Misplaced Pages

MS-CHAP

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

MS-CHAP is the Microsoft version of the Challenge-Handshake Authentication Protocol , (CHAP).

#132867

83-621: The protocol exists in two versions, MS-CHAPv1 (defined in RFC   2433 ) and MS-CHAPv2 (defined in RFC   2759 ). MS-CHAPv2 was introduced with pptp3-fix that was included in Windows NT 4.0 SP4 and was added to Windows 98 in the "Windows 98 Dial-Up Networking Security Upgrade Release" and Windows 95 in the "Dial Up Networking 1.3 Performance & Security Update for MS Windows 95" upgrade. Windows Vista dropped support for MS-CHAPv1. MS-CHAP

166-543: A Request for Quotation (RFQ) was issued for 140 potential bidders. Most computer science companies regarded the ARPA proposal as outlandish, and only twelve submitted bids to build a network; of the twelve, ARPA regarded only four as top-rank contractors. At year's end, ARPA considered only two contractors and awarded the contract to build the network to BBN in January 1969. The initial, seven-person BBN team were much aided by

249-450: A serial number . Once assigned a number and published, an RFC is never rescinded or modified; if the document requires amendments, the authors publish a revised document. Therefore, some RFCs supersede others; the superseded RFCs are said to be deprecated , obsolete , or obsoleted by the superseding RFC. Together, the serialized RFCs compose a continuous historical record of the evolution of Internet standards and practices. The RFC process

332-526: A common set of terms such as "MUST" and "NOT RECOMMENDED" (as defined by RFC  2119 and 8174 ), augmented Backus–Naur form (ABNF) ( RFC  5234 ) as a meta-language, and simple text-based formatting, in order to keep the RFCs consistent and easy to understand. The RFC series contains three sub-series for IETF RFCs: BCP, FYI, and STD. Best Current Practice (BCP) is a sub-series of mandatory IETF RFCs not on standards track. For Your Information (FYI)

415-624: A network project. Herzfeld redirected funds in the amount of one million dollars from a ballistic missile defense program to Taylor's budget. Taylor hired Larry Roberts as a program manager in the ARPA Information Processing Techniques Office in January 1967 to work on the ARPANET. Roberts met Paul Baran in February 1967, but did not discuss networks. Roberts asked Frank Westervelt to explore

498-573: A new submission which will receive a new serial number. Standards track documents are further divided into Proposed Standard and Internet Standard documents. Only the IETF, represented by the Internet Engineering Steering Group (IESG), can approve standards-track RFCs. If an RFC becomes an Internet Standard (STD), it is assigned an STD number but retains its RFC number. The definitive list of Internet Standards

581-587: A similar fashion; BCP n refers to a certain RFC or set of RFCs, but which RFC or RFCs may change over time). An informational RFC can be nearly anything from April 1 jokes to widely recognized essential RFCs like Domain Name System Structure and Delegation ( RFC  1591 ). Some informational RFCs formed the FYI sub-series. An experimental RFC can be an IETF document or an individual submission to

664-485: A testbed for developing and debugging the 1822 protocol , which was a major undertaking. While they were connected electronically in 1969, network applications were not possible until the Network Control Protocol was implemented in 1970 enabling the first two host-host protocols, remote login ( Telnet ) and file transfer ( FTP ) which were specified and implemented between 1969 and 1973. The network

747-622: A transatlantic satellite link connected ARPANET to the Norwegian Seismic Array (NORSAR), via the Tanum Earth Station in Sweden, and onward via a terrestrial circuit to a TIP at UCL. UCL provided a gateway for interconnection of the ARPANET with British academic networks, the first international resource sharing network, and carried out some of the earliest experimental research work on internetworking. 1971 saw

830-626: Is a publication in a series from the principal technical development and standards-setting bodies for the Internet , most prominently the Internet Engineering Task Force (IETF). An RFC is authored by individuals or groups of engineers and computer scientists in the form of a memorandum describing methods, behaviors, research, or innovations applicable to the working of the Internet and Internet-connected systems. It

913-591: Is a sub-series of informational RFCs promoted by the IETF as specified in RFC ; 1150 (FYI 1). In 2011, RFC  6360 obsoleted FYI 1 and concluded this sub-series. Standard (STD) used to be the third and highest maturity level of the IETF standards track specified in RFC  2026 (BCP 9). In 2011 RFC  6410 (a new part of BCP 9) reduced the standards track to two maturity levels. There are five streams of RFCs: IETF , IRTF , IAB , independent submission , and Editorial . Only

SECTION 10

#1732794466133

996-408: Is another of the four first of what were ARPANET nodes and the source of early RFCs. The ARC became the first network information center ( InterNIC ), which was managed by Elizabeth J. Feinler to distribute the RFCs along with other network information. From 1969 until 1998, Jon Postel served as the RFC editor . On his death in 1998, his obituary was published as RFC  2468 . Following

1079-413: Is documented in RFC  2026 ( The Internet Standards Process, Revision 3 ). The RFC production process differs from the standardization process of formal standards organizations such as International Organization for Standardization (ISO). Internet technology experts may submit an Internet Draft without support from an external institution. Standards-track RFCs are published with approval from

1162-502: Is obsoleted by various newer RFCs, but SMTP itself is still "current technology", so it is not in "Historic" status. However, since BGP version 4 has entirely superseded earlier BGP versions, the RFCs describing those earlier versions, such as RFC  1267 , have been designated historic. Status unknown is used for some very old RFCs, where it is unclear which status the document would get if it were published today. Some of these RFCs would not be published at all today; an early RFC

1245-556: Is somewhat fitting to end on the note that the ARPANET program has had a strong and direct feedback into the support and strength of computer science, from which the network, itself, sprang. Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) funded the Computer Science Network (CSNET). The transatlantic connectivity with NORSAR and UCL later evolved into

1328-562: Is submitted as plain ASCII text and is published in that form, but may also be available in other formats . For easy access to the metadata of an RFC, including abstract, keywords, author(s), publication date, errata, status, and especially later updates, the RFC Editor site offers a search form with many features. A redirection sets some efficient parameters, example: rfc:5000. The official International Standard Serial Number (ISSN) of

1411-552: Is submitted either for peer review or to convey new concepts, information, or, occasionally, engineering humor. The IETF adopts some of the proposals published as RFCs as Internet Standards . However, many RFCs are informational or experimental in nature and are not standards. The RFC system was invented by Steve Crocker in 1969 to help record unofficial notes on the development of ARPANET . RFCs have since become official documents of Internet specifications , communications protocols , procedures, and events. According to Crocker,

1494-492: Is the Official Internet Protocol Standards. Previously STD 1 used to maintain a snapshot of the list. When an Internet Standard is updated, its STD number stays the same, now referring to a new RFC or set of RFCs. A given Internet Standard, STD n , may be RFCs x and y at a given time, but later the same standard may be updated to be RFC z instead. For example, in 2007 RFC  3700

1577-1030: Is used as one authentication option in Microsoft's implementation of the PPTP protocol for virtual private networks . It is also used as an authentication option with RADIUS servers which are used with IEEE 802.1X (e.g., WiFi security using the WPA-Enterprise protocol). It is further used as the main authentication option of the Protected Extensible Authentication Protocol (PEAP). Compared with CHAP, MS-CHAP: works by negotiating CHAP Algorithm 0x80 (0x81 for MS-CHAPv2) in LCP option 3, Authentication Protocol. It provides an authenticator-controlled password change mechanism. It provides an authenticator-controlled authentication retry mechanism and defines failure codes returned in

1660-928: The Honeywell DDP-516 computer, configured with 24 KB of expandable magnetic-core memory , and a 16-channel Direct Multiplex Control (DMC) direct memory access unit. The DMC established custom interfaces with each of the host computers and modems. In addition to the front-panel lamps, the DDP-516 computer also features a special set of 24 indicator lamps showing the status of the IMP communication channels. Each IMP could support up to four local hosts and could communicate with up to six remote IMPs via early Digital Signal 0 leased telephone lines. The network connected one computer in Utah with three in California. Later,

1743-692: The Internet Research Task Force (IRTF), and an independent stream from other outside sources. A new model was proposed in 2008, refined, and published in August 2009, splitting the task into several roles, including the RFC Series Advisory Group (RSAG). The model was updated in 2012. The streams were also refined in December 2009, with standards defined for their style. In January 2010, the RFC Editor function

SECTION 20

#1732794466133

1826-531: The NTLM password hash enable custom hardware attacks utilizing the method of brute force. As of 2012, MS-CHAP had been completely broken. After Windows 11 22H2, with the default activation of Windows Defender Credential Guard, users can no longer authenticate with MSCHAPv2. The developers recommend a move from MSCHAPv2-based connections to certificate-based authentication (such as PEAP-TLS or EAP-TLS ). RFC (identifier) A Request for Comments ( RFC )

1909-506: The SATNET . The ARPANET, SATNET and PRNET were interconnected in 1977. The DoD made TCP/IP the standard communication protocol for all military computer networking in 1980. NORSAR and University College London left the ARPANET and began using TCP/IP over SATNET in 1982. On January 1, 1983, known as flag day , TCP/IP protocols became the standard for the ARPANET, replacing the earlier Network Control Protocol. In September 1984 work

1992-679: The Transmission Control Program for internetworking . As this work progressed, a protocol was developed by which multiple separate networks could be joined into a network of networks; this incorporated concepts pioneered in the French CYCLADES project directed by Louis Pouzin . Version 4 of TCP/IP was installed in the ARPANET for production use in January 1983 after the Department of Defense made it standard for all military computer networking. Access to

2075-571: The United States Department of Defense . Building on the ideas of J. C. R. Licklider , Bob Taylor initiated the ARPANET project in 1966 to enable resource sharing between remote computers. Taylor appointed Larry Roberts as program manager. Roberts made the key decisions about the request for proposal to build the network. He incorporated Donald Davies ' concepts and designs for packet switching, and sought input from Paul Baran on dynamic routing. In 1969, ARPA awarded

2158-552: The University of California, Berkeley , and another for Multics at the Massachusetts Institute of Technology . Taylor recalls the circumstance: "For each of these three terminals, I had three different sets of user commands. So, if I was talking online with someone at S.D.C., and I wanted to talk to someone I knew at Berkeley, or M.I.T., about this, I had to get up from the S.D.C. terminal, go over and log into

2241-451: The 1970s, ARPA did emphasize the goal of "command and control". According to Stephen J. Lukasik , who was deputy director (1967–1970) and Director of DARPA (1970–1975): The goal was to exploit new computer technologies to meet the needs of military command and control against nuclear threats, achieve survivable control of US nuclear forces, and improve military tactical and management decision making. The first four nodes were designated as

2324-430: The ARPANET came out of our frustration that there were only a limited number of large, powerful research computers in the country, and that many research investigators, who should have access to them, were geographically separated from them. The ARPANET used distributed computation and incorporated frequent re-computation of routing tables (automatic routing was technically challenging at the time). These features increased

2407-600: The ARPANET did not exactly share Baran's project's goal, he said his work did contribute to the development of the ARPANET. Minutes taken by Elmer Shapiro of Stanford Research Institute at the ARPANET design meeting of 9–10 October 1967 indicate that a version of Baran's routing method ("hot potato") may be used, consistent with the NPL team's proposal at the Symposium on Operating System Principles in Gatlinburg. Later, in

2490-504: The ARPANET was expanded in 1981 when the National Science Foundation (NSF) funded the Computer Science Network (CSNET). In the early 1980s, the NSF funded the establishment of national supercomputing centers at several universities and provided network access and network interconnectivity with the NSFNET project in 1986. The ARPANET was formally decommissioned in 1990, after partnerships with

2573-552: The ARPANET was made between Stanford Research Institute (SRI) and UCLA, by SRI programmer Bill Duvall and UCLA student programmer Charley Kline, at 10:30 pm PST on 29 October 1969 (6:30 UTC on 30 October 1969). Kline connected from UCLA's SDS Sigma 7 Host computer (in Boelter Hall room 3420) to the Stanford Research Institute's SDS 940 Host computer. Kline typed the command "login," but initially

MS-CHAP - Misplaced Pages Continue

2656-473: The Department of Defense allowed the universities to join the network for sharing hardware and software resources. According to Charles Herzfeld, ARPA Director (1965–1967): The ARPANET was not started to create a Command and Control System that would survive a nuclear attack, as many now claim. To build such a system was, clearly, a major military need, but it was not ARPA's mission to do this; in fact, we would have been severely criticized had we tried. Rather,

2739-703: The Failure packet message field. MS-CHAPv2 provides mutual authentication between peers by piggybacking a peer challenge on the response packet and an authenticator response on the success packet. MS-CHAP requires each peer to either know the plaintext password, or an MD4 hash of the password, and does not transmit the password over the link. As such, it is not compatible with most password storage formats. Weaknesses have been identified in MS-CHAP and MS-CHAPv2. The DES encryption used in NTLMv1 and MS-CHAPv2 to encrypt

2822-627: The IETF creates BCPs and RFCs on the standards track. The IAB publishes informational documents relating to policy or architecture. The IRTF publishes the results of research, either as informational documents or as experiments. Independent submissions are published at the discretion of the Independent Submissions Editor. Non-IETF documents are reviewed by the IESG for conflicts with IETF work. IRTF and independent  RFCs generally contain relevant information or experiments for

2905-568: The IETF, and are usually produced by experts participating in IETF Working Groups , which first publish an Internet Draft. This approach facilitates initial rounds of peer review before documents mature into RFCs. The RFC tradition of pragmatic, experience-driven, after-the-fact standards authorship accomplished by individuals or small working groups can have important advantages over the more formal, committee-driven process typical of ISO and national standards bodies. Most RFCs use

2988-556: The IMPs (similar to the later concept of routers ), that functioned as gateways interconnecting local resources. Routing, flow control, software design and network control were developed by the BBN team. At each site, the IMPs performed store-and-forward packet switching functions and were interconnected with leased lines via telecommunication data sets ( modems ), with initial data rates of 50 kbit /s . The host computers were connected to

3071-399: The IMPs via custom serial communication interfaces. The system, including the hardware and the packet switching software, was designed and installed in nine months. The BBN team continued to interact with the NPL team with meetings between them taking place in the U.S. and the U.K. As with the NPL network, the first-generation IMPs were built by BBN using a rugged computer version of

3154-577: The Internet at large not in conflict with IETF work. compare RFC  4846 , 5742 and 5744 . The Editorial Stream is used to effect editorial policy changes across the RFC series (see RFC  9280 ). The official source for RFCs on the World Wide Web is the RFC Datatracker. Almost any published RFC can be retrieved via a URL of the form https://datatracker.ietf.org/doc/html/rfc5000, shown for RFC  5000 . Every RFC

3237-436: The RFC Editor. A draft is designated experimental if it is unclear the proposal will work as intended or unclear if the proposal will be widely adopted. An experimental RFC may be promoted to standards track if it becomes popular and works well. The Best Current Practice subseries collects administrative documents and other texts which are considered as official rules and not only informational , but which do not affect over

3320-826: The RFC Series Approval Board (RSAB). It also established a new Editorial Stream for the RFC Series and concluded the RSOC. The role of the RSE was changed to the RFC Series Consulting Editor (RSCE). In September 2022, Alexis Rossi was appointed to that position. Requests for Comments were originally produced in non- reflowable text format. In August 2019, the format was changed so that new documents can be viewed optimally in devices with varying display sizes. The RFC Editor assigns each RFC

3403-451: The RFC series is 2070-1721. Not all RFCs are standards. Each RFC is assigned a designation with regard to status within the Internet standardization process. This status is one of the following: Informational , Experimental , Best Current Practice , Standards Track , or Historic . Once submitted, accepted, and published, an RFC cannot be changed. Errata may be submitted, which are published separately. More significant changes require

MS-CHAP - Misplaced Pages Continue

3486-597: The RFC series to the Network Working Group. Rather than being a formal committee, it was a loose association of researchers interested in the ARPANET project. In effect, it included anyone who wanted to join the meetings and discussions about the project. Many of the subsequent RFCs of the 1970s also came from UCLA, because UCLA is one of the first of what were Interface Message Processors (IMPs) on ARPANET. The Augmentation Research Center (ARC) at Stanford Research Institute , directed by Douglas Engelbart ,

3569-465: The SDS 940 crashed after he typed two characters. About an hour later, after Duvall adjusted parameters on the machine, Kline tried again and successfully logged in. Hence, the first two characters successfully transmitted over the ARPANET were "lo". The first permanent ARPANET link was established on 21 November 1969, between the IMP at UCLA and the IMP at the Stanford Research Institute. By 5 December 1969,

3652-417: The civil and military networks reduced the 113-node ARPANET by 68 nodes. After MILNET was split away, the ARPANET would continue to be used as an Internet backbone for researchers, but be slowly phased out. In 1985, the NSF funded the establishment of national supercomputing centers at several universities and provided network access and network interconnectivity with the NSFNET project in 1986. NSFNET became

3735-708: The concept of the " Intergalactic Computer Network ". Those ideas encompassed many of the features of the contemporary Internet. In October 1963, Licklider was appointed head of the Behavioral Sciences and Command and Control programs at the Defense Department's Advanced Research Projects Agency (ARPA). He convinced Ivan Sutherland and Bob Taylor that this network concept was very important and merited development, although Licklider left ARPA before any contracts were assigned for development. Sutherland and Taylor continued their interest in creating

3818-489: The contract to build the Interface Message Processors (IMPs) for the network to Bolt Beranek & Newman (BBN). The design was led by Bob Kahn who developed the first protocol for the network. Roberts engaged Leonard Kleinrock at UCLA to develop mathematical methods for analyzing the packet network technology. The first computers were connected in 1969 and the Network Control Protocol

3901-575: The copyright for some RFCs and for all others it is granted a license by the authors that allows it to reproduce RFCs. The Internet Society is referenced on many RFCs prior to RFC4714 as the copyright owner, but it transferred its rights to the IETF Trust. ARPANET Early research and development: Merging the networks and creating the Internet: Commercialization, privatization, broader access leads to

3984-530: The documents "shape the Internet's inner workings and have played a significant role in its success," but are not widely known outside the community. Outside of the Internet community, other documents also called requests for comments have been published, as in U.S. Federal government work, such as the National Highway Traffic Safety Administration . The inception of the RFC format occurred in 1969 as part of

4067-648: The expiration of the original ARPANET contract with the U.S. federal government, the Internet Society, acting on behalf of the IETF, contracted with the Networking Division of the University of Southern California (USC) Information Sciences Institute (ISI) to assume the editorship and publishing responsibilities under the direction of the IAB. Sandy Ginoza joined USC/ISI in 1999 to work on RFC editing, and Alice Hagens in 2005. Bob Braden took over

4150-542: The initial four-node network was established. Elizabeth Feinler created the first Resource Handbook for ARPANET in 1969 which led to the development of the ARPANET directory. The directory, built by Feinler and a team made it possible to navigate the ARPANET. In 1968, Roberts contracted with Kleinrock to measure the performance of the network and find areas for improvement. Building on his earlier work on queueing theory and optimization of packet delay in communication networks, Kleinrock specified mathematical models of

4233-572: The modern Internet: Examples of Internet services: The Advanced Research Projects Agency Network ( ARPANET ) was the first wide-area packet-switched network with distributed control and one of the first computer networks to implement the TCP/IP protocol suite. Both technologies became the technical foundation of the Internet . The ARPANET was established by the Advanced Research Projects Agency (now DARPA) of

SECTION 50

#1732794466133

4316-416: The modern RFCs, many of the early RFCs were actual Requests for Comments and were titled as such to avoid sounding too declarative and to encourage discussion. The RFC leaves questions open and is written in a less formal style. This less formal style is now typical of Internet Draft documents, the precursor step before being approved as an RFC. In December 1969, researchers began distributing new RFCs via

4399-587: The network, in part, to allow ARPA-sponsored researchers at various corporate and academic locales to utilize computers provided by ARPA, and, in part, to quickly distribute new software and other computer science results. Taylor had three computer terminals in his office, each connected to separate computers, which ARPA was funding: one for the System Development Corporation (SDC) Q-32 in Santa Monica , one for Project Genie at

4482-426: The newly operational ARPANET. RFC  1 , titled "Host Software", was written by Steve Crocker of the University of California, Los Angeles (UCLA), and published on April 7, 1969. Although written by Steve Crocker, the RFC had emerged from an early working group discussion between Steve Crocker, Steve Carr, and Jeff Rulifson . In RFC  3 , which first defined the RFC series, Crocker started attributing

4565-457: The other terminal and get in touch with them. I said, 'Oh Man!', it's obvious what to do: If you have these three terminals, there ought to be one terminal that goes anywhere you want to go. That idea is the ARPANET". Donald Davies' work caught the attention of ARPANET developers at Symposium on Operating Systems Principles in October 1967. He gave the first public presentation, having coined

4648-615: The performance of packet-switched networks, which underpinned the development of the ARPANET as it expanded rapidly in the early 1970s. Roberts engaged Howard Frank to consult on the topological design of the network. Frank made recommendations to increase throughput and reduce costs in a scaled-up network. By March 1970, the ARPANET reached the East Coast of the United States, when an IMP at BBN in Cambridge, Massachusetts

4731-689: The program were included the RFC Editor Model (Version 3) as defined in RFC  9280 , published in June 2022. Generally, the new model is intended to clarify responsibilities and processes for defining and implementing policies related to the RFC series and the RFC Editor function. Changes in the new model included establishing the position of the RFC Consulting Editor, the RFC Series Working Group (RSWG), and

4814-518: The questions of message size and contents for the network, and to write a position paper on the intercomputer communication protocol including “conventions for character and block transmission, error checking and re-transmission, and computer and user identification." In April 1967, ARPA held a design session on technical standards. The initial standards for identification and authentication of users, transmission of characters, and error checking and retransmission procedures were discussed. Roberts' proposal

4897-427: The recommendation to use source filtering to make DoS attacks more difficult ( RFC  2827 : " Network Ingress Filtering: Defeating Denial of Service Attacks which employ IP Source Address Spoofing ") is BCP 38 . A historic RFC is one that the technology defined by the RFC is no longer recommended for use, which differs from "Obsoletes" header in a replacement RFC. For example, RFC  821 ( SMTP ) itself

4980-429: The role of RFC project lead, while Joyce K. Reynolds continued to be part of the team until October 13, 2006. In July 2007, streams of RFCs were defined, so that the editing duties could be divided. IETF documents came from IETF working groups or submissions sponsored by an IETF area director from the Internet Engineering Steering Group . The IAB can publish its own documents. A research stream of documents comes from

5063-539: The seminal ARPANET project. Today, it is the official publication channel for the Internet Engineering Task Force (IETF), the Internet Architecture Board (IAB), and – to some extent – the global community of computer network researchers in general. The authors of the first RFCs typewrote their work and circulated hard copies among the ARPA researchers. Unlike

SECTION 60

#1732794466133

5146-442: The start of the use of the non-ruggedized (and therefore significantly lighter) Honeywell 316 as an IMP. It could also be configured as a Terminal Interface Processor (TIP), which provided terminal server support for up to 63 ASCII serial terminals through a multi-line controller in place of one of the hosts. The 316 featured a greater degree of integration than the 516, which made it less expensive and easier to maintain. The 316

5229-555: The survivability of the network in the event of significant interruption. Furthermore, the ARPANET was designed to survive subordinate network losses. However, the Internet Society agrees with Herzfeld in a footnote in their online article, A Brief History of the Internet : It was from the RAND study that the false rumor started, claiming that the ARPANET was somehow related to building a network resistant to nuclear war. This

5312-466: The technical specificity of their response to the ARPA RFQ, and thus quickly produced the first working system. The "IMP guys" were led by Frank Heart ; the theoretical design of the network was led by Bob Kahn ; the team included Dave Walden , Severo Ornstein , William Crowther and several others. The BBN-proposed network closely followed Roberts' ARPA plan: a network composed of small computers,

5395-400: The telecommunication and computer industry had assured private sector expansion and commercialization of an expanded worldwide network, known as the Internet. Historically, voice and data communications were based on methods of circuit switching , as exemplified in the traditional telephone network, wherein each telephone call is allocated a dedicated end-to-end electronic connection between

5478-532: The term packet switching , in August 1968 and incorporated it into the NPL network in England. The NPL network and ARPANET were the first two networks in the world to implement packet switching. Roberts said the computer networks built in the 1970s were similar "in nearly all respects" to Davies' original 1965 design. In February 1966, Bob Taylor successfully lobbied ARPA's Director Charles M. Herzfeld to fund

5561-547: The theoretical model of distributed adaptive message block switching . However, the telecommunication establishment rejected the development in favor of existing models. Donald Davies at the United Kingdom's National Physical Laboratory (NPL) independently arrived at a similar concept in 1965. The earliest ideas for a computer network intended to allow general communications among computer users were formulated by computer scientist J. C. R. Licklider of Bolt Beranek and Newman (BBN), in April 1963, in memoranda discussing

5644-459: The two communicating stations. The connection is established by switching systems that connected multiple intermediate call legs between these systems for the duration of the call. The traditional model of the circuit-switched telecommunication network was challenged in the early 1960s by Paul Baran at the RAND Corporation , who had been researching systems that could sustain operation during partial destruction, such as by nuclear war. He developed

5727-492: The wire data . The border between standards track and BCP is often unclear. If a document only affects the Internet Standards Process, like BCP 9, or IETF administration, it is clearly a BCP. If it only defines rules and regulations for Internet Assigned Numbers Authority (IANA) registries it is less clear; most of these documents are BCPs, but some are on the standards track. The BCP series also covers technical recommendations for how to practice Internet standards; for instance,

5810-401: Was added in 1970, although considerations of cost and IMP processing power meant this capability was not actively used. Larry Roberts saw the ARPANET and NPL projects as complementary and sought in 1970 to connect them via a satellite link. Peter Kirstein 's research group at University College London (UCL) was subsequently chosen in 1971 in place of NPL for the UK connection. In June 1973,

5893-400: Was an Internet Standard—STD 1—and in May 2008 it was replaced with RFC  5000 , so RFC  3700 changed to Historic , RFC  5000 became an Internet Standard, and as of May 2008 STD 1 is RFC  5000 . as of December 2013 RFC  5000 is replaced by RFC  7100 , updating RFC  2026 to no longer use STD 1. (Best Current Practices work in

5976-473: Was completed on restructuring the ARPANET giving U.S. military sites their own Military Network ( MILNET ) for unclassified defense department communications. Both networks carried unclassified information and were connected at a small number of controlled gateways which would allow total separation in the event of an emergency. MILNET was part of the Defense Data Network (DDN). Separating

6059-606: Was configured with 40 kB of core memory for a TIP. The size of core memory was later increased, to 32 kB for the IMPs, and 56 kB for TIPs, in 1973. The ARPANET was demonstrated at the International Conference on Computer Communications in October 1972. In 1975, BBN introduced IMP software running on the Pluribus multi-processor . These appeared in a few sites. In 1981, BBN introduced IMP software running on its own C/30 processor product. ARPA

6142-549: Was connected to the network. Thereafter, the ARPANET grew: 9 IMPs by June 1970 and 13 IMPs by December 1970, then 18 by September 1971 (when the network included 23 university and government hosts); 29 IMPs by August 1972, and 40 by September 1973. By June 1974, there were 46 IMPs, and in July 1975, the network numbered 57 IMPs. By 1981, the number was 213 host computers, with another host connecting approximately every twenty days. Support for inter-IMP circuits of up to 230.4 kbit/s

6225-606: Was declared operational in 1971. Network traffic began to grow once email was established at the majority of sites by around 1973. The initial ARPANET configuration linked UCLA , ARC , UCSB , and the University of Utah School of Computing . The first node was created at UCLA, where Leonard Kleinrock could evaluate network performance and examine his theories on message delay . The locations were selected not only to reduce leased line costs but also because each had specific expertise beneficial for this initial implementation phase: The first successful host-to-host connection on

6308-604: Was implemented in 1970, development of which was led by Steve Crocker at UCLA and other graduate students, including Jon Postel and others. The network was declared operational in 1971. Further software development enabled remote login and file transfer , which was used to provide an early form of email . The network expanded rapidly and operational control passed to the Defense Communications Agency in 1975. Bob Kahn moved to DARPA and, together with Vint Cerf at Stanford University , formulated

6391-502: Was intended to fund advanced research. The ARPANET was a research project that was communications-oriented, rather than user-oriented in design. Nonetheless, in the summer of 1975, operational control of the ARPANET passed to the Defense Communications Agency . At about this time, the first ARPANET encryption devices were deployed to support classified traffic. The ARPANET Completion Report , written in 1978 and published in 1981 jointly by BBN and DARPA , concludes that:  ... it

6474-493: Was moved to a contractor, Association Management Solutions, with Glenn Kowack serving as interim series editor. In late 2011, Heather Flanagan was hired as the permanent RFC Series Editor (RSE). Also at that time, an RFC Series Oversight Committee (RSOC) was created. In 2020, the IAB convened the RFC Editor Future Development program to discuss potential changes to the RFC Editor model. The results of

6557-423: Was never true of the ARPANET, but was an aspect of the earlier RAND study of secure communication. The later work on internetworking did emphasize robustness and survivability, including the capability to withstand losses of large portions of the underlying networks. Paul Baran , the first to put forward a theoretical model for communication using packet switching, conducted the RAND study referenced above. Though

6640-399: Was often just that: a simple Request for Comments, not intended to specify a protocol, administrative procedure, or anything else for which the RFC series is used today. The general rule is that original authors (or their employers, if their employment conditions so stipulate) retain copyright unless they make an explicit transfer of their rights. An independent body, the IETF Trust, holds

6723-434: Was presented at the inaugural Symposium on Operating Systems Principles in October 1967. Donald Davies' work on packet switching and the NPL network, presented by a colleague ( Roger Scantlebury ), and that of Paul Baran, came to the attention of the ARPA investigators at this conference. Roberts applied Davies' concept of packet switching for the ARPANET, and sought input from Paul Baran on dynamic routing. The NPL network

6806-461: Was that all mainframe computers would connect to one another directly. The other investigators were reluctant to dedicate these computing resources to network administration. After the design session, Wesley Clark proposed minicomputers should be used as an interface to create a message switching network. Roberts modified the ARPANET plan to incorporate Clark's suggestion and named the minicomputers Interface Message Processors (IMPs). The plan

6889-480: Was using line speeds of 768 kbit/s, and the proposed line speed for the ARPANET was upgraded from 2.4 kbit/s to 50 kbit/s. By mid-1968, Roberts and Barry Wessler wrote a final version of the IMP specification based on a Stanford Research Institute (SRI) report that ARPA commissioned to write detailed specifications describing the ARPANET communications network. Roberts gave a report to Taylor on 3 June, who approved it on 21 June. After approval by ARPA,

#132867