110-508: The Little Wing Roto-Pup is an American autogyro that was designed and produced by Little Wing Autogyros, Inc. of Mayflower, Arkansas , introduced in the 1990s. Now out of production, when it was available the aircraft was supplied as a kit for amateur construction . The Roto-Pup was designed to comply with the US FAR 103 Ultralight Vehicles rules, including the category's maximum empty weight of 254 lb (115 kg). The aircraft has
220-554: A Special Airworthiness Certificate in the Experimental category. Per FAR 1.1, the FAA uses the term "gyroplane" for all autogyros, regardless of the type of airworthiness certificate. In 1931, Amelia Earhart (U.S.) flew a Pitcairn PCA-2 to a women's world altitude record of 18,415 ft (5,613 m). Wing Commander Ken Wallis (U.K.) held most of the autogyro world records during his autogyro flying career. These include
330-833: A power push-over (PPO or buntover) causing the death of the pilot and giving gyroplanes, in general, a poor reputation – in contrast to de la Cierva's original intention and early statistics. Most new autogyros are now safe from PPO. In 2002, a Groen Brothers Aviation 's Hawk 4 provided perimeter patrol for the Winter Olympics and Paralympics in Salt Lake City, Utah. The aircraft completed 67 missions and accumulated 75 hours of maintenance-free flight time during its 90-day operational contract. Worldwide, over 1,000 autogyros are used by authorities for military and law enforcement. The first U.S. police authorities to evaluate an autogyro were
440-589: A C.8 L.IV with a Wright Whirlwind engine. Arriving in the United States on 11 December 1928 accompanied by Rawson, this autogyro was redesignated C.8W. Subsequently, production of autogyros was licensed to several manufacturers, including the Pitcairn Autogiro Company in the United States and Focke-Wulf of Germany. In 1927, German engineer Engelbert Zaschka invented a combined helicopter and autogyro. The principal advantage of
550-532: A Russian immigrant in the United States, saw a captured German U-boat's Fa 330 gyroglider and was fascinated by its characteristics. At work, he was tasked with the analysis of the British military Rotachute gyro glider designed by an expatriate Austrian, Raoul Hafner . This led him to adapt the design for his purposes and eventually market the Bensen B-7 in 1955. Bensen submitted an improved version,
660-444: A collective input is made, all the blades change equally, and the result is the helicopter increasing or decreasing in altitude. A swashplate controls the collective and cyclic pitch of the main blades. The swashplate moves up and down, along the main shaft, to change the pitch of both blades. This causes the helicopter to push air downward or upward, depending on the angle of attack . The swashplate can also change its angle to move
770-417: A constant altitude. The pedals serve the same function in both a helicopter and a fixed-wing aircraft, to maintain balanced flight. This is done by applying a pedal input in whichever direction is necessary to center the ball in the turn and bank indicator . Due to the operating characteristics of the helicopter—its ability to take off and land vertically, and to hover for extended periods of time, as well as
880-560: A fixed-wing aircraft. At low airspeeds, the control surfaces became ineffective and could readily lead to loss of control, particularly during landing. In response, de la Cierva developed a direct control rotor hub, which could be tilted in any direction by the pilot. De la Cierva's direct control was first developed on the Cierva C.19 Mk. V and saw the production on the Cierva C.30 series of 1934. In March 1934, this type of autogyro became
990-691: A flight of 10.5 kilometres (6.5 miles) from Cuatro Vientos airfield to Getafe airfield in about eight minutes, a significant accomplishment for any rotorcraft of the time. Shortly after de la Cierva's success with the C.6, he accepted an offer from Scottish industrialist James G. Weir to establish the Cierva Autogiro Company in England, following a demonstration of the C.6 before the British Air Ministry at RAE Farnborough , on 20 October 1925. Britain had become
1100-463: A gift by their father, would inspire the Wright brothers to pursue the dream of flight. In 1861, the word "helicopter" was coined by Gustave de Ponton d'Amécourt , a French inventor who demonstrated a small steam-powered model. While celebrated as an innovative use of a new metal, aluminum, the model never lifted off the ground. D'Amecourt's linguistic contribution would survive to eventually describe
1210-405: A helicopter determines the size, function and capability of that helicopter design. The earliest helicopter engines were simple mechanical devices, such as rubber bands or spindles, which relegated the size of helicopters to toys and small models. For a half century before the first airplane flight, steam engines were used to forward the development of the understanding of helicopter aerodynamics, but
SECTION 10
#17327910206511320-510: A helicopter powered by a gasoline engine with box kites attached to a mast by cables for a rotor, but it never flew. In 1906, two French brothers, Jacques and Louis Breguet , began experimenting with airfoils for helicopters. In 1907, those experiments resulted in the Gyroplane No.1 , possibly as the earliest known example of a quadcopter. Although there is some uncertainty about the date, sometime between 14 August and 29 September 1907,
1430-551: A helicopter suffers a power failure, the pilot can adjust the collective pitch to keep the rotor spinning generating enough lift to touch down and skid in a relatively soft landing via autorotation of its rotor disc. Some autogyros, such as the Rotorsport MT03, MTO Sport (open tandem), and Calidus (enclosed tandem), and the Magni Gyro M16C (open tandem) & M24 (enclosed side by side) have type approval by
1540-416: A helicopter. This is because a helicopter generates its own gusty air while in a hover, which acts against the fuselage and flight control surfaces. The result is constant control inputs and corrections by the pilot to keep the helicopter where it is required to be. Despite the complexity of the task, the control inputs in a hover are simple. The cyclic is used to eliminate drift in the horizontal plane, that
1650-669: A pair of Degtyaryov machine guns, and six RS-82 rockets or four FAB-100 bombs . The Avro Rota autogyro, a military version of the Cierva C.30, was used by the Royal Air Force to calibrate coastal radar stations during and after the Battle of Britain . In World War II, Germany pioneered a very small gyroglider rotor kite , the Focke-Achgelis Fa 330 "Bachstelze" (wagtail), towed by U-boats to provide aerial surveillance. The Imperial Japanese Army developed
1760-477: A process of rebracketing , the word is often (erroneously, from an etymological point of view) perceived by English speakers as consisting of heli- and -copter , leading to words like helipad and quadcopter . English language nicknames for "helicopter" include "chopper", "copter", "heli", and "whirlybird". In the United States military, the common slang is "helo" pronounced /ˈhiː.loʊ/. A helicopter
1870-411: A rear-mounted engine and propeller in a pusher configuration . An autogyro is characterized by a free-spinning rotor that turns because of the passage of air through the rotor from below. The downward component of the total aerodynamic reaction of the rotor gives lift to the vehicle, sustaining it in the air. A separate propeller provides forward thrust and can be placed in a puller configuration, with
1980-494: A rotor. The spinning creates lift, and the toy flies when released. The 4th-century AD Daoist book Baopuzi by Ge Hong ( 抱朴子 "Master who Embraces Simplicity") reportedly describes some of the ideas inherent to rotary wing aircraft. Designs similar to the Chinese helicopter toy appeared in some Renaissance paintings and other works. In the 18th and early 19th centuries Western scientists developed flying machines based on
2090-522: A safe landing, validating de la Cierva's efforts to produce an aircraft that could be flown safely at low airspeeds. De la Cierva developed his C.6 model with the assistance of Spain's Military Aviation establishment, having expended all his funds on the development and construction of the first five prototypes. The C.6 first flew in February 1925, piloted by Captain Joaquín Loriga , including
2200-819: A search for the Loch Ness Monster , as well as an appearance in the 1967 James Bond movie You Only Live Twice . Three different autogyro designs have been certified by the Federal Aviation Administration for commercial production: the Umbaugh U-18/ Air & Space 18A of 1965, the Avian 2/180 Gyroplane of 1967, and the McCulloch J-2 of 1972. All have been commercial failures, for various reasons. The Kaman KSA-100 SAVER (Stowable Aircrew Vehicle Escape Rotorseat)
2310-441: A single main rotor, but torque created by its aerodynamic drag must be countered by an opposed torque. The design that Igor Sikorsky settled on for his VS-300 was a smaller tail rotor. The tail rotor pushes or pulls against the tail to counter the torque effect, and this has become the most common configuration for helicopter design, usually at the end of a tail boom . Some helicopters use other anti-torque controls instead of
SECTION 20
#17327910206512420-437: A standard empty weight of 250 lb (113 kg). It features a single main rotor, a single-seat open cockpit with a windshield and conventional landing gear without wheel pants . The acceptable power range is 45 to 70 hp (34 to 52 kW) and the standard engine used is a twin cylinder, air-cooled, two-stroke , single-ignition 45 hp (34 kW) 2si 460 engine in tractor configuration . The aircraft fuselage
2530-417: A state called translational lift which provides extra lift without increasing power. This state, most typically, occurs when the airspeed reaches approximately 16–24 knots (30–44 km/h; 18–28 mph), and may be necessary for a helicopter to obtain flight. In forward flight a helicopter's flight controls behave more like those of a fixed-wing aircraft. Applying forward pressure on the cyclic will cause
2640-502: A time-to-climb, a speed record of 189 km/h (111.7 mph), and the straight-line distance record of 869.23 km (540.11 mi). On 16 November 2002, at 89 years of age, Wallis increased the speed record to 207.7 km/h (129.1 mph) – and simultaneously set another world record as the oldest pilot to set a world record. Helicopter A helicopter is a type of rotorcraft in which lift and thrust are supplied by horizontally spinning rotors . This allows
2750-477: A typical empty weight of 250 lb (110 kg) and a gross weight of 550 lb (250 kg), giving a useful load of 300 lb (140 kg). With full fuel of 5 U.S. gallons (19 L; 4.2 imp gal) the payload for the pilot and baggage is 270 lb (120 kg). The aircraft uses an unusual control system, common to all the Little Wing Autogyros and designed by David Kay in
2860-498: A variety of engines. McCulloch drone engines, Rotax marine engines, Subaru automobile engines, and other designs have been used in Bensen-type designs. The rotor is mounted atop the vertical mast. The rotor system of all Bensen-type autogyros is of a two-blade teetering design. There are some disadvantages associated with this rotor design, but the simplicity of the rotor design lends itself to ease of assembly and maintenance and
2970-426: Is 50 ft (15 m). The manufacturer estimated the construction time from the supplied kit as 200 hours. By 1998 the company reported that 13 kits had been sold and three aircraft were completed and flying. Data from Purdy and Cliche General characteristics Performance Avionics Autogyro An autogyro (from Greek αὐτός and γύρος , "self-turning"), or gyroplane ,
3080-655: Is a class of rotorcraft that uses an unpowered rotor in free autorotation to develop lift . While similar to a helicopter rotor in appearance, the autogyro's unpowered rotor disc must have air flowing upward across it to make it rotate. Forward thrust is provided independently, by an engine-driven propeller . It was originally named the autogiro by its Spanish inventor and engineer, Juan de la Cierva , in his attempt to create an aircraft that could fly safely at low speeds. He first flew one on 9 January 1923, at Cuatro Vientos Airport in Madrid . The aircraft resembled
3190-429: Is a cylindrical metal shaft that extends upwards from the transmission. At the top of the mast is the attachment point for the rotor blades called the hub. Main rotor systems are classified according to how the rotor blades are attached and move relative to the hub. There are three basic types: hingeless, fully articulated, and teetering; although some modern rotor systems use a combination of these. Most helicopters have
3300-452: Is a type of rotorcraft in which lift and thrust are supplied by one or more horizontally-spinning rotors. By contrast the autogyro (or gyroplane) and gyrodyne have a free-spinning rotor for all or part of the flight envelope, relying on a separate thrust system to propel the craft forwards, so that the airflow sets the rotor spinning to provide lift. The compound helicopter also has a separate thrust system, but continues to supply power to
3410-553: Is an aircraft-stowable gyroplane escape device designed and built for the United States Navy . Designed to be installed in naval combat aircraft as part of the ejection sequence, only one example was built and it did not enter service. It was powered by a Williams WRC-19 turbofan making it the first jet-powered autogyro. The basic Bensen Gyrocopter design is a simple frame of square aluminium or galvanized steel tubing, reinforced with triangles of lighter tubing. It
Little Wing Roto-Pup - Misplaced Pages Continue
3520-430: Is arranged so that the stress falls on the tubes, or special fittings, not the bolts. A front-to-back keel mounts a steerable nosewheel, seat, engine, and vertical stabilizer. Outlying mainwheels are mounted on an axle. Some versions may mount seaplane-style floats for water operations. Bensen-type autogyros use a pusher configuration for simplicity and to increase visibility for the pilot. Power can be supplied by
3630-452: Is called an aerial crane . Aerial cranes are used to place heavy equipment, like radio transmission towers and large air conditioning units, on the tops of tall buildings, or when an item must be raised up in a remote area, such as a radio tower raised on the top of a hill or mountain. Helicopters are used as aerial cranes in the logging industry to lift trees out of terrain where vehicles cannot travel and where environmental concerns prohibit
3740-547: Is equipped to stabilize and provide limited medical treatment to a patient while in flight. The use of helicopters as air ambulances is often referred to as " MEDEVAC ", and patients are referred to as being "airlifted", or "medevaced". This use was pioneered in the Korean War , when time to reach a medical facility was reduced to three hours from the eight hours needed in World War II , and further reduced to two hours by
3850-566: Is made from welded 4130 steel tubing and is based on the Preceptor Ultra Pup airframe . The airframe may be covered with dope and fabric or left uncovered. To meet the FAR 103 Ultralight Vehicles empty weight, the frame is required to be left uncovered, but this does not affect aircraft handling. The cockpit width is 24 in (61 cm). The Roto-Pup's two-bladed rotor has a diameter of 23 ft (7.0 m). The aircraft has
3960-440: Is one of the reasons for its popularity. Aircraft-quality birch was specified in early Bensen designs, and a wood/steel composite is used in the world-speed-record-holding Wallis design. Gyroplane rotor blades are made from other materials such as aluminium and GRP -based composite. Bensen's success triggered several other designs, some of them fatally flawed with an offset between the centre of gravity and thrust line, risking
4070-678: Is the Sud-Ouest Djinn , and an example of the hot tip jet helicopter is the YH-32 Hornet . Some radio-controlled helicopters and smaller, helicopter-type unmanned aerial vehicles , use electric motors or motorcycle engines. Radio-controlled helicopters may also have piston engines that use fuels other than gasoline, such as nitromethane . Some turbine engines commonly used in helicopters can also use biodiesel instead of jet fuel. There are also human-powered helicopters . A helicopter has four flight control inputs. These are
4180-411: Is to control forward and back, right and left. The collective is used to maintain altitude. The pedals are used to control nose direction or heading . It is the interaction of these controls that makes hovering so difficult, since an adjustment in any one control requires an adjustment of the other two, creating a cycle of constant correction. As a helicopter moves from hover to forward flight it enters
4290-572: The Bell 205 and the Erickson S-64 Aircrane helitanker. Helicopters are used as air ambulances for emergency medical assistance in situations when an ambulance cannot easily or quickly reach the scene, or cannot transport the patient to a medical facility in time. Helicopters are also used when patients need to be transported between medical facilities and air transportation is the most practical method. An air ambulance helicopter
4400-588: The Bell 206 with 3,400. Most were in North America with 34.3% then in Europe with 28.0% followed by Asia-Pacific with 18.6%, Latin America with 11.6%, Africa with 5.3% and Middle East with 1.7%. The earliest references for vertical flight came from China. Since around 400 BC, Chinese children have played with bamboo flying toys (or Chinese top). This bamboo-copter is spun by rolling a stick attached to
4510-719: The Bensen B-8M , for testing to the United States Air Force , which designated it the X-25. The B-8M was designed to use surplus McCulloch engines used on flying unmanned target drones . Ken Wallis developed a miniature autogyro craft, the Wallis autogyro , in England in the 1960s, and autogyros built similar to Wallis' design appeared for many years. Ken Wallis' designs have been used in various scenarios, including military training, police reconnaissance, and in
Little Wing Roto-Pup - Misplaced Pages Continue
4620-527: The Cornu helicopter which used two 6.1-metre (20 ft) counter-rotating rotors driven by a 24 hp (18 kW) Antoinette engine. On 13 November 1907, it lifted its inventor to 0.3 metres (1 ft) and remained aloft for 20 seconds. Even though this flight did not surpass the flight of the Gyroplane No. 1, it was reported to be the first truly free flight with a pilot. Cornu's helicopter completed
4730-570: The Kayaba Ka-1 autogyro for reconnaissance, artillery-spotting, and anti-submarine uses. The Ka-1 was based on the Kellett KD-1 first imported to Japan in 1938. The craft was initially developed for use as an observation platform and for artillery spotting duties. The army liked the craft's short take-off span, and especially its low maintenance requirements. Production began in 1941, with the machines assigned to artillery units for spotting
4840-530: The Tomball, Texas , police, on a $ 40,000 grant from the U.S. Department of Justice together with city funds, costing much less than a helicopter to buy ($ 75,000) and operate ($ 50/hour). Although it is able to land in 40-knot crosswinds, a minor accident happened when the rotor was not kept under control in a wind gust. Since 2009, several projects in Iraqi Kurdistan have been realized. In 2010,
4950-804: The United Kingdom Civil Aviation Authority (CAA) under British Civil Airworthiness Requirements CAP643 Section T. Others operate under a permit to fly issued by the Popular Flying Association similar to the U.S. experimental aircraft certification. However, the CAA's assertion that autogyros have a poor safety record means that a permit to fly will be granted only to existing types of an autogyro. All new types of autogyro must be submitted for full type approval under CAP643 Section T. The CAA allows gyro flight over congested areas. In 2005,
5060-499: The Vietnam War . In naval service a prime function of rescue helicopters is to promptly retrieve downed aircrew involved in crashes occurring upon launch or recovery aboard aircraft carriers. In past years this function was performed by destroyers escorting the carrier, but since then helicopters have proved vastly more effective. Police departments and other law enforcement agencies use helicopters to pursue suspects and patrol
5170-473: The fixed-wing aircraft of the day, with a front-mounted engine and propeller. The term Autogiro became trademarked by the Cierva Autogiro Company . De la Cierva's Autogiro is considered the predecessor of the modern helicopter . The term gyrocopter (derived from helicopter) was used by E. Burke Wilford who developed the Reiseler Kreiser feathering rotor equipped gyroplane in
5280-646: The 1930s by major newspapers , and by the United States Postal Service for the mail service between cities in the northeast. During the Winter War of 1939–1940, the Red Army Air Force used armed Kamov A-7 autogyros to provide fire correction for artillery batteries , carrying out 20 combat flights. The A-7 was the first rotary-wing aircraft designed for combat, armed with one 7.62×54mmR PV-1 machine gun ,
5390-558: The Bambi bucket, are usually filled by submerging the bucket into lakes, rivers, reservoirs, or portable tanks. Tanks fitted onto helicopters are filled from a hose while the helicopter is on the ground or water is siphoned from lakes or reservoirs through a hanging snorkel as the helicopter hovers over the water source. Helitack helicopters are also used to deliver firefighters, who rappel down to inaccessible areas, and to resupply firefighters. Common firefighting helicopters include variants of
5500-542: The Bensen " Gyrocopter ". Its main advantages are the simplicity and lightness of its construction and the unobstructed visibility. It was developed by Igor Bensen in the decades following World War II, who also founded the Popular Rotorcraft Association (PRA) to help it become more widespread. Less common today is the tractor configuration. In this version, the engine and propeller are located at
5610-670: The CAA issued a mandatory permit directive (MPD) which restricted operations for single-seat autogyros and were subsequently integrated into CAP643 Issue 3 published on 12 August 2005. The restrictions are concerned with the offset between the centre of gravity and thrust line and apply to all aircraft unless evidence is presented to the CAA that the CG/Thrust Line offset is less than 2 inches (5 cm) in either direction. The restrictions are summarised as follows: These restrictions do not apply to autogyros with type approval under CAA CAP643 Section T, which are subject to
SECTION 50
#17327910206515720-762: The Chinese top in a model consisting of contrarotating turkey flight feathers as rotor blades, and in 1784, demonstrated it to the French Academy of Sciences . Sir George Cayley , influenced by a childhood fascination with the Chinese flying top, developed a model of feathers, similar to that of Launoy and Bienvenu, but powered by rubber bands. By the end of the century, he had progressed to using sheets of tin for rotor blades and springs for power. His writings on his experiments and models would become influential on future aviation pioneers. Alphonse Pénaud would later develop coaxial rotor model helicopter toys in 1870, also powered by rubber bands. One of these toys, given as
5830-478: The Chinese toy. It was not until the early 1480s, when Italian polymath Leonardo da Vinci created a design for a machine that could be described as an " aerial screw ", that any recorded advancement was made towards vertical flight. His notes suggested that he built small flying models, but there were no indications for any provision to stop the rotor from making the craft rotate. As scientific knowledge increased and became more accepted, people continued to pursue
5940-531: The German pilot couple Melanie and Andreas Stützfor undertook the first world tour by autogyro, in which they flew several different gyroplane types in Europe, southern Africa, Australia, New Zealand, the United States, and South America. The adventure was documented in the book "WELTFLUG – The Gyroplane Dream" and in the film "Weltflug.tv –The Gyrocopter World Tour". While autogyros are not helicopters, helicopters are capable of autorotation . If
6050-453: The Gyroplane No. 1 lifted its pilot into the air about 0.6 metres (2 ft) for a minute. The Gyroplane No. 1 proved to be extremely unsteady and required a man at each corner of the airframe to hold it steady. For this reason, the flights of the Gyroplane No. 1 are considered to be the first manned flight of a helicopter, but not a free or untethered flight. That same year, fellow French inventor Paul Cornu designed and built
6160-571: The Martian atmosphere is 100 times thinner than Earth's, its two blades spin at close to 3,000 revolutions a minute, approximately 10 times faster than that of a terrestrial helicopter. In 2017, 926 civil helicopters were shipped for $ 3.68 billion, led by Airbus Helicopters with $ 1.87 billion for 369 rotorcraft, Leonardo Helicopters with $ 806 million for 102 (first three-quarters only), Bell Helicopter with $ 696 million for 132, then Robinson Helicopter with $ 161 million for 305. By October 2018,
6270-458: The Zaschka machine is its ability to remain motionless in the air for any length of time and to descend in a vertical line so that a landing could be accomplished on the flat roof of a large house. In appearance, the machine does not differ much from the ordinary monoplane, but the carrying wings revolve around the body. Development of the autogyro continued in the search for a means to accelerate
6380-550: The aircraft's handling properties under low airspeed conditions—it has proved advantageous to conduct tasks that were previously not possible with other aircraft, or were time- or work-intensive to accomplish on the ground. Today, helicopter uses include transportation of people and cargo, military uses, construction, firefighting, search and rescue , tourism , medical transport, law enforcement, agriculture, news and media , and aerial observation , among others. A helicopter used to carry loads connected to long cables or slings
6490-543: The autogyro ( autogiro in Spanish), in 1923. His first three designs ( C.1 , C.2 , and C.3 ) were unstable because of aerodynamic and structural deficiencies in their rotors. His fourth design, the C.4 , made the first documented flight of an autogyro on 17 January 1923, piloted by Alejandro Gomez Spencer at Cuatro Vientos airfield in Madrid, Spain (9 January according to de la Cierva). De la Cierva had fitted
6600-466: The aviation industry; and the turboshaft engine for helicopter use, pioneered in December 1951 by the aforementioned Kaman K-225, finally gave helicopters an engine with a large amount of power and a low weight penalty. Turboshafts are also more reliable than piston engines, especially when producing the sustained high levels of power required by a helicopter. The turboshaft engine was able to be scaled to
6710-581: The beginning of German invasion in USSR June 1941, the Soviet Air Force organized new courses for training Kamov A-7 aircrew and ground support staff. In August 1941, per the decision of the chief artillery directorate of the Red Army , based on the trained flight group and five combat-ready A-7 autogyros, the 1st autogyro artillery spotting aircraft squadron was formed, which was included in
SECTION 60
#17327910206516820-435: The blades angle forwards or backwards, or left and right, to make the helicopter move in those directions. The anti-torque pedals are located in the same position as the rudder pedals in a fixed-wing aircraft, and serve a similar purpose, namely to control the direction in which the nose of the aircraft is pointed. Application of the pedal in a given direction changes the pitch of the tail rotor blades, increasing or reducing
6930-677: The building of roads. These operations are referred to as longline because of the long, single sling line used to carry the load. In military service helicopters are often useful for delivery of outsized slung loads that would not fit inside ordinary cargo aircraft: artillery pieces, large machinery (field radars, communications gear, electrical generators), or pallets of bulk cargo. In military operations these payloads are often delivered to remote locations made inaccessible by mountainous or riverine terrain, or naval vessels at sea. In electronic news gathering , helicopters have provided aerial views of some major news stories, and have been doing so, from
7040-406: The cockpit from overhead. The control is called the cyclic because it changes cyclic pitch of the main blades. The result is to tilt the rotor disk in a particular direction, resulting in the helicopter moving in that direction. If the pilot pushes the cyclic forward, the rotor disk tilts forward, and the rotor produces a thrust in the forward direction. If the pilot pushes the cyclic to the side,
7150-797: The configuration of a single main rotor accompanied by a vertical anti-torque tail rotor (i.e. unicopter , not to be confused with the single-blade monocopter ) has become the most common helicopter configuration. However, twin-rotor helicopters (bicopters), in either tandem or transverse rotors configurations, are sometimes in use due to their greater payload capacity than the monorotor design, and coaxial-rotor , tiltrotor and compound helicopters are also all flying today. Four-rotor helicopters ( quadcopters ) were pioneered as early as 1907 in France, and along with other types of multicopters , have been developed mainly for specialized applications such as commercial unmanned aerial vehicles (drones) due to
7260-470: The cyclic, the collective, the anti-torque pedals, and the throttle. The cyclic control is usually located between the pilot's legs and is commonly called the cyclic stick or just cyclic . On most helicopters, the cyclic is similar to a joystick. However, the Robinson R22 and Robinson R44 have a unique teetering bar cyclic control system and a few helicopters have a cyclic control that descends into
7370-400: The early 1930s. It uses a mast that is fixed fore-and-aft, but which pivots laterally for banking the aircraft. Longitudinal control is achieved by an elevator and horizontal stabilizer system, designed to eliminate power-induced bunting "push-over" accidents. The standard day, sea level, no wind, take off with a 45 hp (34 kW) engine is 200 ft (61 m) and the landing roll
7480-403: The engine and propeller at the front of the fuselage, or in a pusher configuration, with the engine and propeller at the rear of the fuselage. Whereas a helicopter works by forcing the rotor blades through the air, drawing air from above, the autogyro rotor blade generates lift in the same way as a glider 's wing, by changing the angle of the air as the air moves upward and backward relative to
7590-439: The event was taken by Max Skladanowsky , but it remains lost . In 1885, Thomas Edison was given US$ 1,000 (equivalent to $ 34,000 today) by James Gordon Bennett, Jr. , to conduct experiments towards developing flight. Edison built a helicopter and used the paper for a stock ticker to create guncotton , with which he attempted to power an internal combustion engine. The helicopter was damaged by explosions and one of his workers
7700-543: The fall of shells. These carried two crewmen: a pilot and a spotter. Later, the Japanese Army commissioned two small aircraft carriers intended for coastal antisubmarine (ASW) duties. The spotter's position on the Ka-1 was modified to carry one small depth charge. Ka-1 ASW autogyros operated from shore bases as well as the two small carriers. They appear to have been responsible for at least one submarine sinking. With
7810-635: The first rotorcraft to take off and land on the deck of a ship, when a C.30 performed trials on board the Spanish navy seaplane tender Dédalo off Valencia. Later that year, during the leftist Asturias revolt in October, an autogyro made a reconnaissance flight for the loyal troops, marking the first military employment of a rotorcraft. When improvements in helicopters made them practical, autogyros became largely neglected. Also, they were susceptible to ground resonance . They were, however, used in
7920-672: The first autogyro was handed over to the Kurdish Minister of Interiors, Mr. Karim Sinjari. The project for the interior ministry was to train pilots to control and monitor the approach and takeoff paths of the airports in Erbil , Sulaymaniyah , and Dohuk to prevent terrorist encroachments. The gyroplane pilots also form the backbone of the pilot crew of the Kurdish police, who are trained to pilot on Eurocopter EC 120 B helicopters. In 18 months from 2009 to 2010,
8030-486: The first half of the 20th century was that the amount of power produced by an engine was not able to overcome the engine's weight in vertical flight. This was overcome in early successful helicopters by using the smallest engines available. When the compact, flat engine was developed, the helicopter industry found a lighter-weight powerplant easily adapted to small helicopters, although radial engines continued to be used for larger helicopters. Turbine engines revolutionized
8140-526: The first half of the twentieth century. Gyroplane was later adopted as a trademark by Bensen Aircraft . The success of the Autogiro garnered the interest of industrialists and under license from de la Cierva in the 1920s and 1930s, the Pitcairn & Kellett companies made further innovations. Late-model autogyros patterned after Etienne Dormoy 's Buhl A-1 Autogyro and Igor Bensen 's designs feature
8250-577: The first rotorcraft crossing of the English Channel followed by a tour of Europe. United States industrialist Harold Frederick Pitcairn , on learning of the successful flights of the autogyro, visited de la Cierva in Spain. In 1928, he visited him again, in England, after taking a C.8 L.IV test flight piloted by Arthur H. C. A. Rawson. Being particularly impressed with the autogyro's safe vertical descent capability, Pitcairn purchased
8360-429: The front of the aircraft, ahead of the pilot and rotor mast. This was the primary configuration in early autogyros but became less common. Nonetheless, the tractor configuration has some advantages compared to a pusher, namely greater yaw stability (as the center of mass is farther away from the rudder), and greater ease in aligning the center of thrust with the center of mass to prevent "bunting" (engine thrust overwhelming
8470-574: The helicopter to take off and land vertically , to hover , and to fly forward, backward and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of short take-off and landing ( STOL ) or short take-off and vertical landing ( STOVL ) aircraft cannot perform without a runway . In 1942, the Sikorsky R-4 became the first helicopter to reach full-scale production . Although most earlier designs used more than one main rotor,
8580-459: The high operating cost of helicopters cost-effective in ensuring that oil platforms continue to operate. Various companies specialize in this type of operation. NASA developed Ingenuity , a 1.8 kg (4.0 lb) helicopter used to survey Mars (along with a rover). It began service in February 2021 and was retired due to sustained rotor blade damage in January 2024 after 73 sorties. As
8690-480: The idea of vertical flight. In July 1754, Russian Mikhail Lomonosov had developed a small coaxial modeled after the Chinese top but powered by a wound-up spring device and demonstrated it to the Russian Academy of Sciences . It was powered by a spring, and was suggested as a method to lift meteorological instruments. In 1783, Christian de Launoy , and his mechanic , Bienvenu, used a coaxial version of
8800-504: The in-service and stored helicopter fleet of 38,570 with civil or government operators was led Robinson Helicopter with 24.7% followed by Airbus Helicopters with 24.4%, then Bell with 20.5 and Leonardo with 8.4%, Russian Helicopters with 7.7%, Sikorsky Aircraft with 7.2%, MD Helicopters with 3.4% and other with 2.2%. The most widespread model is the piston Robinson R44 with 5,600, then the H125/ AS350 with 3,600 units, followed by
8910-662: The lack of an airstrip would make transport via fixed-wing aircraft impossible. The use of transport helicopters to deliver troops as an attack force on an objective is referred to as " air assault ". Unmanned aerial systems (UAS) helicopter systems of varying sizes are developed by companies for military reconnaissance and surveillance duties. Naval forces also use helicopters equipped with dipping sonar for anti-submarine warfare , since they can operate from small ships. Oil companies charter helicopters to move workers and parts quickly to remote drilling sites located at sea or in remote locations. The speed advantage over boats makes
9020-581: The late 1960s. Helicopters have also been used in films, both in front and behind the camera. The largest single non-combat helicopter operation in history was the disaster management operation following the 1986 Chernobyl nuclear disaster . Hundreds of pilots were involved in airdrop and observation missions, making dozens of sorties a day for several months. " Helitack " is the use of helicopters to combat wildland fires . The helicopters are used for aerial firefighting (water bombing) and may be fitted with tanks or carry helibuckets . Helibuckets, such as
9130-555: The limited power did not allow for manned flight. The introduction of the internal combustion engine at the end of the 19th century became the watershed for helicopter development as engines began to be developed and produced that were powerful enough to allow for helicopters able to lift humans. Early helicopter designs utilized custom-built engines or rotary engines designed for airplanes, but these were soon replaced by more powerful automobile engines and radial engines . The single, most-limiting factor of helicopter development during
9240-601: The nearby park, the Parco Forlanini. Emmanuel Dieuaide's steam-powered design featured counter-rotating rotors powered through a hose from a boiler on the ground. In 1887 Parisian inventor, Gustave Trouvé , built and flew a tethered electric model helicopter. In July 1901, the maiden flight of Hermann Ganswindt 's helicopter took place in Berlin-Schöneberg; this was probably the first heavier-than-air motor-driven flight carrying humans. A movie covering
9350-464: The nose to pitch down, with a resultant increase in airspeed and loss of altitude. Aft cyclic will cause the nose to pitch up, slowing the helicopter and causing it to climb. Increasing collective (power) while maintaining a constant airspeed will induce a climb while decreasing collective will cause a descent. Coordinating these two inputs, down collective plus aft cyclic or up collective plus forward cyclic, will result in airspeed changes while maintaining
9460-525: The operating limits specified in the type approval. A certificated autogyro must meet mandated stability and control criteria; in the United States these are outlined in Federal Aviation Regulations Part 27: Airworthiness Standards: Normal Category Rotorcraft . The U.S. Federal Aviation Administration issues a Standard Airworthiness Certificate to qualified autogyros. Amateur-built or kit-built aircraft are operated under
9570-557: The overhead rotor, autogyros are generally not capable of vertical takeoff (except in a strong headwind). A few types such as the Air & Space 18A have shown short takeoff or landing. Pitch control is achieved by tilting the rotor fore and aft , and roll control is by tilting the rotor laterally. The tilt of the rotor can be effected by utilizing a tilting hub ( Cierva ), a swashplate ( Air & Space 18A ), or servo-flaps. A rudder provides yaw control. On pusher configuration autogyros,
9680-511: The pitch control). Juan de la Cierva was a Spanish engineer , inventor, pilot, and aeronautical enthusiast. In 1921, he participated in a design competition to develop a bomber for the Spanish military. De la Cierva designed a three-engined aircraft, but during an early test flight, the bomber stalled and crashed. De la Cierva was troubled by the stall phenomenon and vowed to develop an aircraft that could fly safely at low airspeeds. The result
9790-411: The power normally required to be diverted for the tail rotor to be applied fully to the main rotors, increasing the aircraft's power efficiency and lifting capacity. There are several common configurations that use the counter-rotating effect to benefit the rotorcraft: Tip jet designs let the rotor push itself through the air and avoid generating torque. The number, size and type of engine(s) used on
9900-612: The rapid expansion of drone racing and aerial photography markets in the early 21st century, as well as recently weaponized utilities such as artillery spotting , aerial bombing and suicide attacks . The English word helicopter is adapted from the French word hélicoptère , coined by Gustave Ponton d'Amécourt in 1861, which originates from the Greek helix ( ἕλιξ ), genitive helikos (ἕλῐκος), "helix, spiral, whirl, convolution" and pteron ( πτερόν ) "wing". In
10010-413: The rotor before takeoff (called prerotating). Rotor drives initially took the form of a rope wrapped around the rotor axle and then pulled by a team of men to accelerate the rotor – this was followed by a long taxi to bring the rotor up to speed sufficient for takeoff. The next innovation was flaps on the tail to redirect the propeller slipstream into the rotor while on the ground. This design
10120-405: The rotor blade. The free-spinning blades turn by autorotation ; the rotor blades are angled so that they not only give lift, but the angle of the blades causes the lift to accelerate the blades' rotation rate until the rotor turns at a stable speed with the drag force and the thrust force in balance. Because the craft must be moving forward with respect to the surrounding air to force air through
10230-436: The rotor disk tilts to that side and produces thrust in that direction, causing the helicopter to hover sideways. The collective pitch control or collective is located on the left side of the pilot's seat with a settable friction control to prevent inadvertent movement. The collective changes the pitch angle of all the main rotor blades collectively (i.e. all at the same time) and independently of their position. Therefore, if
10340-406: The rotor in cruise, which allows its rotation to be slowed down , thus increasing the maximum speed of the aircraft. The Lockheed AH-56A Cheyenne diverted up to 90% of its engine power to a pusher propeller during forward flight. There are three basic flight conditions for a helicopter: hover, forward flight and the transition between the two. Hovering is the most challenging part of flying
10450-414: The rotor of the C.4 with flapping hinges to attach each rotor blade to the hub. The flapping hinges allowed each rotor blade to flap, or move up and down, to compensate for dissymmetry of lift , the difference in lift produced between the right and left sides of the rotor as the autogyro moves forward. Three days later, the engine failed shortly after takeoff and the aircraft descended slowly and steeply to
10560-457: The rotor relative to the airframe, or only do so in one dimension, and have conventional control surfaces to vary the remaining degrees of freedom). The rudder pedals provide yaw control, and the throttle controls engine power. Secondary flight controls include the rotor transmission clutch, also known as a pre-rotator, which when engaged drives the rotor to start it spinning before takeoff, and collective pitch to reduce blade pitch before driving
10670-422: The rotor throughout normal flight. The rotor system, or more simply rotor , is the rotating part of a helicopter that generates lift . A rotor system may be mounted horizontally, as main rotors are, providing lift vertically, or it may be mounted vertically, such as a tail rotor, to provide horizontal thrust to counteract torque from the main rotors. The rotor consists of a mast, hub and rotor blades. The mast
10780-500: The rotor. Collective pitch controls are not usually fitted to autogyros but can be found on the Air & Space 18A , McCulloch J-2 and the Westermayer Tragschrauber, and can provide near VTOL performance. Modern autogyros typically follow one of two basic configurations. The most common design is the pusher configuration, where the engine and propeller are located behind the pilot and rotor mast, such as in
10890-457: The rudder is typically placed in the propeller slipstream to maximize yaw control at low airspeed (but not always, as seen in the McCulloch J-2 , with twin rudders placed outboard of the propeller arc). There are three primary flight controls: control stick, rudder pedals , and throttle . Typically, the control stick is termed the cyclic and tilts the rotor in the desired direction to provide pitch and roll control (some autogyros do not tilt
11000-418: The size of the helicopter being designed, so that all but the lightest of helicopter models are powered by turbine engines today. Special jet engines developed to drive the rotor from the rotor tips are referred to as tip jets . Tip jets powered by a remote compressor are referred to as cold tip jets, while those powered by combustion exhaust are referred to as hot tip jets. An example of a cold jet helicopter
11110-483: The skies. Since helicopters can achieve a unique aerial view, they are often used in conjunction with police on the ground to report on suspects' locations and movements. They are often mounted with lighting and heat-sensing equipment for night pursuits. Military forces use attack helicopters to conduct aerial attacks on ground targets. Such helicopters are mounted with missile launchers and miniguns . Transport helicopters are used to ferry troops and supplies where
11220-430: The strength of the 24th Army of the Soviet Air Force , combat active in the area around Elnya near Smolensk . From 30 August to 5 October 1941 the autogyros made 19 combat sorties for artillery spotting. Not one autogyro was lost in action, while the unit was disbanded in 1942 due to the shortage of serviceable aircraft. The autogyro was resurrected after World War II when Dr. Igor Bensen ,
11330-479: The tail rotor, such as the ducted fan (called Fenestron or FANTAIL ) and NOTAR . NOTAR provides anti-torque similar to the way a wing develops lift through the use of the Coandă effect on the tail boom. The use of two or more horizontal rotors turning in opposite directions is another configuration used to counteract the effects of torque on the aircraft without relying on an anti-torque tail rotor. This allows
11440-448: The throttle is to maintain enough engine power to keep the rotor RPM within allowable limits so that the rotor produces enough lift for flight. In single-engine helicopters, the throttle control is a motorcycle-style twist grip mounted on the collective control, while dual-engine helicopters have a power lever for each engine. A compound helicopter has an additional system for thrust and, typically, small stub fixed wings . This offloads
11550-417: The thrust produced by the tail rotor and causing the nose to yaw in the direction of the applied pedal. The pedals mechanically change the pitch of the tail rotor altering the amount of thrust produced. Helicopter rotors are designed to operate in a narrow range of RPM . The throttle controls the power produced by the engine, which is connected to the rotor by a fixed ratio transmission. The purpose of
11660-572: The vertical flight he had envisioned. Steam power was popular with other inventors as well. In 1877, the Italian engineer, inventor and aeronautical pioneer Enrico Forlanini developed an unmanned helicopter powered by a steam engine . It rose to a height of 13 meters (43 feet), where it remained for 20 seconds, after a vertical take-off from a park in Milan . Milan has dedicated its city airport to Enrico Forlanini, also named Linate Airport , as well as
11770-406: The world centre of autogyro development. A crash in February 1926, caused by blade root failure, led to an improvement in rotor hub design. A drag hinge was added in conjunction with the flapping hinge to allow each blade to move fore and aft and relieve in-plane stresses, generated as a byproduct of the flapping motion. This development led to the Cierva C.8, which, on 18 September 1928, made
11880-486: Was badly burned. Edison reported that it would take a motor with a ratio of three to four pounds per horsepower produced to be successful, based on his experiments. Ján Bahýľ , a Slovak inventor, adapted the internal combustion engine to power his helicopter model that reached a height of 0.5 meters (1.6 feet) in 1901. On 5 May 1905, his helicopter reached 4 meters (13 feet) in altitude and flew for over 1,500 meters (4,900 feet). In 1908, Edison patented his own design for
11990-779: Was first tested on a C.19 in 1929. Efforts in 1930 had shown that the development of a light and efficient mechanical transmission was not a trivial undertaking. In 1932 the Pitcairn-Cierva Autogiro Company of Willow Grove, Pennsylvania , United States solved this problem with a transmission driven by the engine. Buhl Aircraft Company produced its Buhl A-1 , the first autogyro with a propulsive rear motor, designed by Etienne Dormoy and meant for aerial observation (motor behind pilot and camera). It had its maiden flight on 15 December 1931. De la Cierva's early autogyros were fitted with fixed rotor hubs, small fixed wings, and control surfaces like those of
12100-405: Was the first successful rotorcraft, which he named autogiro in 1923. De la Cierva's autogiro used an airplane fuselage with a forward-mounted propeller and engine, an un-powered rotor mounted on a mast, and a horizontal and vertical stabilizer. His aircraft became the predecessor of the modern helicopter . After four years of experimentation, de la Cierva invented the first practical rotorcraft
#650349