Misplaced Pages

Matrix-assisted laser desorption/ionization

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mass spectrometry , matrix-assisted laser desorption/ionization ( MALDI ) is an ionization technique that uses a laser energy-absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of biomolecules ( biopolymers such as DNA , proteins , peptides and carbohydrates ) and various organic molecules (such as polymers , dendrimers and other macromolecules ), which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft (low fragmentation) ways of obtaining ions of large molecules in the gas phase, though MALDI typically produces far fewer multi-charged ions.

#684315

137-437: MALDI methodology is a three-step process. First, the sample is mixed with a suitable matrix material and applied to a metal plate. Second, a pulsed laser irradiates the sample, triggering ablation and desorption of the sample and matrix material. Finally, the analyte molecules are ionized by being protonated or deprotonated in the hot plume of ablated gases, and then they can be accelerated into whichever mass spectrometer

274-519: A gain medium , a mechanism to energize it, and something to provide optical feedback . The gain medium is a material with properties that allow it to amplify light by way of stimulated emission. Light of a specific wavelength that passes through the gain medium is amplified (power increases). Feedback enables stimulated emission to amplify predominantly the optical frequency at the peak of the gain-frequency curve. As stimulated emission grows, eventually one frequency dominates over all others, meaning that

411-471: A lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode . That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence , cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser. A laser beam profiler

548-444: A membrane protein associated with pancreatic cancer and at one point may even serve as an early detection technique. MALDI/TOF can also potentially be used to dictate treatment as well as diagnosis. MALDI/TOF serves as a method for determining the drug resistance of bacteria, especially to β-lactams (Penicillin family). The MALDI/TOF detects the presence of carbapenemases, which indicates drug resistance to standard antibiotics. It

685-468: A 337 nm nitrogen laser for ionization. Using this laser and matrix combination, Tanaka was able to ionize biomolecules as large as the 34,472 Da protein carboxypeptidase-A. Tanaka received one-quarter of the 2002 Nobel Prize in Chemistry for demonstrating that, with the proper combination of laser wavelength and matrix, a protein can be ionized. Karas and Hillenkamp were subsequently able to ionize

822-418: A Fourier transform ion cyclotron resonance mass spectrometry (also known as FT-MS) have been demonstrated for typing and subtyping viruses though single ion detection known as proteotyping, with a particular focus on influenza viruses. One main advantage over other microbiological identification methods is its ability to rapidly and reliably identify, at low cost, a wide variety of microorganisms directly from

959-476: A MALDI matrix prior to aerosolization. The laser is fired at the matrix crystals in the dried-droplet spot. The matrix absorbs the laser energy and it is thought that primarily the matrix is desorbed and ionized (by addition of a proton ) by this event. The hot plume produced during ablation contains many species: neutral and ionized matrix molecules, protonated and deprotonated matrix molecules, matrix clusters and nanodroplets . Ablated species may participate in

1096-464: A broad spectrum of light or emit different wavelengths of light simultaneously. Certain lasers are not single spatial mode and have light beams that diverge more than is required by the diffraction limit . All such devices are classified as "lasers" based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies. A laser consists of

1233-633: A bulk material, through either coatings or surface treatments. That is to say, the presence of molecular species (usually organic) or structural features results in high contact angles of water. In recent years, rare earth oxides have been shown to possess intrinsic hydrophobicity. The intrinsic hydrophobicity of rare earth oxides depends on surface orientation and oxygen vacancy levels, and is naturally more robust than coatings or surface treatments, having potential applications in condensers and catalysts that can operate at high temperatures or corrosive environments. Hydrophobic concrete has been produced since

1370-504: A chain reaction. The materials chosen for lasers are the ones that have metastable states , which stay excited for a relatively long time. In laser physics , such a material is called an active laser medium . Combined with an energy source that continues to "pump" energy into the material, it is possible to have enough atoms or molecules in an excited state for a chain reaction to develop. Lasers are distinguished from other light sources by their coherence . Spatial (or transverse) coherence

1507-436: A coherent beam has been formed. The process of stimulated emission is analogous to that of an audio oscillator with positive feedback which can occur, for example, when the speaker in a public-address system is placed in proximity to the microphone. The screech one hears is audio oscillation at the peak of the gain-frequency curve for the amplifier. For the gain medium to amplify light, it needs to be supplied with energy in

SECTION 10

#1732764714685

1644-419: A device lacks the spatial and temporal coherence achievable with lasers. Such a device cannot be described as an oscillator but rather as a high-gain optical amplifier that amplifies its spontaneous emission. The same mechanism describes so-called astrophysical masers /lasers. The optical resonator is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to

1781-498: A fairly low molecular weight (to allow easy vaporization), but are large enough (with a low enough vapor pressure) not to evaporate during sample preparation or while standing in the mass spectrometer. They are often acidic, therefore act as a proton source to encourage ionization of the analyte. Basic matrices have also been reported. They have a strong optical absorption in either the UV or IR range, so that they rapidly and efficiently absorb

1918-508: A gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is titanium -doped, artificially grown sapphire ( Ti:sapphire ), which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration. Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science ), for maximizing

2055-540: A gas. where θ can be measured using a contact angle goniometer . Wenzel determined that when the liquid is in intimate contact with a microstructured surface, θ will change to θ W* where r is the ratio of the actual area to the projected area. Wenzel's equation shows that microstructuring a surface amplifies the natural tendency of the surface. A hydrophobic surface (one that has an original contact angle greater than 90°) becomes more hydrophobic when microstructured – its new contact angle becomes greater than

2192-480: A given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching . The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some dye lasers and vibronic solid-state lasers produces optical gain over

2329-399: A high contact angle . Examples of hydrophobic molecules include the alkanes , oils , fats , and greasy substances in general. Hydrophobic materials are used for oil removal from water, the management of oil spills , and chemical separation processes to remove non-polar substances from polar compounds. Hydrophobic is often used interchangeably with lipophilic , "fat-loving". However,

2466-399: A higher energy level with energy difference ΔE, it will not stay that way forever. Eventually, a photon will be spontaneously created from the vacuum having energy ΔE. Conserving energy, the electron transitions to a lower energy level that is not occupied, with transitions to different levels having different time constants. This process is called spontaneous emission . Spontaneous emission is

2603-413: A higher entropic state which causes non-polar molecules to clump together to reduce the surface area exposed to water and decrease the entropy of the system. Thus, the two immiscible phases (hydrophilic vs. hydrophobic) will change so that their corresponding interfacial area will be minimal. This effect can be visualized in the phenomenon called phase separation. Superhydrophobic surfaces, such as

2740-476: A laser beam, it is highly collimated : the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However, due to diffraction , that can only remain true well within the Rayleigh range . The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle that varies inversely with the beam diameter, as required by diffraction theory. Thus,

2877-471: A laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state : gas, liquid, solid, or plasma . The gain medium absorbs pump energy, which raises some electrons into higher energy (" excited ") quantum states . Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In

SECTION 20

#1732764714685

3014-401: A laser to be focused to a tight spot, enabling applications such as optical communication, laser cutting , and lithography . It also allows a laser beam to stay narrow over great distances ( collimation ), a feature used in applications such as laser pointers , lidar , and free-space optical communication . Lasers can also have high temporal coherence , which permits them to emit light with

3151-405: A loss of sialic acid during MALDI/TOF MS analysis of sialylated oligosaccharides. THAP, DHAP, and a mixture of 2-aza-2-thiothymine and phenylhydrazine have been identified as matrices that could be used to minimize loss of sialic acid during MALDI MS analysis of glycosylated peptides. It has been reported that a reduction in loss of some post-translational modifications can be accomplished if IR MALDI

3288-407: A mass of water (called a hydrophobe ). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, thus, prefer other neutral molecules and nonpolar solvents . Because water molecules are polar, hydrophobes do not dissolve well among them. Hydrophobic molecules in water often cluster together, forming micelles . Water on hydrophobic surfaces will exhibit

3425-501: A mass spectrometer most widely used with MALDI is the time-of-flight mass spectrometer (TOF), mainly due to its large mass range. The TOF measurement procedure is also ideally suited to the MALDI ionization process since the pulsed laser takes individual 'shots' rather than working in continuous operation. MALDI-TOF instruments are often equipped with a reflectron (an "ion mirror") that reflects ions using an electric field. This increases

3562-673: A matrix and cleave themselves eliminating the need for a separate matrix compound. There are several variations of the MALDI technology and comparable instruments are today produced for very different purposes, from more academic and analytical, to more industrial and high throughput. The mass spectrometry field has expanded into requiring ultrahigh resolution mass spectrometry such as the FT-ICR instruments as well as more high-throughput instruments. As many MALDI MS instruments can be bought with an interchangeable ionization source ( electrospray ionization , MALDI, atmospheric pressure ionization , etc.)

3699-478: A matrix for MALDI MS analysis of glycosylated peptides. Using sinapinic acid, 4-HCCA and DHB as matrices, S. Martin studied loss of sialic acid in glycosylated peptides by metastable decay in MALDI/TOF in linear mode and reflector mode. A group at Shimadzu Corporation derivatized the sialic acid by an amidation reaction as a way to improve detection sensitivity and also demonstrated that ionic liquid matrix reduces

3836-457: A matrix for MALDI/TOF. This is particularly useful in studying molecules that also possess conjugated pi systems. The most widely used application for these matrices is studying porphyrin -like compounds such as chlorophyll . These matrices have been shown to have better ionization patterns that do not result in odd fragmentation patterns or complete loss of side chains. It has also been suggested that conjugated porphyrin like molecules can serve as

3973-418: A multi-level system as a method for obtaining the population inversion, later a main method of laser pumping. Townes reports that several eminent physicists—among them Niels Bohr , John von Neumann , and Llewellyn Thomas —argued the maser violated Heisenberg's uncertainty principle and hence could not work. Others such as Isidor Rabi and Polykarp Kusch expected that it would be impractical and not worth

4110-441: A process called pumping . The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a flash lamp or by another laser. The most common type of laser uses feedback from an optical cavity —a pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of

4247-468: A quantum-mechanical effect and a direct physical manifestation of the Heisenberg uncertainty principle . The emitted photon has a random direction, but its wavelength matches the absorption wavelength of the transition. This is the mechanism of fluorescence and thermal emission . A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to

Matrix-assisted laser desorption/ionization - Misplaced Pages Continue

4384-432: A seminar on this idea, and Charles H. Townes asked him for a copy of the paper. In 1953, Charles H. Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output. Meanwhile, in

4521-431: A small volume of material at the surface of a workpiece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point. Other applications rely on the peak pulse power (rather than the energy in the pulse), especially to obtain nonlinear optical effects. For

4658-427: A soft ionization source, it is used on a wide veriety of biomolecules. This has led to it being used in new ways such as MALDI-imaging mass spectrometry. This technique allows for the imaging of the spacial distribution of biomolecules. Laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation . The word laser

4795-681: A surface having micrometer-sized features or particles ≤ 100 micrometers. The larger particles were observed to protect the smaller particles from mechanical abrasion. In recent research, superhydrophobicity has been reported by allowing alkylketene dimer (AKD) to solidify into a nanostructured fractal surface. Many papers have since presented fabrication methods for producing superhydrophobic surfaces including particle deposition, sol-gel techniques, plasma treatments, vapor deposition, and casting techniques. Current opportunity for research impact lies mainly in fundamental research and practical manufacturing. Debates have recently emerged concerning

4932-586: A surface is easily washed away. Patterned superhydrophobic surfaces also have promise for lab-on-a-chip microfluidic devices and can drastically improve surface-based bioanalysis. In pharmaceuticals, hydrophobicity of pharmaceutical blends affects important quality attributes of final products, such as drug dissolution and hardness . Methods have been developed to measure the hydrophobicity of pharmaceutical materials. The development of hydrophobic passive daytime radiative cooling (PDRC) surfaces, whose effectiveness at solar reflectance and thermal emittance

5069-558: A useful technique where high resolution MALDI-MS measurements are desired. Atmospheric pressure (AP) matrix-assisted laser desorption/ionization (MALDI) is an ionization technique (ion source) that in contrast to vacuum MALDI operates at normal atmospheric environment. The main difference between vacuum MALDI and AP-MALDI is the pressure in which the ions are created. In vacuum MALDI, ions are typically produced at 10 mTorr or less while in AP-MALDI ions are formed in atmospheric pressure. In

5206-646: A very narrow frequency spectrum . Temporal coherence can also be used to produce ultrashort pulses of light with a broad spectrum but durations as short as an attosecond . Lasers are used in optical disc drives , laser printers , barcode scanners , DNA sequencing instruments , fiber-optic and free-space optical communications, semiconductor chip manufacturing ( photolithography , etching ), laser surgery and skin treatments, cutting and welding materials, military and law enforcement devices for marking targets and measuring range and speed, and in laser lighting displays for entertainment. Semiconductor lasers in

5343-430: A wide bandwidth, making a laser possible that can thus generate pulses of light as short as a few femtoseconds (10 s). In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has approached

5480-492: A wide range of technologies addressing many different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode. In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up between pulses. In laser ablation , for example,

5617-424: Is necrotizing enterocolitis (NEC), which is a devastating disease that affects the bowels of premature infants. The symptoms of NEC are very similar to those of sepsis , and many infants die awaiting diagnosis and treatment. MALDI/TOF was used to identify bacteria present in the fecal matter of NEC positive infants. This study focused on characterization of the fecal microbiota associated with NEC and did not address

Matrix-assisted laser desorption/ionization - Misplaced Pages Continue

5754-454: Is a common technique for large macro-molecules, it is often possible to also analyze small molecules with mass below 1000 Da.  The problem with small molecules is that of matrix effects, where signal interference, detector saturation, or suppression of the analyte signal is possible since the matrices often consists of small molecules themselves. The choice of matrix is highly dependent on what molecules are to be analyzed. Due to MALDI being

5891-410: Is a phenomenon that characterizes surface heterogeneity. When a pipette injects a liquid onto a solid, the liquid will form some contact angle. As the pipette injects more liquid, the droplet will increase in volume, the contact angle will increase, but its three-phase boundary will remain stationary until it suddenly advances outward. The contact angle the droplet had immediately before advancing outward

6028-404: Is a transition between energy levels that match the energy carried by the photon or phonon. For light, this means that any given transition will only absorb one particular wavelength of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process. When an electron is excited from one state to that at

6165-480: Is also required for three-level lasers in which the lower energy level rapidly becomes highly populated, preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode. In 1917, Albert Einstein established the theoretical foundations for the laser and the maser in the paper " Zur Quantentheorie der Strahlung " ("On

6302-406: Is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation . The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories , based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow . A laser differs from other sources of light in that it emits light that is coherent . Spatial coherence allows

6439-487: Is an important parameter to justify the theoretical model, and the mistaken citation of ion-to-neutral ratio could result in an erroneous determination of the ionization mechanism. The model quantitatively predicts the increase in total ion intensity as a function of the concentration and proton affinity of the analytes, and the ion-to-neutral ratio as a function of the laser fluences. This model also suggests that metal ion adducts (e.g., [M+Na] or [M+K]) are mainly generated from

6576-399: Is based on this principle. Inspired by it , many functional superhydrophobic surfaces have been prepared. An example of a bionic or biomimetic superhydrophobic material in nanotechnology is nanopin film . One study presents a vanadium pentoxide surface that switches reversibly between superhydrophobicity and superhydrophilicity under the influence of UV radiation. According to

6713-413: Is called an optical amplifier . When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser. For lasing media with extremely high gain, so-called superluminescence , light can be sufficiently amplified in a single pass through the gain medium without requiring a resonator. Although often referred to as a laser (see, for example, nitrogen laser ), the light output from such

6850-449: Is easily coupled to an ion trap mass spectrometer or any other MS system equipped with electrospray ionization (ESI) or nanoESI source. MALDI with ionization at reduced pressure is known to produce mainly singly-charged ions (see "Ionization mechanism" below). In contrast, ionization at atmopsheric pressure can generate highly-charged analytes as was first shown for infrared and later also for nitrogen lasers. Multiple charging of analytes

6987-462: Is emitted by stimulated emission is identical to the photon that triggered its emission, and both photons can go on to trigger stimulated emission in other atoms, creating the possibility of a chain reaction . For this to happen, many of the atoms or molecules must be in the proper excited state so that the photons can trigger them. In most materials, atoms or molecules drop out of excited states fairly rapidly, making it difficult or impossible to produce

SECTION 50

#1732764714685

7124-421: Is formed by single-frequency quantum photon states distributed according to a Poisson distribution . As a result, the arrival rate of photons in a laser beam is described by Poisson statistics. Many lasers produce a beam that can be approximated as a Gaussian beam ; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with

7261-443: Is frequently used in the field, meaning "to give off coherent light," especially about the gain medium of a laser; when a laser is operating, it is said to be " lasing ". The terms laser and maser are also used for naturally occurring coherent emissions, as in astrophysical maser and atom laser . A laser that produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by

7398-421: Is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level, which would be impractical, or destroying the laser by producing excessive heat. Such lasers cannot be run in CW mode. The pulsed operation of lasers refers to any laser not classified as a continuous wave so that the optical power appears in pulses of some duration at some repetition rate. This encompasses

7535-568: Is made, often in a mixture of highly purified water and an organic solvent such as acetonitrile (ACN) or ethanol. A counter ion source such as trifluoroacetic acid (TFA) is usually added to generate the [M+H] ions. A good example of a matrix-solution would be 20 mg/mL sinapinic acid in ACN:water:TFA (50:50:0.1). The identification of suitable matrix compounds is determined to some extent by trial and error, but they are based on some specific molecular design considerations. They are of

7672-434: Is mostly an entropic effect originating from the disruption of the highly dynamic hydrogen bonds between molecules of liquid water by the nonpolar solute, causing the water to form a clathrate -like structure around the non-polar molecules. This structure formed is more highly ordered than free water molecules due to the water molecules arranging themselves to interact as much as possible with themselves, and thus results in

7809-405: Is not the result of random thermal processes. Instead, the release of a photon is triggered by the nearby passage of another photon. This is called stimulated emission . For this process to work, the passing photon must be similar in energy, and thus wavelength, to the one that could be released by the atom or molecule, and the atom or molecule must be in the suitable excited state. The photon that

7946-502: Is of great importance, because it allows to measure high-molecular-weight compounds like proteins in instruments, which provide only smaller m/z detection ranges such as quadrupoles. Besides the pressure, the composition of the matrix is important to achieve this effect. In aerosol mass spectrometry , one of the ionization techniques consists in firing a laser to individual droplets. These systems are called single particle mass spectrometers (SPMS) . The sample may optionally be mixed with

8083-451: Is placed onto the sample target and overlaid with matrix. The mass spectra of expressed proteins generated are analyzed by dedicated software and compared with stored profiles for species determination in what is known as biotyping. It offers benefits to other immunological or biochemical procedures and has become a common method for species identification in clinical microbiological laboratories. Benefits of high resolution MALDI-MS performed on

8220-425: Is predicted that this could serve as a method for identifying a bacterium as drug resistant in as little as three hours. This technique could help physicians decide whether to prescribe more aggressive antibiotics initially. Following initial observations that some peptide-peptide complexes could survive MALDI deposition and ionization, studies of large protein complexes using MALDI-MS have been reported. While MALDI

8357-403: Is termed contact angle hysteresis and can be used to characterize surface heterogeneity, roughness, and mobility. Surfaces that are not homogeneous will have domains that impede motion of the contact line. The slide angle is another dynamic measure of hydrophobicity and is measured by depositing a droplet on a surface and tilting the surface until the droplet begins to slide. In general, liquids in

SECTION 60

#1732764714685

8494-452: Is termed the advancing contact angle. The receding contact angle is now measured by pumping the liquid back out of the droplet. The droplet will decrease in volume, the contact angle will decrease, but its three-phase boundary will remain stationary until it suddenly recedes inward. The contact angle the droplet had immediately before receding inward is termed the receding contact angle. The difference between advancing and receding contact angles

8631-408: Is the ground electronic state, S 1 the first electronic excited state, and S n is a higher electronic excited state. The product ions can be proton transfer or electron transfer ion pairs, indicated by M and M above. Secondary processes involve ion-molecule reactions to form analyte ions. The lucky survivor model (cluster ionization mechanism) postulates that analyte molecules are incorporated in

8768-489: Is to heat an object; some of the thermal energy being applied to the object will cause the molecules and electrons within the object to gain energy, which is then lost through thermal radiation , that we see as light. This is the process that causes a candle flame to give off light. Thermal radiation is a random process, and thus the photons emitted have a range of different wavelengths , travel in different directions, and are released at different times. The energy within

8905-504: Is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser that is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high-energy, fast pump was needed. The way to overcome this problem was to charge up large capacitors which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping

9042-464: Is typically estimated to range from 10 to 10, with some experiments hinting to even lower yields of 10. The issue of low ion yields had been addressed, already shortly after introduction of MALDI by various attempts, including post-ionization utilizing a second laser. Most of these attempts showed only limited success, with low signal increases. This might be attributed to the fact that axial time-of-flight instruments were used, which operate at pressures in

9179-441: Is typically expressed through the output being a narrow beam, which is diffraction-limited . Laser beams can be focused to very tiny spots, achieving a very high irradiance , or they can have a very low divergence to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a polarized wave at a single frequency, whose phase is correlated over a relatively great distance (the coherence length ) along

9316-665: Is used instead of UV MALDI. Besides proteins, MALDI-TOF has also been applied to study lipids . For example, it has been applied to study the catalytic reactions of phospholipases . In addition to lipids, oligonucleotides have also been characterised by MALDI-TOF. For example, in molecular biology, a mixture of 5-methoxysalicylic acid and spermine can be used as a matrix for oligonucleotides analysis in MALDI mass spectrometry, for instance after oligonucleotide synthesis . Some synthetic macromolecules, such as catenanes and rotaxanes , dendrimers and hyperbranched polymers , and other assemblies, have molecular weights extending into

9453-417: Is used to analyse them. The term matrix-assisted laser desorption ionization (MALDI) was coined in 1985 by Franz Hillenkamp , Michael Karas and their colleagues. These researchers found that the amino acid alanine could be ionized more easily if it was mixed with the amino acid tryptophan and irradiated with a pulsed 266 nm laser. The tryptophan was absorbing the laser energy and helping to ionize

9590-430: Is used to measure the intensity profile, width, and divergence of laser beams. Diffuse reflection of a laser beam from a matte surface produces a speckle pattern with interesting properties. The mechanism of producing radiation in a laser relies on stimulated emission , where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon that was predicted by Albert Einstein , who derived

9727-410: The phase of the emitted light is 90 degrees in lead of the stimulating light. This, combined with the filtering effect of the optical resonator gives laser light its characteristic coherence, and may give it uniform polarization and monochromaticity, depending on the resonator's design. The fundamental laser linewidth of light emitted from the lasing resonator can be orders of magnitude narrower than

9864-421: The transverse modes often approximated using Hermite – Gaussian or Laguerre -Gaussian functions. Some high-power lasers use a flat-topped profile known as a " tophat beam ". Unstable laser resonators (not used in most lasers) produce fractal-shaped beams. Specialized optical systems can produce more complex beam geometries, such as Bessel beams and optical vortexes . Near the "waist" (or focal region ) of

10001-505: The "pencil beam" directly generated by a common helium–neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the Earth). On the other hand, the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam employing

10138-422: The 2.94 μm Er:YAG laser , mid-IR optical parametric oscillator , and 10.6 μm carbon dioxide laser . Although not as common, infrared lasers are used due to their softer mode of ionization. IR-MALDI also has the advantage of greater material removal (useful for biological samples), less low-mass interference, and compatibility with other matrix-free laser desorption mass spectrometry methods. The type of

10275-496: The 2011 Klebsiella pneumoniae carbapenemase (KPC) outbreak at the NIH, a correlation between a peak and resistance conferring protein can be made. MALDI-TOF spectra have been used for the detection and identification of various parasites such as trypanosomatids , Leishmania and Plasmodium . In addition to these unicellular parasites, MALDI/TOF can be used for the identification of parasitic insects such as lice or cercariae ,

10412-416: The 67 kDa protein albumin using a nicotinic acid matrix and a 266 nm laser. Further improvements were realized through the use of a 355 nm laser and the cinnamic acid derivatives ferulic acid , caffeic acid and sinapinic acid as the matrix. The availability of small and relatively inexpensive nitrogen lasers operating at 337 nm wavelength and the first commercial instruments introduced in

10549-552: The Cassie–Baxter state exhibit lower slide angles and contact angle hysteresis than those in the Wenzel state. Dettre and Johnson discovered in 1964 that the superhydrophobic lotus effect phenomenon was related to rough hydrophobic surfaces, and they developed a theoretical model based on experiments with glass beads coated with paraffin or TFE telomer. The self-cleaning property of superhydrophobic micro- nanostructured surfaces

10686-399: The Cassie–Baxter state is more mobile than in the Wenzel state. We can predict whether the Wenzel or Cassie–Baxter state should exist by calculating the new contact angle with both equations. By a minimization of free energy argument, the relation that predicted the smaller new contact angle is the state most likely to exist. Stated in mathematical terms, for the Cassie–Baxter state to exist,

10823-677: The Quantum Theory of Radiation") via a re-derivation of Max Planck 's law of radiation, conceptually based upon probability coefficients ( Einstein coefficients ) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation. In 1928, Rudolf W. Ladenburg confirmed the existence of the phenomena of stimulated emission and negative absorption. In 1939, Valentin A. Fabrikant predicted using stimulated emission to amplify "short" waves. In 1947, Willis E. Lamb and R.   C.   Retherford found apparent stimulated emission in hydrogen spectra and effected

10960-509: The Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion . In 1955, Prokhorov and Basov suggested optical pumping of

11097-614: The acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation", would have been more correct. With the widespread use of the original acronym as a common noun, optical amplifiers have come to be referred to as laser amplifiers . Modern physics describes light and other forms of electromagnetic radiation as the group behavior of fundamental particles known as photons . Photons are released and absorbed through electromagnetic interactions with other fundamental particles that carry electric charge . A common way to release photons

11234-416: The applicability of the Wenzel and Cassie–Baxter models. In an experiment designed to challenge the surface energy perspective of the Wenzel and Cassie–Baxter model and promote a contact line perspective, water drops were placed on a smooth hydrophobic spot in a rough hydrophobic field, a rough hydrophobic spot in a smooth hydrophobic field, and a hydrophilic spot in a hydrophobic field. Experiments showed that

11371-476: The beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase that vary randomly with respect to time and position, thus having a short coherence length. Lasers are characterized according to their wavelength in a vacuum . Most "single wavelength" lasers produce radiation in several modes with slightly different wavelengths. Although temporal coherence implies some degree of monochromaticity , some lasers emit

11508-425: The blue to near-UV have also been used in place of light-emitting diodes (LEDs) to excite fluorescence as a white light source; this permits a much smaller emitting area due to the much greater radiance of a laser and avoids the droop suffered by LEDs; such devices are already used in some car headlamps . The first device using amplification by stimulated emission operated at microwave frequencies, and

11645-485: The case of an added sodium ion, or [M-H] in the case of a removed proton. MALDI is capable of creating singly charged ions or multiply charged ions ([M+nH]) depending on the nature of the matrix, the laser intensity, and/or the voltage used. Note that these are all even-electron species. Ion signals of radical cations (photoionized molecules) can be observed, e.g., in the case of matrix molecules and other organic molecules. The gas phase proton transfer model, implemented as

11782-402: The coupled physical and chemical dynamics (CPCD) model, of UV laser MALDI postulates primary and secondary processes leading to ionization. Primary processes involve initial charge separation through absorption of photons by the matrix and pooling of the energy to form matrix ion pairs. Primary ion formation occurs through absorption of a UV photon to create excited state molecules by where S 0

11919-400: The early 1990s brought MALDI to an increasing number of researchers. Today, mostly organic matrices are used for MALDI mass spectrometry. The matrix consists of crystallized molecules, of which the three most commonly used are sinapinic acid , α-cyano-4-hydroxycinnamic acid (α-CHCA, alpha-cyano or alpha-matrix) and 2,5-dihydroxybenzoic acid (DHB). A solution of one of these molecules

12056-561: The effect of nonlinearity in optical materials (e.g. in second-harmonic generation , parametric down-conversion , optical parametric oscillators and the like). Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent; that is, the pulses (and not just their envelopes ) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research. Another method of achieving pulsed laser operation

12193-523: The effort. In 1964, Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics , "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle". Hydrophobic In chemistry , hydrophobicity is the chemical property of a molecule that is seemingly repelled from

12330-402: The electrons reduce V to V . The oxygen vacancies are met by water, and it is this water absorbency by the vanadium surface that makes it hydrophilic. By extended storage in the dark, water is replaced by oxygen and hydrophilicity is once again lost. A significant majority of hydrophobic surfaces have their hydrophobic properties imparted by structural or chemical modification of a surface of

12467-603: The first demonstration of stimulated emission. In 1950, Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical pumping , which was experimentally demonstrated two years later by Brossel, Kastler, and Winter. In 1951, Joseph Weber submitted a paper on using stimulated emissions to make a microwave amplifier to the June 1952 Institute of Radio Engineers Vacuum Tube Research Conference in Ottawa , Ontario, Canada. After this presentation, RCA asked Weber to give

12604-420: The following inequality must be true. A recent alternative criterion for the Cassie–Baxter state asserts that the Cassie–Baxter state exists when the following 2 criteria are met:1) Contact line forces overcome body forces of unsupported droplet weight and 2) The microstructures are tall enough to prevent the liquid that bridges microstructures from touching the base of the microstructures. A new criterion for

12741-512: The free-swimming stage of trematodes . MALDI-TOF spectra are often utilized in tandem with other analysis and spectroscopy techniques in the diagnosis of diseases. MALDI/TOF is a diagnostic tool with much potential because it allows for the rapid identification of proteins and changes to proteins without the cost or computing power of sequencing nor the skill or time needed to solve a crystal structure in X-ray crystallography . One example of this

12878-440: The ion flight path, thereby increasing time of flight between ions of different m/z and increasing resolution. Modern commercial reflectron TOF instruments reach a resolving power m/Δm of 50,000 FWHM (full-width half-maximum, Δm defined as the peak width at 50% of peak height) or more. MALDI has been coupled with IMS -TOF MS to identify phosphorylated and non-phosphorylated peptides. MALDI- FT-ICR MS has been demonstrated to be

13015-409: The ionization of analyte, though the mechanism of MALDI is still debated. The matrix is then thought to transfer protons to the analyte molecules (e.g., protein molecules), thus charging the analyte. An ion observed after this process will consist of the initial neutral molecule [M] with ions added or removed. This is called a quasimolecular ion, for example [M+H] in the case of an added proton, [M+Na] in

13152-407: The ionization process. The salts can be removed by solid phase extraction or by washing the dried-droplet MALDI spots with cold water. Both methods can also remove other substances from the sample. The matrix-protein mixture is not homogeneous because the polarity difference leads to a separation of the two substances during co-crystallization. The spot diameter of the target is much larger than that of

13289-503: The laser irradiation. This efficiency is commonly associated with chemical structures incorporating several conjugated double bonds , as seen in the structure of cinnamic acid . They are functionalized with polar groups, allowing their use in aqueous solutions. They typically contain a chromophore . The matrix solution is mixed with the analyte (e.g. protein -sample). A mixture of water and organic solvent allows both hydrophobic and water-soluble ( hydrophilic ) molecules to dissolve into

13426-422: The laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the lasing threshold . The gain medium will amplify any photons passing through it, regardless of direction; but only

13563-488: The laser, which makes it necessary to make many laser shots at different places of the target, to get the statistical average of the substance concentration within the target spot. The matrix can be used to tune the instrument to ionize the sample in different ways. As mentioned above, acid-base like reactions are often utilized to ionize the sample, however, molecules with conjugated pi systems , such as naphthalene like compounds, can also serve as an electron acceptor and thus

13700-501: The lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall into that category. Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as a continuous-wave ( CW ) laser. Many types of lasers can be made to operate in continuous-wave mode to satisfy such an application. Many of these lasers lase in several longitudinal modes at

13837-414: The latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property

13974-425: The leaves of the lotus plant, are those that are extremely difficult to wet. The contact angles of a water droplet exceeds 150°. This is referred to as the lotus effect , and is primarily a chemical property related to interfacial tension , rather than a chemical property. In 1805, Thomas Young defined the contact angle θ by analyzing the forces acting on a fluid droplet resting on a solid surface surrounded by

14111-450: The linewidth of light emitted from the passive resonator. Some lasers use a separate injection seeder to start the process off with a beam that is already highly coherent. This can produce beams with a narrower spectrum than would otherwise be possible. In 1963, Roy J. Glauber showed that coherent states are formed from combinations of photon number states, for which he was awarded the Nobel Prize in physics . A coherent beam of light

14248-402: The literal cavity that would be employed at microwave frequencies in a maser . The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption. If the gain (amplification) in

14385-522: The lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission. The gain medium is put into an excited state by an external source of energy. In most lasers, this medium consists of a population of atoms that have been excited into such a state using an outside light source, or an electrical field that supplies energy for atoms to absorb and be transformed into their excited states. The gain medium of

14522-431: The matrix maintaining the charge state from solution. Ion formation occurs through charge separation upon fragmentation of laser ablated clusters. Ions that are not neutralized by recombination with photoelectrons or counter ions are the so-called lucky survivors. The thermal model postulates that the high temperature facilitates the proton transfer between matrix and analyte in melted matrix liquid. Ion-to-neutral ratio

14659-412: The maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power. A mode-locked laser is capable of emitting extremely short pulses on

14796-474: The mechanism of disease. There is hope that a similar technique could be used as a quick, diagnostic tool that would not require sequencing. Another example of the diagnostic power of MALDI/TOF is in the area of cancer . Pancreatic cancer remains one of the most deadly and difficult to diagnose cancers. Impaired cellular signaling due to mutations in membrane proteins has been long suspected to contribute to pancreatic cancer. MALDI/TOF has been used to identify

14933-498: The medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially . But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power, the net gain (gain minus loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of

15070-458: The mid-20th century. Active recent research on superhydrophobic materials might eventually lead to more industrial applications. A simple routine of coating cotton fabric with silica or titania particles by sol-gel technique has been reported, which protects the fabric from UV light and makes it superhydrophobic. An efficient routine has been reported for making polyethylene superhydrophobic and thus self-cleaning. 99% of dirt on such

15207-405: The non-absorbing alanine. Peptides up to the 2843 Da peptide melittin could be ionized when mixed with this kind of "matrix". The breakthrough for large molecule laser desorption ionization came in 1987 when Koichi Tanaka of Shimadzu Corporation and his co-workers used what they called the "ultra fine metal plus liquid matrix method" that combined 30 nm cobalt particles in glycerol with

15344-404: The object is not random, however: it is stored by atoms and molecules in " excited states ", which release photons with distinct wavelengths. This gives rise to the science of spectroscopy , which allows materials to be determined through the specific wavelengths that they emit. The underlying physical process creating photons in a laser is the same as in thermal radiation, but the actual emission

15481-456: The order of tens of picoseconds down to less than 10  femtoseconds . These pulses repeat at the round-trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the Fourier limit (also known as energy–time uncertainty ), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such

15618-408: The original. However, a hydrophilic surface (one that has an original contact angle less than 90°) becomes more hydrophilic when microstructured – its new contact angle becomes less than the original. Cassie and Baxter found that if the liquid is suspended on the tops of microstructures, θ will change to θ CB* : where φ is the area fraction of the solid that touches the liquid. Liquid in

15755-682: The past, the main disadvantage of the AP-MALDI technique compared to the conventional vacuum MALDI has been its limited sensitivity; however, ions can be transferred into the mass spectrometer with high efficiency and attomole detection limits have been reported. AP-MALDI is used in mass spectrometry (MS) in a variety of applications ranging from proteomics to drug discovery. Popular topics that are addressed by AP-MALDI mass spectrometry include: proteomics; mass analysis of DNA, RNA, PNA, lipids, oligosaccharides, phosphopeptides, bacteria, small molecules and synthetic polymers, similar applications as available also for vacuum MALDI instruments. The AP-MALDI ion source

15892-418: The photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification. In most lasers, lasing begins with spontaneous emission into the lasing mode. This initial light is then amplified by stimulated emission in the gain medium. Stimulated emission produces light that matches the input signal in direction, wavelength, and polarization, whereas

16029-409: The power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course, even a laser whose output is normally continuous can be intentionally turned on and off at some rate to create pulses of light. When the modulation rate is on time scales much slower than the cavity lifetime and the period over which energy can be stored in

16166-662: The properties of the emitted light, such as the polarization, wavelength, and shape of the beam. Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics . In the classical view , the energy of an electron orbiting an atomic nucleus is larger for orbits further from the nucleus of an atom . However, quantum mechanical effects force electrons to take on discrete positions in orbitals . Thus, electrons are found in specific energy levels of an atom, two of which are shown below: An electron in an atom can absorb energy from light ( photons ) or heat ( phonons ) only if there

16303-959: The rapid identification of proteins isolated by using gel electrophoresis : SDS-PAGE , size exclusion chromatography , affinity chromatography , strong/weak ion exchange, isotope coded protein labeling (ICPL), and two-dimensional gel electrophoresis . Peptide mass fingerprinting is the most popular analytical application of MALDI-TOF mass spectrometers. MALDI TOF/TOF mass spectrometers are used to reveal amino acid sequence of peptides using post-source decay or high energy collision-induced dissociation (further use see mass spectrometry ). MALDI-TOF have been used to characterise post-translational modifications . For example, it has been widely applied to study protein methylation and demethylation . However, care must be taken when studying post-translational modifications by MALDI-TOF. For example, it has been reported that loss of sialic acid has been identified in papers when dihydroxybenzoic acid (DHB) has been used as

16440-457: The relationship between the A coefficient , describing spontaneous emission, and the B coefficient which applies to absorption and stimulated emission. In the case of the free electron laser , atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to quantum mechanics . A laser can be classified as operating in either continuous or pulsed mode, depending on whether

16577-410: The same time, and beats between the slightly different optical frequencies of those oscillations will produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the frequency spacing between modes), typically a few nanoseconds or less. In most cases, these lasers are still termed "continuous-wave" as their output power is steady when averaged over longer periods, with

16714-771: The selective medium used to isolate them. The absence of the need to purify the suspect or "presumptive" colony allows for a much faster turn-around times. For example, it has been demonstrated that MALDI-TOF can be used to detect bacteria directly from blood cultures. Another advantage is the potential to predict antibiotic susceptibility of bacteria. A single mass spectral peak can predict methicillin resistance of Staphylococcus aureus . MALDI can also detect carbapenemase of carbapenem-resistant enterobacteriaceae , including Acinetobacter baumannii and Klebsiella pneumoniae . However, most proteins that mediate antibiotic resistance are larger than MALDI-TOF's 2000–20,000 Da range for protein peak interpretation and only occasionally, as in

16851-459: The signal intensity discrimination against higher mass oligomers. A good matrix for polymers is dithranol or AgTFA . The sample must first be mixed with dithranol and the AgTFA added afterwards; otherwise the sample will precipitate out of solution. MALDI-TOF spectra are often used for the identification of microorganisms such as bacteria or fungi. A portion of a colony of the microbe in question

16988-531: The solution. This solution is spotted onto a MALDI plate (usually a metal plate designed for this purpose). The solvents vaporize, leaving only the recrystallized matrix, but now with analyte molecules embedded into MALDI crystals. The matrix and the analyte are said to be co-crystallized. Co-crystallization is a key issue in selecting a proper matrix to obtain a good quality mass spectrum of the analyte of interest. In analysis of biological systems, inorganic salts, which are also part of protein extracts, interfere with

17125-423: The source region of 10 to 10, which results in rapid plume expansion with particle velocities of up to 1000 m/s. In 2015, successful laser post-ionization was reported, using a modified MALDI source operated at an elevated pressure of ~3 mbar coupled to an orthogonal time-of-flight mass analyzer, and employing a wavelength-tunable post-ionization laser, operated at wavelength from 260 nm to 280 nm, below

17262-421: The study, any surface can be modified to this effect by application of a suspension of rose-like V 2 O 5 particles, for instance with an inkjet printer . Once again hydrophobicity is induced by interlaminar air pockets (separated by 2.1 nm distances). The UV effect is also explained. UV light creates electron-hole pairs , with the holes reacting with lattice oxygen, creating surface oxygen vacancies, while

17399-437: The surface chemistry and geometry at the contact line affected the contact angle and contact angle hysteresis , but the surface area inside the contact line had no effect. An argument that increased jaggedness in the contact line enhances droplet mobility has also been proposed. Many hydrophobic materials found in nature rely on Cassie's law and are biphasic on the submicrometer level with one component air. The lotus effect

17536-509: The switch between Wenzel and Cassie-Baxter states has been developed recently based on surface roughness and surface energy . The criterion focuses on the air-trapping capability under liquid droplets on rough surfaces, which could tell whether Wenzel's model or Cassie-Baxter's model should be used for certain combination of surface roughness and energy. Contact angle is a measure of static hydrophobicity, and contact angle hysteresis and slide angle are dynamic measures. Contact angle hysteresis

17673-447: The technologies often overlap and many times any soft ionization method could potentially be used. For more variations of soft ionization methods see: Soft laser desorption or Ion source . MALDI techniques typically employ the use of UV lasers such as nitrogen lasers (337 nm) and frequency-tripled and quadrupled Nd:YAG lasers (355 nm and 266 nm respectively). Infrared laser wavelengths used for infrared MALDI include

17810-491: The thermally induced dissolution of salt. The matrix-assisted ionization (MAI) method uses matrix preparation similar to MALDI but does not require laser ablation to produce analyte ions of volatile or nonvolatile compounds. Simply exposing the matrix with analyte to the vacuum of the mass spectrometer creates ions with nearly identical charge states to electrospray ionization. It is suggested that there are likely mechanistic commonality between this process and MALDI. Ion yield

17947-436: The thousands or tens of thousands, where most ionization techniques have difficulty producing molecular ions. MALDI is a simple and fast analytical method that can allow chemists to rapidly analyze the results of such syntheses and verify their results. In polymer chemistry, MALDI can be used to determine the molar mass distribution . Polymers with polydispersity greater than 1.2 are difficult to characterize with MALDI due to

18084-425: The two mirrors, the output coupler , is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity (whether the mirrors are flat or curved ), the light coming out of the laser may spread out or form a narrow beam . In analogy to electronic oscillators , this device is sometimes called a laser oscillator . Most practical lasers contain additional elements that affect

18221-494: The two terms are not synonymous. While hydrophobic substances are usually lipophilic, there are exceptions, such as the silicones and fluorocarbons . The term hydrophobe comes from the Ancient Greek ὑδρόφοβος ( hydróphobos ), "having a fear of water", constructed from Ancient Greek ὕδωρ (húdōr)  'water' and Ancient Greek φόβος (phóbos)  'fear'. The hydrophobic interaction

18358-408: The two-photon ionization threshold of the matrices used, which elevated ion yields of several lipids and small molecules by up to three orders of magnitude. This approach, called MALDI-2, due to the second laser, and the second MALDI-like ionization process, was afterwards adopted for other mass spectrometers, all equipped with sources operating in the low mbar range. In proteomics , MALDI is used for

18495-410: The very high-frequency power variations having little or no impact on the intended application. (However, the term is not applied to mode-locked lasers, where the intention is to create very short pulses at the rate of the round-trip time.) For continuous-wave operation, the population inversion of the gain medium needs to be continually replenished by a steady pump source. In some lasing media, this

18632-598: Was called a maser , for "microwave amplification by stimulated emission of radiation". When similar optical devices were developed they were first called optical masers , until "microwave" was replaced by "light" in the acronym, to become laser . Today, all such devices operating at frequencies higher than microwaves (approximately above 300 GHz ) are called lasers (e.g. infrared lasers , ultraviolet lasers , X-ray lasers , gamma-ray lasers ), whereas devices operating at microwave or lower radio frequencies are called masers. The back-formed verb " to lase "

18769-457: Was reported in 1977. Perfluoroalkyl, perfluoropolyether, and RF plasma -formed superhydrophobic materials were developed, used for electrowetting and commercialized for bio-medical applications between 1986 and 1995. Other technology and applications have emerged since the mid-1990s. A durable superhydrophobic hierarchical composition, applied in one or two steps, was disclosed in 2002 comprising nano-sized particles ≤ 100 nanometers overlaying

#684315