078-600: Is Kamppi Centre in Helsinki, Finland completed in 2006. The terminal cost 100 million Euro to complete and took 3 years to design and build. Today, the bus terminal, which covers 25,000 square meters, is the busiest bus terminal in Finland. Every day, the terminal has around 700 bus departures, transporting approximately 170,000 passengers. Preston Bus Station in Preston, England, built in 1969 and later heritage-listed ,
1155-672: Is continuously cast into long slabs, cut and shaped into bars and extrusions and heat treated to produce a final product. Today, approximately 96% of steel is continuously cast, while only 4% is produced as ingots. The ingots are then heated in a soaking pit and hot rolled into slabs, billets , or blooms . Slabs are hot or cold rolled into sheet metal or plates. Billets are hot or cold rolled into bars, rods, and wire. Blooms are hot or cold rolled into structural steel , such as I-beams and rails . In modern steel mills these processes often occur in one assembly line , with ore coming in and finished steel products coming out. Sometimes after
1232-403: Is common for quench cracks to form when steel is water quenched, although they may not always be visible. There are many types of heat treating processes available to steel. The most common are annealing , quenching , and tempering . Annealing is the process of heating the steel to a sufficiently high temperature to relieve local internal stresses. It does not create a general softening of
1309-403: Is desirable. To become steel, it must be reprocessed to reduce the carbon to the correct amount, at which point other elements can be added. In the past, steel facilities would cast the raw steel product into ingots which would be stored until use in further refinement processes that resulted in the finished product. In modern facilities, the initial product is close to the final composition and
1386-453: Is distinguishable from wrought iron (now largely obsolete), which may contain a small amount of carbon but large amounts of slag . Iron is commonly found in the Earth's crust in the form of an ore , usually an iron oxide, such as magnetite or hematite . Iron is extracted from iron ore by removing the oxygen through its combination with a preferred chemical partner such as carbon which
1463-408: Is heat treated to contain both a ferritic and martensitic microstructure to produce a formable, high strength steel. Transformation Induced Plasticity (TRIP) steel involves special alloying and heat treatments to stabilize amounts of austenite at room temperature in normally austenite-free low-alloy ferritic steels. By applying strain, the austenite undergoes a phase transition to martensite without
1540-535: Is known as stainless steel . Tungsten slows the formation of cementite , keeping carbon in the iron matrix and allowing martensite to preferentially form at slower quench rates, resulting in high-speed steel . The addition of lead and sulphur decrease grain size, thereby making the steel easier to turn , but also more brittle and prone to corrosion. Such alloys are nevertheless frequently used for components such as nuts, bolts, and washers in applications where toughness and corrosion resistance are not paramount. For
1617-691: Is often considered an indicator of economic progress, because of the critical role played by steel in infrastructural and overall economic development . In 1980, there were more than 500,000 U.S. steelworkers. By 2000, the number of steelworkers had fallen to 224,000. The economic boom in China and India caused a massive increase in the demand for steel. Between 2000 and 2005, world steel demand increased by 6%. Since 2000, several Indian and Chinese steel firms have expanded to meet demand, such as Tata Steel (which bought Corus Group in 2007), Baosteel Group and Shagang Group . As of 2017 , though, ArcelorMittal
SECTION 20
#17327759296781694-514: Is one of the largest manufacturing industries in the world, but also one of the most energy and greenhouse gas emission intense industries, contributing 8% of global emissions. However, steel is also very reusable: it is one of the world's most-recycled materials, with a recycling rate of over 60% globally . The noun steel originates from the Proto-Germanic adjective * * stahliją or * * stakhlijan 'made of steel', which
1771-551: Is one of the world's most-recycled materials, with a recycling rate of over 60% globally; in the United States alone, over 82,000,000 metric tons (81,000,000 long tons; 90,000,000 short tons) were recycled in the year 2008, for an overall recycling rate of 83%. As more steel is produced than is scrapped, the amount of recycled raw materials is about 40% of the total of steel produced - in 2016, 1,628,000,000 tonnes (1.602 × 10 long tons; 1.795 × 10 short tons) of crude steel
1848-520: Is possible only by reducing iron's ductility. Steel was produced in bloomery furnaces for thousands of years, but its large-scale, industrial use began only after more efficient production methods were devised in the 17th century, with the introduction of the blast furnace and production of crucible steel . This was followed by the Bessemer process in England in the mid-19th century, and then by
1925-434: Is possible to make very high-carbon (and other alloy material) steels, but such are not common. Cast iron is not malleable even when hot, but it can be formed by casting as it has a lower melting point than steel and good castability properties. Certain compositions of cast iron, while retaining the economies of melting and casting, can be heat treated after casting to make malleable iron or ductile iron objects. Steel
2002-400: Is quite ductile , or soft and easily formed. In steel, small amounts of carbon, other elements, and inclusions within the iron act as hardening agents that prevent the movement of dislocations . The carbon in typical steel alloys may contribute up to 2.14% of its weight. Varying the amount of carbon and many other alloying elements, as well as controlling their chemical and physical makeup in
2079-457: Is related to * * stahlaz or * * stahliją 'standing firm'. The carbon content of steel is between 0.02% and 2.14% by weight for plain carbon steel ( iron - carbon alloys ). Too little carbon content leaves (pure) iron quite soft, ductile, and weak. Carbon contents higher than those of steel make a brittle alloy commonly called pig iron . Alloy steel is steel to which other alloying elements have been intentionally added to modify
2156-603: Is spread over an area of 358,200 square metres (88.52 acres), making it the largest bus station in the world. The Woodlands Bus Interchange in Singapore is one of the busiest bus interchanges in the world, handling up to 400,000 passengers daily across 42 bus services. Other Singaporean bus interchanges such as Bedok Bus Interchange , Tampines Bus Interchange and Yishun Bus Interchange handle similar number of passengers daily. The largest underground bus station in Europe
2233-441: Is the base metal of steel. Depending on the temperature, it can take two crystalline forms (allotropic forms): body-centred cubic and face-centred cubic . The interaction of the allotropes of iron with the alloying elements, primarily carbon, gives steel and cast iron their range of unique properties. In pure iron, the crystal structure has relatively little resistance to the iron atoms slipping past one another, and so pure iron
2310-547: Is the world's largest steel producer . In 2005, the British Geological Survey stated China was the top steel producer with about one-third of the world share; Japan , Russia , and the United States were second, third, and fourth, respectively, according to the survey. The large production capacity of steel results also in a significant amount of carbon dioxide emissions inherent related to
2387-498: Is then lost to the atmosphere as carbon dioxide. This process, known as smelting , was first applied to metals with lower melting points, such as tin , which melts at about 250 °C (482 °F), and copper , which melts at about 1,100 °C (2,010 °F), and the combination, bronze, which has a melting point lower than 1,083 °C (1,981 °F). In comparison, cast iron melts at about 1,375 °C (2,507 °F). Small quantities of iron were smelted in ancient times, in
Locker - Misplaced Pages Continue
2464-566: The COVID-19 pandemic of 2019, office workers only went into offices for part of their working week for social distancing. Hybrid working, defined as “team or organisation work part of their time at the workplace and part remotely”, has made the workplace more flexible. The reduced number of employees coming to the office made companies start cutting cost and the space of their offices, and looking for technologies that can enhance their workplace productivity, efficiency, and employee experience. With
2541-655: The Golconda area in Andhra Pradesh and Karnataka , regions of India , as well as in Samanalawewa and Dehigaha Alakanda, regions of Sri Lanka . This came to be known as wootz steel , produced in South India by about the sixth century BC and exported globally. The steel technology existed prior to 326 BC in the region as they are mentioned in literature of Sangam Tamil , Arabic, and Latin as
2618-672: The Lincoln Tunnel and one block west of Times Square . The terminal is the largest in the Western Hemisphere and the busiest in the world by volume of traffic, serving about 8,000 buses and 225,000 people on an average weekday and more than 65 million people a year. It has 223 gates. It operates intercity bus routes all over the United States and some routes with international destinations, mostly in Canada, and mostly operated by Greyhound Lines. The largest bus terminal in
2695-599: The cementation process was described in a treatise published in Prague in 1574 and was in use in Nuremberg from 1601. A similar process for case hardening armour and files was described in a book published in Naples in 1589. The process was introduced to England in about 1614 and used to produce such steel by Sir Basil Brooke at Coalbrookdale during the 1610s. The raw material for this process were bars of iron. During
2772-554: The open-hearth furnace . With the invention of the Bessemer process, a new era of mass-produced steel began. Mild steel replaced wrought iron . The German states were the major steel producers in Europe in the 19th century. American steel production was centred in Pittsburgh , Bethlehem, Pennsylvania , and Cleveland until the late 20th century. Currently, world steel production is centered in China, which produced 54% of
2849-445: The 17th century, it was realized that the best steel came from oregrounds iron of a region north of Stockholm , Sweden. This was still the usual raw material source in the 19th century, almost as long as the process was used. Crucible steel is steel that has been melted in a crucible rather than having been forged , with the result that it is more homogeneous. Most previous furnaces could not reach high enough temperatures to melt
2926-475: The 17th century, the first step in European steel production has been the smelting of iron ore into pig iron in a blast furnace . Originally employing charcoal, modern methods use coke , which has proven more economical. In these processes, pig iron made from raw iron ore was refined (fined) in a finery forge to produce bar iron , which was then used in steel-making. The production of steel by
3003-401: The 1950s to the 1970s, but eliminated for concern that bombs may be hidden in them. Some airports have also removed them for this reason. Steel Steel is an alloy of iron and carbon with improved strength and fracture resistance compared to other forms of iron. Because of its high tensile strength and low cost, steel is one of the most commonly manufactured materials in
3080-608: The Arabs from Persia, who took it from India. It was originally created from several different materials including various trace elements , apparently ultimately from the writings of Zosimos of Panopolis . In 327 BC, Alexander the Great was rewarded by the defeated King Porus , not with gold or silver but with 30 pounds of steel. A recent study has speculated that carbon nanotubes were included in its structure, which might explain some of its legendary qualities, though, given
3157-470: The Linz-Donawitz process of basic oxygen steelmaking (BOS), developed in 1952, and other oxygen steel making methods. Basic oxygen steelmaking is superior to previous steelmaking methods because the oxygen pumped into the furnace limited impurities, primarily nitrogen, that previously had entered from the air used, and because, with respect to the open hearth process, the same quantity of steel from
Locker - Misplaced Pages Continue
3234-407: The addition of heat. Twinning Induced Plasticity (TWIP) steel uses a specific type of strain to increase the effectiveness of work hardening on the alloy. Bus station A bus station or a bus interchange is a structure where city buses or intercity buses stop to pick up and drop off passengers. While the term bus depot can also be used to refer to a bus station, it can also refer to
3311-436: The austenite grain boundaries until the percentage of carbon in the grains has decreased to the eutectoid composition (0.8% carbon), at which point the pearlite structure forms. For steels that have less than 0.8% carbon (hypoeutectoid), ferrite will first form within the grains until the remaining composition rises to 0.8% of carbon, at which point the pearlite structure will form. No large inclusions of cementite will form at
3388-471: The austenite is for it to precipitate out of solution as cementite , leaving behind a surrounding phase of BCC iron called ferrite with a small percentage of carbon in solution. The two, cementite and ferrite, precipitate simultaneously producing a layered structure called pearlite , named for its resemblance to mother of pearl . In a hypereutectoid composition (greater than 0.8% carbon), the carbon will first precipitate out as large inclusions of cementite at
3465-494: The boundaries in hypoeutectoid steel. The above assumes that the cooling process is very slow, allowing enough time for the carbon to migrate. As the rate of cooling is increased the carbon will have less time to migrate to form carbide at the grain boundaries but will have increasingly large amounts of pearlite of a finer and finer structure within the grains; hence the carbide is more widely dispersed and acts to prevent slip of defects within those grains, resulting in hardening of
3542-521: The characteristics of steel. Common alloying elements include: manganese , nickel , chromium , molybdenum , boron , titanium , vanadium , tungsten , cobalt , and niobium . Additional elements, most frequently considered undesirable, are also important in steel: phosphorus , sulphur , silicon , and traces of oxygen , nitrogen , and copper . Plain carbon-iron alloys with a higher than 2.1% carbon content are known as cast iron . With modern steelmaking techniques such as powder metal forming, it
3619-422: The desired properties. Nickel and manganese in steel add to its tensile strength and make the austenite form of the iron-carbon solution more stable, chromium increases hardness and melting temperature, and vanadium also increases hardness while making it less prone to metal fatigue . To inhibit corrosion, at least 11% chromium can be added to steel so that a hard oxide forms on the metal surface; this
3696-457: The décor of the environment they are in. Metal, steel, plastic, wood and fabricated wood are all popular materials that are used. The lock mechanism on a locker has especially evolved with the induction of new technologies. The movement from a large padlock and key to an electronic system, illustrates how lockers have adopted smart technology. Smart technology allows lockers to be digital, flexible in use and equipped with various features to improve
3773-413: The final steel (either as solute elements, or as precipitated phases), impedes the movement of the dislocations that make pure iron ductile, and thus controls and enhances its qualities. These qualities include the hardness , quenching behaviour , need for annealing , tempering behaviour , yield strength , and tensile strength of the resulting steel. The increase in steel's strength compared to pure iron
3850-648: The finest steel in the world exported to the Roman, Egyptian, Chinese and Arab worlds at that time – what they called Seric Iron . A 200 BC Tamil trade guild in Tissamaharama , in the South East of Sri Lanka, brought with them some of the oldest iron and steel artifacts and production processes to the island from the classical period . The Chinese and locals in Anuradhapura , Sri Lanka had also adopted
3927-401: The flow of air to aid in cleanliness. These vents usually take the form of a series of horizontal angled slats at the top and bottom of the door, although sometimes parallel rows of small square or rectangular holes are found instead, running up and down the door. Less often, the side or rear walls may also have similar ventilation. Locker doors usually have door stiffeners fixed vertically to
SECTION 50
#17327759296784004-513: The form of charcoal) in a crucible, was produced in Merv by the 9th to 10th century AD. In the 11th century, there is evidence of the production of steel in Song China using two techniques: a "berganesque" method that produced inferior, inhomogeneous steel, and a precursor to the modern Bessemer process that used partial decarburization via repeated forging under a cold blast . Since
4081-599: The hardenability of thick sections. High strength low alloy steel has small additions (usually < 2% by weight) of other elements, typically 1.5% manganese, to provide additional strength for a modest price increase. Recent corporate average fuel economy (CAFE) regulations have given rise to a new variety of steel known as Advanced High Strength Steel (AHSS). This material is both strong and ductile so that vehicle structures can maintain their current safety levels while using less material. There are several commercially available grades of AHSS, such as dual-phase steel , which
4158-531: The incidence of back injuries in some students, which has been directly attributed to the lack of lockers for storing books in, thus forcing students to spend more time carrying heavy loads of books in backpacks. Some students oppose the abolition of lockers, arguing that their locker is one of the few private spaces they have in an environment which is otherwise communal and impersonal. Coin-operated public luggage lockers can be present in bus stations and rail stations . In some countries they were commonplace from
4235-432: The inside of the door, in the form of a metal plate welded to the inner surface, and protruding outward a fraction of an inch, thus adding to the robustness of the door and making it harder to force open. Lockers are often manufactured by the same companies who produce filing cabinets , stationery cabinets (occasionally wrongly referred to as lockers), steel shelving, and other products made from sheet steel . There are
4312-439: The main production route. At the end of 2008, the steel industry faced a sharp downturn that led to many cut-backs. In 2021, it was estimated that around 7% of the global greenhouse gas emissions resulted from the steel industry. Reduction of these emissions are expected to come from a shift in the main production route using cokes, more recycling of steel and the application of carbon capture and storage technology. Steel
4389-450: The most part, however, p-block elements such as sulphur, nitrogen , phosphorus , and lead are considered contaminants that make steel more brittle and are therefore removed from steel during the melting processing. The density of steel varies based on the alloying constituents but usually ranges between 7,750 and 8,050 kg/m (484 and 503 lb/cu ft), or 7.75 and 8.05 g/cm (4.48 and 4.65 oz/cu in). Even in
4466-436: The oxidation rate of iron increases rapidly beyond 800 °C (1,470 °F), it is important that smelting take place in a low-oxygen environment. Smelting, using carbon to reduce iron oxides, results in an alloy ( pig iron ) that retains too much carbon to be called steel. The excess carbon and other impurities are removed in a subsequent step. Other materials are often added to the iron/carbon mixture to produce steel with
4543-449: The product but only locally relieves strains and stresses locked up within the material. Annealing goes through three phases: recovery , recrystallization , and grain growth . The temperature required to anneal a particular steel depends on the type of annealing to be achieved and the alloying constituents. Quenching involves heating the steel to create the austenite phase then quenching it in water or oil . This rapid cooling results in
4620-759: The production methods of creating wootz steel from the Chera Dynasty Tamils of South India by the 5th century AD. In Sri Lanka, this early steel-making method employed a unique wind furnace, driven by the monsoon winds, capable of producing high-carbon steel. Since the technology was acquired from the Tamilians from South India, the origin of steel technology in India can be conservatively estimated at 400–500 BC. The manufacture of wootz steel and Damascus steel , famous for its durability and ability to hold an edge, may have been taken by
4697-422: The rise of hybrid working, traditional lockers no longer serves the purpose for a modern workplace that empowers its people. Agile lockers is a new term that used for an agile workplace, where employee experiences are being prioritised while saving office space and cost. There are also several types of doorless locker design including those that are cylindrical, spherical and cone-shaped. One such design eliminates
SECTION 60
#17327759296784774-477: The solid-state, by heating the ore in a charcoal fire and then welding the clumps together with a hammer and in the process squeezing out the impurities. With care, the carbon content could be controlled by moving it around in the fire. Unlike copper and tin, liquid or solid iron dissolves carbon quite readily. All of these temperatures could be reached with ancient methods used since the Bronze Age . Since
4851-401: The steel. At the very high cooling rates produced by quenching, the carbon has no time to migrate but is locked within the face-centred austenite and forms martensite . Martensite is a highly strained and stressed, supersaturated form of carbon and iron and is exceedingly hard but brittle. Depending on the carbon content, the martensitic phase takes different forms. Below 0.2% carbon, it takes on
4928-561: The steel. The early modern crucible steel industry resulted from the invention of Benjamin Huntsman in the 1740s. Blister steel (made as above) was melted in a crucible or in a furnace, and cast (usually) into ingots. The modern era in steelmaking began with the introduction of Henry Bessemer 's process in 1855, the raw material for which was pig iron. His method let him produce steel in large quantities cheaply, thus mild steel came to be used for most purposes for which wrought iron
5005-561: The technology of that time, such qualities were produced by chance rather than by design. Natural wind was used where the soil containing iron was heated by the use of wood. The ancient Sinhalese managed to extract a ton of steel for every 2 tons of soil, a remarkable feat at the time. One such furnace was found in Samanalawewa and archaeologists were able to produce steel as the ancients did. Crucible steel , formed by slowly heating and cooling pure iron and carbon (typically in
5082-460: The time to plan what books they will need, and carrying only those ones. In schools without lockers, students are sometimes provided with two complete sets of textbooks, one set being kept at school for use in class, and the other being kept at home for referring to for homework, thus limiting the amount of heavy carrying that would otherwise be required without having lockers to store them in between classes. However, research has shown an increase in
5159-525: The upper carbon content of steel, beyond which is cast iron. When carbon moves out of solution with iron, it forms a very hard, but brittle material called cementite (Fe 3 C). When steels with exactly 0.8% carbon (known as a eutectoid steel), are cooled, the austenitic phase (FCC) of the mixture attempts to revert to the ferrite phase (BCC). The carbon no longer fits within the FCC austenite structure, resulting in an excess of carbon. One way for carbon to leave
5236-552: The use of doors by offering a cylinder open at the front to receive items and can then be rotated to secure the contents. Some schools in the United States have been reported to have abolished the use of lockers. Security concerns are cited as the reason for this, with the concern being that lockers may be used to store contraband such as weapons, drugs or pornographic material. There has been some controversy over in what circumstances school authorities or law-enforcement officials are permitted to search lockers, with or without informing
5313-409: The user experience. Smart lockers are digitally managed storage banks which makes the experience of acquiring and using a locker fast and efficient. Whether it's controlled by a mobile phone app or a touchless kiosk, the technology allows for automation throughout the entire process/workflow. There are a number of less standard lockers that are offered by various manufacturers. These include: After
5390-503: The users, or with or without the users being present at the time of the search, and it has been considered a civil liberties issue, particularly in the U.S. Other advocates of lockerless schools also cite reasons such as reducing noise by eliminating the clang of dozens of locker doors, or creating a more appealing environment aesthetically. It has also been claimed that removing lockers provides good training for students by forcing them to be more efficient in managing their books, and taking
5467-428: The world's steel in 2023. Further refinements in the process, such as basic oxygen steelmaking (BOS), largely replaced earlier methods by further lowering the cost of production and increasing the quality of the final product. Today more than 1.6 billion tons of steel is produced annually. Modern steel is generally identified by various grades defined by assorted standards organizations . The modern steel industry
5544-409: The world. Steel is used in buildings, as concrete reinforcing rods, in bridges, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons. Iron is always the main element in steel, but many other elements may be present or added. Stainless steels , which are resistant to corrosion and oxidation , typically need an additional 11% chromium . Iron
5621-670: Was described in 2014 as "depending on how you measure it, the largest bus station in the world, the second-biggest in Europe, and the longest in Europe". It was fully refurbished in 2018. The largest bus terminal in North America is the Port Authority Bus Terminal located in New York City. The terminal is located in Midtown at 625 Eighth Avenue between 40th Street and 42nd Street, one block east of
5698-718: Was developed in Southern India and Sri Lanka in the 1st millennium BCE. Metal production sites in Sri Lanka employed wind furnaces driven by the monsoon winds, capable of producing high-carbon steel. Large-scale wootz steel production in India using crucibles occurred by the sixth century BC, the pioneering precursor to modern steel production and metallurgy. High-carbon steel was produced in Britain at Broxmouth Hillfort from 490–375 BC, and ultrahigh-carbon steel
5775-509: Was formerly used. The Gilchrist-Thomas process (or basic Bessemer process ) was an improvement to the Bessemer process, made by lining the converter with a basic material to remove phosphorus. Another 19th-century steelmaking process was the Siemens-Martin process , which complemented the Bessemer process. It consisted of co-melting bar iron (or steel scrap) with pig iron. These methods of steel production were rendered obsolete by
5852-438: Was produced globally, with 630,000,000 tonnes (620,000,000 long tons; 690,000,000 short tons) recycled. Modern steels are made with varying combinations of alloy metals to fulfil many purposes. Carbon steel , composed simply of iron and carbon, accounts for 90% of steel production. Low alloy steel is alloyed with other elements, usually molybdenum , manganese, chromium, or nickel, in amounts of up to 10% by weight to improve
5929-757: Was produced in the Netherlands from the 2nd-4th centuries AD. The Roman author Horace identifies steel weapons such as the falcata in the Iberian Peninsula , while Noric steel was used by the Roman military . The Chinese of the Warring States period (403–221 BC) had quench-hardened steel, while Chinese of the Han dynasty (202 BC—AD 220) created steel by melting together wrought iron with cast iron, thus producing
#677322