Misplaced Pages

Van Tran Flat Bridge

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A truss is an assembly of members such as beams , connected by nodes , that creates a rigid structure.

#178821

100-770: The Van Tran Flat Bridge (also known as the Motts Flats Bridge , the Livingston Manor Covered Bridge , or the Van Tran Bridge ) is a wooden , single span covered bridge that crosses Willowemoc Creek in the town of Rockland , in Sullivan County, New York . The bridge was built in 1860 by John Davidson and features a town lattice truss and a laminated arch system . This makes the Van Tran Flat Bridge

200-444: A cruck frame or a couple of rafters. One engineering definition is: "A truss is a single plane framework of individual structural member [sic] connected at their ends of forms a series of triangle [sic] to span a large distance". A truss consists of typically (but not necessarily) straight members connected at joints, traditionally termed panel points . Trusses are typically (but not necessarily ) composed of triangles because of

300-527: A fuel or as a construction material for making houses , tools , weapons , furniture , packaging , artworks , and paper . Known constructions using wood date back ten thousand years. Buildings like the longhouses in Neolithic Europe were made primarily of wood. Recent use of wood has been enhanced by the addition of steel and bronze into construction. The year-to-year variation in tree-ring widths and isotopic abundances gives clues to

400-412: A lattice . The Vierendeel truss is a structure where the members are not triangulated but form rectangular openings, and is a frame with fixed joints that are capable of transferring and resisting bending moments . As such, it does not fit the strict definition of a truss (since it contains non-two-force members): regular trusses comprise members that are commonly assumed to have pinned joints, with

500-521: A bridge over the Willowemock Creek, on the road leading from Liberty to the West field Flats, near the house of Erastus Sprague in said town of Rockland." In 1925, the bridge suffered minor damage in a flood. During this time, the bridge was bypassed by New York State Route 17 . On August 26, 1940, the Van Tran Flat Bridge's decking was damaged by a loaded truck when it veered off the bridge into

600-476: A ceiling joist , and in other mechanical structures such as bicycles and aircraft. Because of the stability of this shape and the methods of analysis used to calculate the forces within it, a truss composed entirely of triangles is known as a simple truss. However, a simple truss is often defined more restrictively by demanding that it can be constructed through successive addition of pairs of members, each connected to two existing joints and to each other to form

700-416: A closed forest, and in the manufacture of articles where strength is an important consideration such "second-growth" hardwood material is preferred. This is particularly the case in the choice of hickory for handles and spokes . Here not only strength, but toughness and resilience are important. The results of a series of tests on hickory by the U.S. Forest Service show that: Truss In engineering,

800-428: A growth ring, then the part of a growth ring nearest the center of the tree, and formed early in the growing season when growth is rapid, is usually composed of wider elements. It is usually lighter in color than that near the outer portion of the ring, and is known as earlywood or springwood. The outer portion formed later in the season is then known as the latewood or summerwood. There are major differences, depending on

900-401: A heavy piece of pine is compared with a lightweight piece it will be seen at once that the heavier one contains a larger proportion of latewood than the other, and is therefore showing more clearly demarcated growth rings. In white pines there is not much contrast between the different parts of the ring, and as a result the wood is very uniform in texture and is easy to work. In hard pines , on

1000-405: A large log the sapwood, because of the time in the life of the tree when it was grown, may be inferior in hardness , strength , and toughness to equally sound heartwood from the same log. In a smaller tree, the reverse may be true. In species which show a distinct difference between heartwood and sapwood the natural color of heartwood is usually darker than that of the sapwood, and very frequently

1100-403: A larger cross section than on a previous iteration requires giving other members a larger cross section as well, to hold the greater weight of the first member—one needs to go through another iteration to find exactly how much greater the other members need to be. Sometimes the designer goes through several iterations of the design process to converge on the "right" cross section for each member. On

SECTION 10

#1732790618179

1200-400: A log is on the outside, it is more or less knotty near the middle. Consequently, the sapwood of an old tree, and particularly of a forest-grown tree, will be freer from knots than the inner heartwood. Since in most uses of wood, knots are defects that weaken the timber and interfere with its ease of working and other properties, it follows that a given piece of sapwood, because of its position in

1300-402: A matrix method such as the direct stiffness method , the flexibility method , or the finite element method. Illustrated is a simple, statically determinate flat truss with 9 joints and (2 x 9) − 3 = 15 members. External loads are concentrated in the outer joints. Since this is a symmetrical truss with symmetrical vertical loads, the reactive forces at A and B are vertical, equal, and half

1400-404: A new joint, and this definition does not require a simple truss to comprise only triangles. The traditional diamond-shape bicycle frame, which utilizes two conjoined triangles, is an example of a simple truss. A planar truss lies in a single plane . Planar trusses are typically used in parallel to form roofs and bridges. The depth of a truss, or the height between the upper and lower chords,

1500-481: A pretty definite relation between the rate of growth of timber and its properties. This may be briefly summed up in the general statement that the more rapid the growth or the wider the rings of growth, the heavier, harder, stronger, and stiffer the wood. This, it must be remembered, applies only to ring-porous woods such as oak, ash, hickory, and others of the same group, and is, of course, subject to some exceptions and limitations. In ring-porous woods of good growth, it

1600-465: A source of weakness. In diffuse-porous woods the pores are evenly sized so that the water conducting capability is scattered throughout the growth ring instead of being collected in a band or row. Examples of this kind of wood are alder , basswood , birch , buckeye, maple, willow , and the Populus species such as aspen, cottonwood and poplar. Some species, such as walnut and cherry , are on

1700-564: A tree is first formed as sapwood. The more leaves a tree bears and the more vigorous its growth, the larger the volume of sapwood required. Hence trees making rapid growth in the open have thicker sapwood for their size than trees of the same species growing in dense forests. Sometimes trees (of species that do form heartwood) grown in the open may become of considerable size, 30 cm (12 in) or more in diameter, before any heartwood begins to form, for example, in second growth hickory , or open-grown pines . No definite relation exists between

1800-566: A truss are called 'top chords' and are typically in compression , the bottom beams are called 'bottom chords', and are typically in tension . The interior beams are called webs , and the areas inside the webs are called panels , or from graphic statics (see Cremona diagram ) 'polygons'. Truss derives from the Old French word trousse , from around 1200 AD, which means "collection of things bound together". The term truss has often been used to describe any assembly of members such as

1900-619: A truss is a structure that "consists of two-force members only, where the members are organized so that the assemblage as a whole behaves as a single object". A "two-force member" is a structural component where force is applied to only two points. Although this rigorous definition allows the members to have any shape connected in any stable configuration, trusses typically comprise five or more triangular units constructed with straight members whose ends are connected at joints referred to as nodes . In this typical context, external forces and reactions to those forces are considered to act only at

2000-540: Is NY-53-05. The bridge was constructed from timber and followed a similar design to other bridges in the Catskill region. This bridge features a town lattice truss and a laminated arch system . The total weight capacity is 10,000 pounds (4,500 kg), the clear width is 11 feet (3.4 m), the out-to-out width is 16.5 feet (5.0 m), and the vertical clearance is 7.6 feet (2.3 m). The sides are made of wood, have an opening under their eaves , and at each end of

2100-538: Is a 393 meter (1,291 foot) long truss bridge built in 1912. The structure is composed of nine Pratt truss spans of varying lengths. The bridge is still in use today. The Wright Flyer used a Pratt truss in its wing construction, as the minimization of compression member lengths allowed for lower aerodynamic drag . Named for their shape, bowstring trusses were first used for arched truss bridges , often confused with tied-arch bridges . Thousands of bowstring trusses were used during World War II for holding up

SECTION 20

#1732790618179

2200-422: Is a roof or floor truss whose wood members are connected with metal connector plates . Truss members form a series of equilateral triangles, alternating up and down. Truss members are made up of all equivalent equilateral triangles. The minimum composition is two regular tetrahedrons along with an octahedron. They fill up three dimensional space in a variety of configurations. [REDACTED] The Pratt truss

2300-456: Is also greatly increased in strength thereby. Since the latewood of a growth ring is usually darker in color than the earlywood, this fact may be used in visually judging the density, and therefore the hardness and strength of the material. This is particularly the case with coniferous woods. In ring-porous woods the vessels of the early wood often appear on a finished surface as darker than the denser latewood, though on cross sections of heartwood

2400-532: Is an organic material  – a natural composite of cellulosic fibers that are strong in tension and embedded in a matrix of lignin that resists compression. Wood is sometimes defined as only the secondary xylem in the stems of trees, or more broadly to include the same type of tissue elsewhere, such as in the roots of trees or shrubs. In a living tree, it performs a mechanical-support function, enabling woody plants to grow large or to stand up by themselves. It also conveys water and nutrients among

2500-422: Is dark colored and firm, and consists mostly of thick-walled fibers which form one-half or more of the wood. In inferior oak, this latewood is much reduced both in quantity and quality. Such variation is very largely the result of rate of growth. Wide-ringed wood is often called "second-growth", because the growth of the young timber in open stands after the old trees have been removed is more rapid than in trees in

2600-560: Is difficult to control completely, especially when using mass-produced kiln-dried timber stocks. Heartwood (or duramen ) is wood that as a result of a naturally occurring chemical transformation has become more resistant to decay. Heartwood formation is a genetically programmed process that occurs spontaneously. Some uncertainty exists as to whether the wood dies during heartwood formation, as it can still chemically react to decay organisms, but only once. The term heartwood derives solely from its position and not from any vital importance to

2700-399: Is in the walls, not the cavities. Hence the greater the proportion of latewood, the greater the density and strength. In choosing a piece of pine where strength or stiffness is the important consideration, the principal thing to observe is the comparative amounts of earlywood and latewood. The width of ring is not nearly so important as the proportion and nature of the latewood in the ring. If

2800-470: Is more complex. The water conducting capability is mostly taken care of by vessels : in some cases (oak, chestnut, ash) these are quite large and distinct, in others ( buckeye , poplar , willow ) too small to be seen without a hand lens. In discussing such woods it is customary to divide them into two large classes, ring-porous and diffuse-porous . In ring-porous species, such as ash, black locust, catalpa , chestnut, elm , hickory, mulberry , and oak,

2900-410: Is much more serious when timber is subjected to forces perpendicular to the grain and/or tension than when under load along the grain and/or compression . The extent to which knots affect the strength of a beam depends upon their position, size, number, and condition. A knot on the upper side is compressed, while one on the lower side is subjected to tension. If there is a season check in the knot, as

3000-403: Is often the case, it will offer little resistance to this tensile stress. Small knots may be located along the neutral plane of a beam and increase the strength by preventing longitudinal shearing . Knots in a board or plank are least injurious when they extend through it at right angles to its broadest surface. Knots which occur near the ends of a beam do not weaken it. Sound knots which occur in

3100-475: Is open to cars. The New York State Covered Bridge Society has classified the Van Tran Flat Bridge as one of 24 "authentic" historic covered bridges in the state of New York. The placard next to the bridge claims it is on both the State and National Register of Historic Places . Wood Wood is a structural tissue/material found as xylem in the stems and roots of trees and other woody plants . It

Van Tran Flat Bridge - Misplaced Pages Continue

3200-496: Is preferable to a braced-frame system, which would leave some areas obstructed by the diagonal braces. A truss that is assumed to comprise members that are connected by means of pin joints, and which is supported at both ends by means of hinged joints and rollers, is described as being statically determinate . Newton's Laws apply to the structure as a whole, as well as to each node or joint. In order for any node that may be subject to an external load or force to remain static in space,

3300-464: Is similar to a king post truss in that the outer supports are angled towards the centre of the structure. The primary difference is the horizontal extension at the centre which relies on beam action to provide mechanical stability. This truss style is only suitable for relatively short spans. Lenticular trusses, patented in 1878 by William Douglas (although the Gaunless Bridge of 1823 was

3400-422: Is the force in the member, γ is a safety factor (typically 1.5 but depending on building codes ) and σ y is the yield tensile strength of the steel used. The members under compression also have to be designed to be safe against buckling. The weight of a truss member depends directly on its cross section—that weight partially determines how strong the other members of the truss need to be. Giving one member

3500-431: Is the rule. Some others never form heartwood. Heartwood is often visually distinct from the living sapwood and can be distinguished in a cross-section where the boundary will tend to follow the growth rings. For example, it is sometimes much darker. Other processes such as decay or insect invasion can also discolor wood, even in woody plants that do not form heartwood, which may lead to confusion. Sapwood (or alburnum )

3600-405: Is the simplest space truss, consisting of six members that meet at four joints. Large planar structures may be composed from tetrahedrons with common edges, and they are also employed in the base structures of large free-standing power line pylons. There are two basic types of truss: A combination of the two is a truncated truss, used in hip roof construction. A metal plate-connected wood truss

3700-413: Is the younger, outermost wood; in the growing tree it is living wood, and its principal functions are to conduct water from the roots to the leaves and to store up and give back according to the season the reserves prepared in the leaves. By the time they become competent to conduct water, all xylem tracheids and vessels have lost their cytoplasm and the cells are therefore functionally dead. All wood in

3800-501: Is up to 90 degrees different from the grain direction of the regular wood. In the tree a knot is either the base of a side branch or a dormant bud. A knot (when the base of a side branch) is conical in shape (hence the roughly circular cross-section) with the inner tip at the point in stem diameter at which the plant's vascular cambium was located when the branch formed as a bud. In grading lumber and structural timber , knots are classified according to their form, size, soundness, and

3900-461: Is usually the latewood in which the thick-walled, strength-giving fibers are most abundant. As the breadth of ring diminishes, this latewood is reduced so that very slow growth produces comparatively light, porous wood composed of thin-walled vessels and wood parenchyma. In good oak, these large vessels of the earlywood occupy from six to ten percent of the volume of the log, while in inferior material they may make up 25% or more. The latewood of good oak

4000-465: Is what makes it an efficient structural form. A solid girder or beam of equal strength would have substantial weight and material cost as compared to a truss. For a given span , a deeper truss will require less material in the chords and greater material in the verticals and diagonals. An optimum depth of the truss will maximize the efficiency. A space frame truss is a three-dimensional framework of members pinned at their ends. A tetrahedron shape

4100-495: The leaves , other growing tissues, and the roots. Wood may also refer to other plant materials with comparable properties, and to material engineered from wood, woodchips , or fibers . Wood has been used for thousands of years for fuel , as a construction material , for making tools and weapons , furniture and paper . More recently it emerged as a feedstock for the production of purified cellulose and its derivatives, such as cellophane and cellulose acetate . As of 2020,

Van Tran Flat Bridge - Misplaced Pages Continue

4200-429: The resin which increases the strength when dry. Such resin-saturated heartwood is called "fat lighter". Structures built of fat lighter are almost impervious to rot and termites , and very flammable. Tree stumps of old longleaf pines are often dug, split into small pieces and sold as kindling for fires. Stumps thus dug may actually remain a century or more since being cut. Spruce impregnated with crude resin and dried

4300-780: The Motts Flats Bridge, later referred to as the Livingston Manor Covered Bridge or the Van Tran Bridge) was first constructed in 1860 by John Davidson to cross the Willowemoc Creek . This was an extension of Covered Bridge Road in the town of Rockland, in Sullivan County, New York . The Van Tran Flat Bridge was constructed 5 years before the Beaverkill Covered Bridge , also built by John Davidson. This makes

4400-603: The Van Tran Flat Bridge the oldest of the 4 covered bridges in Sullivan County still standing. Describing the original proposal for the bridge, the Youngsville Local Record newspaper recounted: "That the sum of two hundred and fifty dollars be levied and assessed upon the county of Sullivan, and paid to the Commissioner of Highways of the town of Rockland to be applied on the building of

4500-470: The Willowemoc Creek. Repair of the bridge involved $ 437.75 worth of materials and $ 174.80 in labor, with 8 workers being responsible for the repairs. Some time after 1958, the bridge's dry-laid stone abutments were refaced with concrete. In 1972, the bridge was closed and abandoned. In 1984, the Sullivan County's Department of Public Works, in conjunction with Milton S. Graton, began restoring

4600-418: The annual rings of growth and the amount of sapwood. Within the same species the cross-sectional area of the sapwood is very roughly proportional to the size of the crown of the tree. If the rings are narrow, more of them are required than where they are wide. As the tree gets larger, the sapwood must necessarily become thinner or increase materially in volume. Sapwood is relatively thicker in the upper portion of

4700-449: The border between the two classes, forming an intermediate group. In temperate softwoods, there often is a marked difference between latewood and earlywood. The latewood will be denser than that formed early in the season. When examined under a microscope, the cells of dense latewood are seen to be very thick-walled and with very small cell cavities, while those formed first in the season have thin walls and large cell cavities. The strength

4800-581: The bridge is 98 feet (30 m) in length and 43 feet (13 m) across. The New York State Covered Bridge Society claims the bridge is 117 ft length, the originally reported length when constructed. Sullivan County claims the bridge is 103 feet (31 m) in length. The Van Tran Flat Bridge leads to the Livingston Manor Covered Bridge Park, and is located adjacent to the original homestead of Nobel laureate Dr. John Mott . The Van Tran Flat Bridge (originally named

4900-429: The bridge there are 4 buttresses spanning the height of the bridge. The two openings to the bridge are uniform with each other and the gable stones have a flat, chamfered design. The roof is made of metal. The north-facing abutment is made of stone and concrete, while the south-facing abutment is made of concrete. The exact dimensions of the bridge are disputed amongst sources. Two accounts from 1952 and 1974 claim

5000-484: The bridge using original construction techniques. The work included replacement of the truss , chords, floor, roof, and treenails , along with removal of the original queenpost truss . A decision was also made to increase the bridge's load limit, which was achieved by the addition of laminated arches. The bridge was reopened in November 1985. Today, the bridge is owned and maintained by Sullivan County, New York , and

5100-458: The cell walls are composed of micro-fibrils of cellulose (40–50%) and hemicellulose (15–25%) impregnated with lignin (15–30%). In coniferous or softwood species the wood cells are mostly of one kind, tracheids , and as a result the material is much more uniform in structure than that of most hardwoods . There are no vessels ("pores") in coniferous wood such as one sees so prominently in oak and ash, for example. The structure of hardwoods

SECTION 50

#1732790618179

5200-435: The central portion one-fourth the height of the beam from either edge are not serious defects. Knots do not necessarily influence the stiffness of structural timber; this will depend on the size and location. Stiffness and elastic strength are more dependent upon the sound wood than upon localized defects. The breaking strength is very susceptible to defects. Sound knots do not weaken wood when subject to compression parallel to

5300-407: The connections may also be required to transfer bending moment. Wood posts enable the fabrication of strong, direct, yet inexpensive connections between large trusses and walls. Exact details for post-to-truss connections vary from designer to designer, and may be influenced by post type. Solid-sawn timber and glulam posts are generally notched to form a truss bearing surface. The truss is rested on

5400-433: The contrast is conspicuous (see section of yew log above). This is produced by deposits in the heartwood of chemical substances, so that a dramatic color variation does not imply a significant difference in the mechanical properties of heartwood and sapwood, although there may be a marked biochemical difference between the two. Some experiments on very resinous longleaf pine specimens indicate an increase in strength, due to

5500-531: The curved roofs of aircraft hangars and other military buildings. Many variations exist in the arrangements of the members connecting the nodes of the upper arc with those of the lower, straight sequence of members, from nearly isosceles triangles to a variant of the Pratt truss. One of the simplest truss styles to implement, the king post consists of two angled supports leaning into a common vertical support. The queen post truss, sometimes queenpost or queenspost ,

5600-452: The design decisions beyond mere matters of economics. Modern materials such as prestressed concrete and fabrication methods, such as automated welding , have significantly influenced the design of modern bridges . Once the force on each member is known, the next step is to determine the cross section of the individual truss members. For members under tension the cross-sectional area A can be found using A = F × γ / σ y , where F

5700-523: The discipline of wood science , which was initiated since the beginning of the 20th century. A 2011 discovery in the Canadian province of New Brunswick yielded the earliest known plants to have grown wood, approximately 395 to 400 million years ago . Wood can be dated by carbon dating and in some species by dendrochronology to determine when a wooden object was created. People have used wood for thousands of years for many purposes, including as

5800-414: The distinctiveness between seasons is annual (as is the case in equatorial regions, e.g. Singapore ), these growth rings are referred to as annual rings. Where there is little seasonal difference growth rings are likely to be indistinct or absent. If the bark of the tree has been removed in a particular area, the rings will likely be deformed as the plant overgrows the scar. If there are differences within

5900-403: The equilibrium condition described. Because the forces in each of its two main girders are essentially planar, a truss is usually modeled as a two-dimensional plane frame. However if there are significant out-of-plane forces, the structure must be modeled as a three-dimensional space. The analysis of trusses often assumes that loads are applied to joints only and not at intermediate points along

6000-414: The exact arrangement of forces is depending on the type of truss and again on the direction of bending. In the truss shown above right, the vertical members are in tension, and the diagonals are in compression. In addition to carrying the static forces, the members serve additional functions of stabilizing each other, preventing buckling . In the adjacent picture, the top chord is prevented from buckling by

6100-403: The exact mechanisms determining the formation of earlywood and latewood. Several factors may be involved. In conifers, at least, rate of growth alone does not determine the proportion of the two portions of the ring, for in some cases the wood of slow growth is very hard and heavy, while in others the opposite is true. The quality of the site where the tree grows undoubtedly affects the character of

SECTION 60

#1732790618179

6200-433: The firmness with which they are held in place. This firmness is affected by, among other factors, the length of time for which the branch was dead while the attaching stem continued to grow. Knots materially affect cracking and warping, ease in working, and cleavability of timber. They are defects which weaken timber and lower its value for structural purposes where strength is an important consideration. The weakening effect

6300-461: The first of the type), have the top and bottom chords of the truss arched, forming a lens shape. A lenticular pony truss bridge is a bridge design that involves a lenticular truss extending above and below the roadbed. American architect Ithiel Town designed Town's Lattice Truss as an alternative to heavy-timber bridges. His design, patented in 1820 and 1835, uses easy-to-handle planks arranged diagonally with short spaces in between them, to form

6400-417: The following conditions must hold: the sums of all (horizontal and vertical) forces, as well as all moments acting about the node equal zero. Analysis of these conditions at each node yields the magnitude of the compression or tension forces. Trusses that are supported at more than two positions are said to be statically indeterminate , and the application of Newton's Laws alone is not sufficient to determine

6500-505: The grain. In some decorative applications, wood with knots may be desirable to add visual interest. In applications where wood is painted , such as skirting boards, fascia boards, door frames and furniture, resins present in the timber may continue to 'bleed' through to the surface of a knot for months or even years after manufacture and show as a yellow or brownish stain. A knot primer paint or solution (knotting), correctly applied during preparation, may do much to reduce this problem but it

6600-412: The greater the water content, the greater its softening effect. The moisture in wood can be measured by several different moisture meters . Drying produces a decided increase in the strength of wood, particularly in small specimens. An extreme example is the case of a completely dry spruce block 5 cm in section, which will sustain a permanent load four times as great as a green (undried) block of

6700-401: The growing stock of forests worldwide was about 557 billion cubic meters. As an abundant, carbon-neutral renewable resource, woody materials have been of intense interest as a source of renewable energy. In 2008, approximately 3.97 billion cubic meters of wood were harvested. Dominant uses were for furniture and building construction. Wood is scientifically studied and researched through

6800-509: The implication that no moments exist at the jointed ends. This style of structure was named after the Belgian engineer Arthur Vierendeel , who developed the design in 1896. Its use for bridges is rare due to higher costs compared to a triangulated truss. The utility of this type of structure in buildings is that a large amount of the exterior envelope remains unobstructed and can be used for windows and door openings. In some applications this

6900-464: The kind of wood. If a tree grows all its life in the open and the conditions of soil and site remain unchanged, it will make its most rapid growth in youth, and gradually decline. The annual rings of growth are for many years quite wide, but later they become narrower and narrower. Since each succeeding ring is laid down on the outside of the wood previously formed, it follows that unless a tree materially increases its production of wood from year to year,

7000-407: The larger vessels or pores (as cross sections of vessels are called) are localized in the part of the growth ring formed in spring, thus forming a region of more or less open and porous tissue. The rest of the ring, produced in summer, is made up of smaller vessels and a much greater proportion of wood fibers. These fibers are the elements which give strength and toughness to wood, while the vessels are

7100-501: The member forces. In order for a truss with pin-connected members to be stable, it does not need to be entirely composed of triangles. In mathematical terms, the following necessary condition for stability of a simple truss exists: where m is the total number of truss members, j is the total number of joints and r is the number of reactions (equal to 3 generally) in a 2-dimensional structure. When m = 2 j − 3 {\displaystyle m=2j-3} ,

7200-562: The members means that longer diagonal members are only in tension for gravity load effects. This allows these members to be used more efficiently, as slenderness effects related to buckling under compression loads (which are compounded by the length of the member) will typically not control the design. Therefore, for given planar truss with a fixed depth, the Pratt configuration is usually the most efficient under static, vertical loading. The Southern Pacific Railroad bridge in Tempe , Arizona

7300-446: The members. Component connections are critical to the structural integrity of a framing system. In buildings with large, clearspan wood trusses, the most critical connections are those between the truss and its supports. In addition to gravity-induced forces (a.k.a. bearing loads), these connections must resist shear forces acting perpendicular to the plane of the truss and uplift forces due to wind. Depending upon overall building design,

7400-431: The members. The weight of the members is often insignificant compared to the applied loads and so is often omitted; alternatively, half of the weight of each member may be applied to its two end joints. Provided that the members are long and slender, the moments transmitted through the joints are negligible, and the junctions can be treated as " hinges " or "pin-joints". Under these simplifying assumptions, every member of

7500-427: The minimum cross section of the members, the last step in the design of a truss would be detailing of the bolted joints , e.g., involving shear stress of the bolt connections used in the joints. Based on the needs of the project, truss internal connections (joints) can be designed as rigid, semi rigid, or hinged. Rigid connections can allow transfer of bending moments leading to development of secondary bending moments in

7600-480: The moisture content of the air) retains 8–16% of the water in the cell walls, and none, or practically none, in the other forms. Even oven-dried wood retains a small percentage of moisture, but for all except chemical purposes, may be considered absolutely dry. The general effect of the water content upon the wood substance is to render it softer and more pliable. A similar effect occurs in the softening action of water on rawhide, paper, or cloth. Within certain limits,

7700-410: The new cells. These cells then go on to form thickened secondary cell walls, composed mainly of cellulose , hemicellulose and lignin . Where the differences between the seasons are distinct, e.g. New Zealand , growth can occur in a discrete annual or seasonal pattern, leading to growth rings ; these can usually be most clearly seen on the end of a log, but are also visible on the other surfaces. If

7800-477: The nodes and result in forces in the members that are either tensile or compressive . For straight members, moments ( torques ) are explicitly excluded because, and only because, all the joints in a truss are treated as revolutes , as is necessary for the links to be two-force members. A planar truss is one where all members and nodes lie within a two-dimensional plane, while a space frame has members and nodes that extend into three dimensions . The top beams in

7900-461: The oldest surviving covered bridge in Sullivan County. The bridge was closed and abandoned in 1972, but restoration began in 1984 and reopened the next year. The Van Tran Flat Bridge is a disputed 117 feet (36 m) in length, and leads to Livingston Manor Covered Bridge County Park. The Van Tran Flat Bridge is a wooden, single span covered bridge located 1 mile (1.6 km) outside of Livingston Manor, New York . Its assigned covered bridge number

8000-438: The other hand, reducing the size of one member from the previous iteration merely makes the other members have a larger (and more expensive) safety factor than is technically necessary, but doesn't require another iteration to find a buildable truss. The effect of the weight of the individual truss members in a large truss, such as a bridge, is usually insignificant compared to the force of the external loads. After determining

8100-542: The other hand, the latewood is very dense and is deep-colored, presenting a very decided contrast to the soft, straw-colored earlywood. It is not only the proportion of latewood, but also its quality, that counts. In specimens that show a very large proportion of latewood it may be noticeably more porous and weigh considerably less than the latewood in pieces that contain less latewood. One can judge comparative density, and therefore to some extent strength, by visual inspection. No satisfactory explanation can as yet be given for

8200-425: The presence of bracing and by the stiffness of the web members. The inclusion of the elements shown is largely an engineering decision based upon economics, being a balance between the costs of raw materials, off-site fabrication, component transportation, on-site erection, the availability of machinery and the cost of labor. In other cases the appearance of the structure may take on greater importance and so influence

8300-431: The prevailing climate at the time a tree was cut. Wood, in the strict sense, is yielded by trees , which increase in diameter by the formation, between the existing wood and the inner bark , of new woody layers which envelop the entire stem, living branches, and roots. This process is known as secondary growth ; it is the result of cell division in the vascular cambium , a lateral meristem, and subsequent expansion of

8400-411: The properties of the wood. Certain rot-producing fungi impart to wood characteristic colors which thus become symptomatic of weakness. Ordinary sap-staining is due to fungal growth, but does not necessarily produce a weakening effect. Water occurs in living wood in three locations, namely: In heartwood it occurs only in the first and last forms. Wood that is thoroughly air-dried (in equilibrium with

8500-406: The relation (a) is necessary, it is not sufficient for stability, which also depends on the truss geometry, support conditions and the load carrying capacity of the members. Some structures are built with more than this minimum number of truss members. Those structures may survive even when some of the members fail. Their member forces depend on the relative stiffness of the members, in addition to

8600-468: The reverse is commonly true. Otherwise the color of wood is no indication of strength. Abnormal discoloration of wood often denotes a diseased condition, indicating unsoundness. The black check in western hemlock is the result of insect attacks. The reddish-brown streaks so common in hickory and certain other woods are mostly the result of injury by birds. The discoloration is merely an indication of an injury, and in all probability does not of itself affect

8700-451: The rings must necessarily become thinner as the trunk gets wider. As a tree reaches maturity its crown becomes more open and the annual wood production is lessened, thereby reducing still more the width of the growth rings. In the case of forest-grown trees so much depends upon the competition of the trees in their struggle for light and nourishment that periods of rapid and slow growth may alternate. Some trees, such as southern oaks , maintain

8800-400: The same function as the flanges of an I-beam . Which chord carries tension and which carries compression depends on the overall direction of bending . In the truss pictured above right, the bottom chord is in tension, and the top chord in compression. The diagonal and vertical members form the truss web , and carry the shear stress . Individually, they are also in tension and compression,

8900-453: The same size will. The greatest strength increase due to drying is in the ultimate crushing strength, and strength at elastic limit in endwise compression; these are followed by the modulus of rupture, and stress at elastic limit in cross-bending, while the modulus of elasticity is least affected. Wood is a heterogeneous , hygroscopic , cellular and anisotropic (or more specifically, orthotropic ) material. It consists of cells, and

9000-409: The same width of ring for hundreds of years. On the whole, as a tree gets larger in diameter the width of the growth rings decreases. As a tree grows, lower branches often die, and their bases may become overgrown and enclosed by subsequent layers of trunk wood, forming a type of imperfection known as a knot. The dead branch may not be attached to the trunk wood except at its base and can drop out after

9100-404: The structural stability of that shape and design. A triangle is the simplest geometric figure that will not change shape when the lengths of the sides are fixed. In comparison, both the angles and the lengths of a four-sided figure must be fixed for it to retain its shape. The simplest form of a truss is one single triangle. This type of truss is seen in a framed roof consisting of rafters and

9200-421: The total load. The internal forces in the members of the truss can be calculated in a variety of ways, including graphical methods: A truss can be thought of as a beam where the web consists of a series of separate members instead of a continuous plate. In the truss, the lower horizontal member (the bottom chord ) and the upper horizontal member (the top chord ) carry tension and compression , fulfilling

9300-411: The tree has been sawn into boards. Knots affect the technical properties of the wood, usually reducing tension strength, but may be exploited for visual effect. In a longitudinally sawn plank, a knot will appear as a roughly circular "solid" (usually darker) piece of wood around which the grain of the rest of the wood "flows" (parts and rejoins). Within a knot, the direction of the wood (grain direction)

9400-430: The tree, may well be stronger than a piece of heartwood from the same tree. Different pieces of wood cut from a large tree may differ decidedly, particularly if the tree is big and mature. In some trees, the wood laid on late in the life of a tree is softer, lighter, weaker, and more even textured than that produced earlier, but in other trees, the reverse applies. This may or may not correspond to heartwood and sapwood. In

9500-445: The tree. This is evidenced by the fact that a tree can thrive with its heart completely decayed. Some species begin to form heartwood very early in life, so having only a thin layer of live sapwood, while in others the change comes slowly. Thin sapwood is characteristic of such species as chestnut , black locust , mulberry , osage-orange , and sassafras , while in maple , ash , hickory , hackberry , beech , and pine, thick sapwood

9600-416: The trunk of a tree than near the base, because the age and the diameter of the upper sections are less. When a tree is very young it is covered with limbs almost, if not entirely, to the ground, but as it grows older some or all of them will eventually die and are either broken off or fall off. Subsequent growth of wood may completely conceal the stubs which will remain as knots. No matter how smooth and clear

9700-415: The truss is said to be statically determinate , because the ( m +3) internal member forces and support reactions can then be completely determined by 2 j equilibrium equations, once we know the external loads and the geometry of the truss. Given a certain number of joints, this is the minimum number of members, in the sense that if any member is taken out (or fails), then the truss as a whole fails. While

9800-519: The truss is then subjected to pure compression or pure tension forces – shear, bending moment, and other more-complex stresses are all practically zero. Trusses are physically stronger than other ways of arranging structural elements, because nearly every material can resist a much larger load in tension or compression than in shear, bending, torsion, or other kinds of force. These simplifications make trusses easier to analyze. Structural analysis of trusses of any type can readily be carried out using

9900-418: The wood formed, though it is not possible to formulate a rule governing it. In general, where strength or ease of working is essential, woods of moderate to slow growth should be chosen. In ring-porous woods, each season's growth is always well defined, because the large pores formed early in the season abut on the denser tissue of the year before. In the case of the ring-porous hardwoods, there seems to exist

10000-415: Was patented in 1844 by two Boston railway engineers, Caleb Pratt and his son Thomas Willis Pratt . The design uses vertical members for compression and diagonal members to respond to tension . The Pratt truss design remained popular as bridge designers switched from wood to iron, and from iron to steel. This continued popularity of the Pratt truss is probably due to the fact that the configuration of

#178821