In phylogenetics , an apomorphy (or derived trait ) is a novel character or character state that has evolved from its ancestral form (or plesiomorphy ). A synapomorphy is an apomorphy shared by two or more taxa and is therefore hypothesized to have evolved in their most recent common ancestor . In cladistics , synapomorphy implies homology .
34-686: See text Lithornithidae is an extinct, possibly paraphyletic (but see below) group of early paleognath birds. They are known from fossils dating to the Upper Paleocene through the Middle Eocene of North America and Europe, with possible Late Cretaceous representatives. All are extinct today; the youngest specimen is the currently unnamed SGPIMH MEV1 specimen from the mid-Eocene Messel Pit site. Lithornithids had long, slender, bills for probing. They closely resembled modern tinamous , aside from more developed wings. They possessed
68-473: A rhynchokinetic skull with relatively unfused cranial bones, a weakly fused pygostyle and a splenial . The unguals were more curved than in tinamous and probably allowed better perching in trees. The order Lithornithiformes was erected by Dr. Peter Houde in 1988. Initially, only three genera ( Lithornis , Paracathartes , and Pseudocrypturus ) and eight named species were included. Promusophaga (Harrison & Walker, 1977) originally considered
102-479: A "single common ancestor" organism. Paraphyly is common in speciation , whereby a mother species (a paraspecies ) gives rise to a daughter species without itself becoming extinct. Research indicates as many as 20 percent of all animal species and between 20 and 50 percent of plant species are paraphyletic. Accounting for these facts, some taxonomists argue that paraphyly is a trait of nature that should be acknowledged at higher taxonomic levels. Cladists advocate
136-592: A cell nucleus, a plesiomorphy ) from its excluded descendants. Also, some systematists recognize paraphyletic groups as being involved in evolutionary transitions, the development of the first tetrapods from their ancestors for example. Any name given to these hypothetical ancestors to distinguish them from tetrapods—"fish", for example—necessarily picks out a paraphyletic group, because the descendant tetrapods are not included. Other systematists consider reification of paraphyletic groups to obscure inferred patterns of evolutionary history. The term " evolutionary grade "
170-410: A common ancestor and all of its descendants. The terms are commonly used in phylogenetics (a subfield of biology ) and in the tree model of historical linguistics . Paraphyletic groups are identified by a combination of synapomorphies and symplesiomorphies . If many subgroups are missing from the named group, it is said to be polyparaphyletic. The term received currency during the debates of
204-407: A common ancestor are said to be monophyletic . A paraphyletic group is a monophyletic group from which one or more subsidiary clades (monophyletic groups) are excluded to form a separate group. Philosopher of science Marc Ereshefsky has argued that paraphyletic taxa are the result of anagenesis in the excluded group or groups. A cladistic approach normally does not grant paraphyletic assemblages
238-419: A group of dinosaurs (part of Diapsida ), both of which are "reptiles". Osteichthyes , bony fish, are paraphyletic when circumscribed to include only Actinopterygii (ray-finned fish) and Sarcopterygii (lungfish, etc.), and to exclude tetrapods ; more recently, Osteichthyes is treated as a clade, including the tetrapods. The " wasps " are paraphyletic, consisting of the narrow-waisted Apocrita without
272-439: A kind of lizard). Put another way, viviparity is a synapomorphy for Theria within mammals, and an autapomorphy for Eulamprus tympanum (or perhaps a synapomorphy, if other Eulamprus species are also viviparous). Groupings based on independently-developed traits such as these examples of viviparity represent examples of polyphyly , not paraphyly. The following list recapitulates a number of paraphyletic groups proposed in
306-560: A more inclusive clade, it often makes sense to study the paraphyletic group that remains without considering the larger clade. For example, the Neogene evolution of the Artiodactyla (even-toed ungulates, like deer, cows, pigs and hippopotamuses - Cervidae , Bovidae , Suidae and Hippopotamidae , the families that contain these various artiodactyls, are all monophyletic groups) has taken place in environments so different from that of
340-424: A phylogenetic species concept that does not consider species to exhibit the properties of monophyly or paraphyly, concepts under that perspective which apply only to groups of species. They consider Zander's extension of the "paraphyletic species" argument to higher taxa to represent a category error When the appearance of significant traits has led a subclade on an evolutionary path very divergent from that of
374-435: A single, natural group basal to the rest of Palaeognathae. Of issue is Paracathartes , which differs radically from other lithornithids and has been suggested to be more closely related to extant paleognaths, though it is recently recovered as a derived lithornithid. Lithornis itself may be paraphyletic in relation to Paracathartes and Pseudocrypturus . In a study about ratite endocasts, Lithornis ranks among
SECTION 10
#1732801723958408-400: A stem- turaco , is considered synonymous with Lithornis vulturinus . Fissuravis may also belong to the clade, and several unnamed remains are known. Lithornithiformes Houde, 1988 Several studies have shown conflicting status on the monophyly of the group. Some studies recover them as a paraphyletic assemblage leading to modern paleognaths, but more recent examinations group them in
442-477: A synapomorphy is the marker for the most recent common ancestor of the monophyletic group consisting of a set of taxa in a cladogram. What counts as a synapomorphy for one clade may well be a primitive character or plesiomorphy at a less inclusive or nested clade. For example, the presence of mammary glands is a synapomorphy for mammals in relation to tetrapods but is a symplesiomorphy for mammals in relation to one another—rodents and primates, for example. So
476-478: A vibrotactile bill tip organ, suggesting the development of this feature in the Cretaceous. Paraphyletic Paraphyly is a taxonomic term describing a grouping that consists of the grouping's last common ancestor and some but not all of its descendant lineages. The grouping is said to be paraphyletic with respect to the excluded subgroups. In contrast, a monophyletic grouping (a clade ) includes
510-535: Is Paracathartes which was similar to modern tinamous and fowl in its sternum and wing proportions and likely was a burst flyer as well. Several egg fossils have been attributed to lithornithid birds. Both Lithornis and Paracathartes have entire nests assigned to them. Their eggshells are, perhaps unsurprisingly, noted as being "ratite-like". Studies on lithornithid feathers shows that some species had gloss similar to that of cassowaries . Lithornithids, much like modern paleognaths, ibises and shorebirds, had
544-433: Is allowed as a synonym of Magnoliopsida. Phylogenetic analysis indicates that the monocots are a development from a dicot ancestor. Excluding monocots from the dicots makes the latter a paraphyletic group. Among animals, several familiar groups are not, in fact, clades. The order Artiodactyla ( even-toed ungulates ) as traditionally defined is paraphyletic because it excludes Cetaceans (whales, dolphins, etc.). Under
578-629: Is rather arbitrary, since the character states of common ancestors are inferences, not observations. These terms were developed during the debates of the 1960s and 1970s accompanying the rise of cladistics . Paraphyletic groupings are considered problematic by many taxonomists, as it is not possible to talk precisely about their phylogenetic relationships, their characteristic traits and literal extinction. Related terms are stem group , chronospecies , budding cladogenesis, anagenesis, or 'grade' groupings. Paraphyletic groups are often relics from outdated hypotheses of phylogenic relationships from before
612-482: Is sometimes used for paraphyletic groups. Moreover, the concepts of monophyly , paraphyly, and polyphyly have been used in deducing key genes for barcoding of diverse group of species. Current phylogenetic hypotheses of tetrapod relationships imply that viviparity , the production of offspring without the external laying of a fertilized egg, developed independently in the lineages that led to humans ( Homo sapiens ) and southern water skinks ( Eulampus tympanum ,
646-557: The Ancient Greek words σύν ( sún ), meaning "with, together"; ἀπό ( apó ), meaning "away from"; and μορφή ( morphḗ ), meaning "shape, form". Lampreys and sharks share some features, like a nervous system, that are not synapomorphic because they are also shared by invertebrates . In contrast, the presence of jaws and paired appendages in both sharks and dogs, but not in lampreys or close invertebrate relatives, identifies these traits as synapomorphies. This supports
680-514: The Cetacea (whales, dolphins, and porpoises) that the Artiodactyla are often studied in isolation even though the cetaceans are a descendant group. The prokaryote group is another example; it is paraphyletic because it is composed of two Domains (Eubacteria and Archaea) and excludes (the eukaryotes ). It is very useful because it has a clearly defined and significant distinction (absence of
714-581: The ICN ) abandoned consideration of bacterial nomenclature in 1975; currently, prokaryotic nomenclature is regulated under the ICNB with a starting date of 1 January 1980 (in contrast to a 1753 start date under the ICBN/ICN). Among plants, dicotyledons (in the traditional sense) are paraphyletic because the group excludes monocotyledons . "Dicotyledon" has not been used as a botanic classification for decades, but
SECTION 20
#1732801723958748-660: The ants and bees . The sawflies ( Symphyta ) are similarly paraphyletic, forming all of the Hymenoptera except for the Apocrita, a clade deep within the sawfly tree. Crustaceans are not a clade because the Hexapoda (insects) are excluded. The modern clade that spans all of them is the Tetraconata . One of the goals of modern taxonomy over the past fifty years has been to eliminate paraphyletic "groups", such as
782-465: The 1960s and 1970s accompanying the rise of cladistics , having been coined by zoologist Willi Hennig to apply to well-known taxa like Reptilia ( reptiles ), which is paraphyletic with respect to birds . Reptilia contains the last common ancestor of reptiles and all descendants of that ancestor except for birds. Other commonly recognized paraphyletic groups include fish , monkeys , and lizards . The term paraphyly , or paraphyletic , derives from
816-531: The concept can be understood as well in terms of "a character newer than" ( autapomorphy ) and "a character older than" ( plesiomorphy ) the apomorphy: mammary glands are evolutionarily newer than vertebral column, so mammary glands are an autapomorphy if vertebral column is an apomorphy, but if mammary glands are the apomorphy being considered then vertebral column is a plesiomorphy. These phylogenetic terms are used to describe different patterns of ancestral and derived character or trait states as stated in
850-450: The examples given here, from formal classifications. Species have a special status in systematics as being an observable feature of nature itself and as the basic unit of classification. Some articulations of the phylogenetic species concept require species to be monophyletic, but paraphyletic species are common in nature, to the extent that they do not have a single common ancestor. Indeed, for sexually reproducing taxa, no species has
884-480: The fact that a monophyletic group includes organisms consisting of all the descendants of a unique common ancestor. By comparison, the term polyphyly , or polyphyletic , uses the Ancient Greek prefix πολύς ( polús ), meaning "many, a lot of", and refers to the fact that a polyphyletic group includes organisms arising from multiple ancestral sources. Groups that include all the descendants of
918-510: The hypothesis that dogs and sharks are more closely related to each other than to lampreys. The concept of synapomorphy depends on a given clade in the tree of life. Cladograms are diagrams that depict evolutionary relationships within groups of taxa. These illustrations are accurate predictive device in modern genetics. They are usually depicted in either tree or ladder form. Synapomorphies then create evidence for historical relationships and their associated hierarchical structure. Evolutionarily,
952-581: The island of Taiwan . Synapomorphy and apomorphy Examples of apomorphy are the presence of erect gait , fur , the evolution of three middle ear bones , and mammary glands in mammals but not in other vertebrate animals such as amphibians or reptiles , which have retained their ancestral traits of a sprawling gait and lack of fur. Thus, these derived traits are also synapomorphies of mammals in general as they are not shared by other vertebrate animals. The word synapomorphy —coined by German entomologist Willi Hennig —is derived from
986-622: The literature, and provides the corresponding monophyletic taxa. The concept of paraphyly has also been applied to historical linguistics , where the methods of cladistics have found some utility in comparing languages. For instance, the Formosan languages form a paraphyletic group of the Austronesian languages because they consist of the nine branches of the Austronesian family that are not Malayo-Polynesian and are restricted to
1020-696: The ranks of the ICZN Code , the two taxa are separate orders. Molecular studies, however, have shown that the Cetacea descend from artiodactyl ancestors, although the precise phylogeny within the order remains uncertain. Without the Cetaceans the Artiodactyls are paraphyletic. The class Reptilia is paraphyletic because it excludes birds (class Aves ). Under a traditional classification, these two taxa are separate classes. However birds are sister taxon to
1054-567: The rise of cladistics. The prokaryotes (single-celled life forms without cell nuclei) are a paraphyletic grouping, because they exclude the eukaryotes , a descendant group. Bacteria and Archaea are prokaryotes, but archaea and eukaryotes share a common ancestor that is not ancestral to the bacteria. The prokaryote/eukaryote distinction was proposed by Edouard Chatton in 1937 and was generally accepted after being adopted by Roger Stanier and C.B. van Niel in 1962. The botanical code (the ICBN, now
Lithornithidae - Misplaced Pages Continue
1088-460: The status of "groups", nor does it reify them with explanations, as in cladistics they are not seen as the actual products of evolutionary events. A group whose identifying features evolved convergently in two or more lineages is polyphyletic (Greek πολύς [ polys ], "many"). More broadly, any taxon that is not paraphyletic or monophyletic can be called polyphyletic. Empirically, the distinction between polyphyletic groups and paraphyletic groups
1122-498: The taxa with well developed olfactory lobes. This is consistent with a nocturnal, forest-dwelling lifestyle, though as much all volant birds it retains large optical lobes. Unlike modern tinamous, at least Lithornis has toe claws and reversed halluxes that allow for efficient perching. Also unlike modern tinamous most lithornithids were capable flyers, with their wings and sterna comparable to those of storks and vultures some even able to perform long distance migrations. The exception
1156-477: The two Ancient Greek words παρά ( pará ), meaning "beside, near", and φῦλον ( phûlon ), meaning "genus, species", and refers to the situation in which one or several monophyletic subgroups of organisms (e.g., genera, species) are left apart from all other descendants of a unique common ancestor. Conversely, the term monophyly , or monophyletic , builds on the Ancient Greek prefix μόνος ( mónos ), meaning "alone, only, unique", and refers to
#957042