The photic zone (or euphotic zone , epipelagic zone , or sunlight zone ) is the uppermost layer of a body of water that receives sunlight , allowing phytoplankton to perform photosynthesis . It undergoes a series of physical, chemical, and biological processes that supply nutrients into the upper water column . The photic zone is home to the majority of aquatic life due to the activity ( primary production ) of the phytoplankton. The thicknesses of the photic and euphotic zones vary with the intensity of sunlight as a function of season and latitude and with the degree of water turbidity. The bottommost, or aphotic, zone is the region of perpetual darkness that lies beneath the photic zone and includes most of the ocean waters.
87-569: Marine Department is a term for a variety of departments, in marine science , military and maritime transport and authorities: Government bodies and authorities [ edit ] Department of Marine and Fisheries and the Naval Service , Canada Department of Marine and Fisheries , Canada Department of Agriculture, Food and the Marine , Ireland Marine Department (Hong Kong) - manages
174-410: A halocline . If a zone undergoes a strong, vertical chemistry gradient with depth, it contains a chemocline . Temperature and salinity control ocean water density. Colder and saltier water is denser, and this density plays a crucial role in regulating the global water circulation within the ocean. The halocline often coincides with the thermocline, and the combination produces a pronounced pycnocline ,
261-493: A mid-ocean ridge , which creates a long mountain range beneath the ocean. Together they form the global mid-oceanic ridge system that features the longest mountain range in the world. The longest continuous mountain range is 65,000 km (40,000 mi). This underwater mountain range is several times longer than the longest continental mountain range – the Andes . Oceanographers state that less than 20% of
348-419: A boundary between less dense surface water and dense deep water. Photic zone In the photic zone, the photosynthesis rate exceeds the respiration rate. This is due to the abundant solar energy which is used as an energy source for photosynthesis by primary producers such as phytoplankton. These phytoplankton grow extremely quickly because of sunlight's heavy influence, enabling it to be produced at
435-521: A dive light. Water in the open ocean appears clear and blue because it contains much less particulate matter , such as phytoplankton or other suspended particles, and the clearer the water, the deeper the light penetration. Blue light penetrates deeply and is scattered by the water molecules, while all other colours are absorbed; thus the water appears blue. On the other hand, coastal water often appears greenish. Coastal water contains much more suspended silt and algae and microscopic organisms than
522-424: A fast rate. In fact, ninety five percent of photosynthesis in the ocean occurs in the photic zone. Therefore, if we go deeper, beyond the photic zone, such as into the compensation point , there is little to no phytoplankton, because of insufficient sunlight. The zone which extends from the base of the euphotic zone to the aphotic zone is sometimes called the dysphotic zone. Ninety percent of marine life lives in
609-406: A food source. Detritivores and scavengers are rare in the photic zone. Microbial decomposition of dead organisms begins here and continues once the bodies sink to the aphotic zone where they form the most important source of nutrients for deep sea organisms. The depth of the photic zone depends on the transparency of the water. If the water is very clear, the photic zone can become very deep. If it
696-595: A gentle breeze on a pond causes ripples to form. A stronger gust blowing over the ocean causes larger waves as the moving air pushes against the raised ridges of water. The waves reach their maximum height when the rate at which they are travelling nearly matches the speed of the wind. In open water, when the wind blows continuously as happens in the Southern Hemisphere in the Roaring Forties , long, organized masses of water called swell roll across
783-456: A large impact on those who reside in it. The depth is, by definition, where radiation is degraded down to 1% of its surface strength. Accordingly, its thickness depends on the extent of light attenuation in the water column. As incoming light at the surface can vary widely, this says little about the net growth of phytoplankton. Typical euphotic depths vary from only a few centimetres in highly turbid eutrophic lakes, to around 200 meters in
870-455: A result, the photic zone is the most biodiverse and the source of the food supply which sustains most of the ocean ecosystem . Ocean photosynthesis also produces half of the oxygen in the Earth's atmosphere. Light can only penetrate a few hundred more meters; the rest of the deeper ocean is cold and dark (these zones are called mesopelagic and aphotic zones). The continental shelf is where
957-496: A shallow area and this, coupled with a low pressure system, can raise the surface of the ocean dramatically above a typical high tide. The average depth of the oceans is about 4 km. More precisely the average depth is 3,688 meters (12,100 ft). Nearly half of the world's marine waters are over 3,000 meters (9,800 ft) deep. "Deep ocean," which is anything below 200 meters (660 ft), covers about 66% of Earth's surface. This figure does not include seas not connected to
SECTION 10
#17327725809841044-403: A wave-cut platform develops at the foot of the cliff and this has a protective effect, reducing further wave-erosion. Material worn from the margins of the land eventually ends up in the sea. Here it is subject to attrition as currents flowing parallel to the coast scour out channels and transport sand and pebbles away from their place of origin. Sediment carried to the sea by rivers settles on
1131-406: A zone undergoes dramatic changes in temperature with depth, it contains a thermocline , a distinct boundary between warmer surface water and colder deep water. In tropical regions, the thermocline is typically deeper compared to higher latitudes. Unlike polar waters , where solar energy input is limited, temperature stratification is less pronounced, and a distinct thermocline is often absent. This
1218-439: Is a bay , a small bay with a narrow inlet is a cove and a large bay may be referred to as a gulf . Coastlines are influenced by several factors including the strength of the waves arriving on the shore, the gradient of the land margin, the composition and hardness of the coastal rock, the inclination of the off-shore slope and the changes of the level of the land due to local uplift or submergence. Normally, waves roll towards
1305-743: Is about −2 °C (28 °F). In all parts of the ocean, deep ocean temperatures range between −2 °C (28 °F) and 5 °C (41 °F). Constant circulation of water in the ocean creates ocean currents . Those currents are caused by forces operating on the water, such as temperature and salinity differences, atmospheric circulation (wind), and the Coriolis effect . Tides create tidal currents, while wind and waves cause surface currents. The Gulf Stream , Kuroshio Current , Agulhas Current and Antarctic Circumpolar Current are all major ocean currents. Such currents transport massive amounts of water, gases, pollutants and heat to different parts of
1392-444: Is an important reference point for oceanography and geography, particularly as mean sea level . The ocean surface has globally little, but measurable topography , depending on the ocean's volumes. The ocean surface is a crucial interface for oceanic and atmospheric processes. Allowing interchange of particles, enriching the air and water, as well as grounds by some particles becoming sediments . This interchange has fertilized life in
1479-411: Is customarily divided into five principal oceans – listed below in descending order of area and volume: The ocean fills Earth's oceanic basins . Earth's oceanic basins cover different geologic provinces of Earth's oceanic crust as well as continental crust . As such it covers mainly Earth's structural basins , but also continental shelfs . In mid-ocean, magma is constantly being thrust through
1566-526: Is different from Wikidata All article disambiguation pages All disambiguation pages Marine (ocean) The ocean is the body of salt water that covers approximately 70.8% of Earth . In English , the term ocean also refers to any of the large bodies of water into which the world ocean is conventionally divided. The following names describe five different areas of the ocean: Pacific , Atlantic , Indian , Antarctic/Southern , and Arctic . The ocean contains 97% of Earth's water and
1653-399: Is due to the fact that surface waters in polar latitudes are nearly as cold as deeper waters. Below the thermocline, water everywhere in the ocean is very cold, ranging from −1 °C to 3 °C. Because this deep and cold layer contains the bulk of ocean water, the average temperature of the world ocean is 3.9 °C. If a zone undergoes dramatic changes in salinity with depth, it contains
1740-456: Is irregular, unevenly dominating the Earth's surface . This leads to the distinction of the Earth's surface into a water and land hemisphere , as well as the division of the ocean into different oceans. Seawater covers about 361,000,000 km (139,000,000 sq mi) and the ocean's furthest pole of inaccessibility , known as " Point Nemo ", in a region known as spacecraft cemetery of
1827-515: Is left at 100 metres. No light penetrates beyond 1000 metres. In addition to overall attenuation, the oceans absorb the different wavelengths of light at different rates. The wavelengths at the extreme ends of the visible spectrum are attenuated faster than those wavelengths in the middle. Longer wavelengths are absorbed first; red is absorbed in the upper 10 metres, orange by about 40 metres, and yellow disappears before 100 metres. Shorter wavelengths penetrate further, with blue and green light reaching
SECTION 20
#17327725809841914-454: Is produced and magma is forced up creating underwater mountains, some of which may form chains of volcanic islands near to deep trenches. Near some of the boundaries between the land and sea, the slightly denser oceanic plates slide beneath the continental plates and more subduction trenches are formed. As they grate together, the continental plates are deformed and buckle causing mountain building and seismic activity. Every ocean basin has
2001-407: Is pushed across the surface of the ocean by the wind, but this represents a transfer of energy and not horizontal movement of water. As waves approach land and move into shallow water , they change their behavior. If approaching at an angle, waves may bend ( refraction ) or wrap around rocks and headlands ( diffraction ). When the wave reaches a point where its deepest oscillations of the water contact
2088-423: Is reflected back out of the water. Red light is most easily absorbed and thus does not reach great depths, usually to less than 50 meters (164 ft). Blue light, in comparison, can penetrate up to 200 meters (656 ft). Second, water molecules and very tiny particles in ocean water preferentially scatter blue light more than light of other colors. Blue light scattering by water and tiny particles happens even in
2175-480: Is sometimes referred to as the World Ocean, global ocean or the great ocean . The concept of a continuous body of water with relatively unrestricted exchange between its components is critical in oceanography . The word ocean comes from the figure in classical antiquity , Oceanus ( / oʊ ˈ s iː ə n ə s / ; ‹See Tfd› Greek : Ὠκεανός Ōkeanós , pronounced [ɔːkeanós] ),
2262-485: Is the aphotic (or midnight) zone, where no light penetrates. This region includes the majority of the ocean volume, which exists in complete darkness. Phytoplankton are unicellular microorganisms which form the base of the ocean food chains . They are dominated by diatoms , which grow silicate shells called frustules . When diatoms die their shells can settle on the seafloor and become microfossils . Over time, these microfossils become buried as opal deposits in
2349-405: Is the primary component of Earth's hydrosphere and is thereby essential to life on Earth. The ocean influences climate and weather patterns, the carbon cycle , and the water cycle by acting as a huge heat reservoir . Ocean scientists split the ocean into vertical and horizontal zones based on physical and biological conditions. The pelagic zone is the open ocean's water column from
2436-431: Is very murky, it can be only fifty feet (fifteen meters) deep. Animals within the photic zone use the cycle of light and dark as an important environmental signal, migration is directly linked to this fact, fishes use the concept of dusk and dawn when its time to migrate, the photic zone resembles this concept providing a sense of time. These animals can be herrings and sardines and other fishes that consistently live within
2523-691: The North Sea or the Red Sea . There is no sharp distinction between seas and oceans, though generally seas are smaller, and are often partly (as marginal seas ) or wholly (as inland seas ) bordered by land. The contemporary concept of the World Ocean was coined in the early 20th century by the Russian oceanographer Yuly Shokalsky to refer to the continuous ocean that covers and encircles most of Earth. The global, interconnected body of salt water
2610-481: The South Pacific Ocean , at 48°52.6′S 123°23.6′W / 48.8767°S 123.3933°W / -48.8767; -123.3933 ( Point Nemo ) . This point is roughly 2,688 km (1,670 mi) from the nearest land. There are different customs to subdivide the ocean and are adjourned by smaller bodies of water such as, seas , gulfs , bays , bights , and straits . The ocean
2697-592: The Thames Barrier is designed to protect London from a storm surge, while the failure of the dykes and levees around New Orleans during Hurricane Katrina created a humanitarian crisis in the United States. Most of the ocean is blue in color, but in some places the ocean is blue-green, green, or even yellow to brown. Blue ocean color is a result of several factors. First, water preferentially absorbs red light, which means that blue light remains and
Marine Department - Misplaced Pages Continue
2784-406: The coastline and structure of the world ocean. A global ocean has existed in one form or another on Earth for eons. Since its formation the ocean has taken many conditions and shapes with many past ocean divisions and potentially at times covering the whole globe. During colder climatic periods, more ice caps and glaciers form, and enough of the global water supply accumulates as ice to lessen
2871-595: The marine sediment . Paleoclimatology is the study of past climates. Proxy data is used in order to relate elements collected in modern-day sedimentary samples to climatic and oceanic conditions in the past. Paleoclimate proxies refer to preserved or fossilized physical markers which serve as substitutes for direct meteorological or ocean measurements. An example of proxies is the use of diatom isotope records of δ13C , δ18O , δ30Si (δ13C diatom , δ18O diatom , and δ30Si diatom ). In 2015, Swann and Snelling used these isotope records to document historic changes in
2958-591: The ocean floor , they begin to slow down. This pulls the crests closer together and increases the waves' height , which is called wave shoaling . When the ratio of the wave's height to the water depth increases above a certain limit, it " breaks ", toppling over in a mass of foaming water. This rushes in a sheet up the beach before retreating into the ocean under the influence of gravity. Earthquakes , volcanic eruptions or other major geological disturbances can set off waves that can lead to tsunamis in coastal areas which can be very dangerous. The ocean's surface
3045-442: The Earth's biosphere . Oceanic evaporation , as a phase of the water cycle, is the source of most rainfall (about 90%), causing a global cloud cover of 67% and a consistent oceanic cloud cover of 72%. Ocean temperatures affect climate and wind patterns that affect life on land. One of the most dramatic forms of weather occurs over the oceans: tropical cyclones (also called "typhoons" and "hurricanes" depending upon where
3132-615: The Hong Kong harbour Marine Department (Malaysia) , a federal agency in Malaysia Marine Department (New Zealand) Marine Fisheries Department , Pakistan Singapore Marine Department, now merged into the Maritime and Port Authority of Singapore Military organisations [ edit ] Marine Department (Royal Navy) , British Admiralty State Department Marines , USA Topics referred to by
3219-456: The Moon are 20x stronger than the Moon's tidal forces on the Earth.) The primary effect of lunar tidal forces is to bulge Earth matter towards the near and far sides of the Earth, relative to the moon. The "perpendicular" sides, from which the Moon appears in line with the local horizon, experience "tidal troughs". Since it takes nearly 25 hours for the Earth to rotate under the Moon (accounting for
3306-403: The Moon's 28 day orbit around Earth), tides thus cycle over a course of 12.5 hours. However, the rocky continents pose obstacles for the tidal bulges, so the timing of tidal maxima may not actually align with the Moon in most localities on Earth, as the oceans are forced to "dodge" the continents. Timing and magnitude of tides vary widely across the Earth as a result of the continents. Thus, knowing
3393-471: The Moon's gravity, oceanic tides are also substantially modulated by the Sun's tidal forces, by the rotation of the Earth, and by the shape of the rocky continents blocking oceanic water flow. (Tidal forces vary more with distance than the "base" force of gravity: the Moon's tidal forces on Earth are more than double the Sun's, despite the latter's much stronger gravitational force on Earth. Earth's tidal forces upon
3480-400: The Moon's position does not allow a local to predict tide timings, instead requiring precomputed tide tables which account for the continents and the Sun, among others. During each tidal cycle, at any given place the tidal waters rise to maximum height, high tide, before ebbing away again to the minimum level, low tide. As the water recedes, it gradually reveals the foreshore , also known as
3567-648: The Okeanos is represented with a dragon-tail on some early Greek vases. Scientists believe that a sizable quantity of water would have been in the material that formed Earth. Water molecules would have escaped Earth's gravity more easily when it was less massive during its formation. This is called atmospheric escape . During planetary formation , Earth possibly had magma oceans . Subsequently, outgassing , volcanic activity and meteorite impacts , produced an early atmosphere of carbon dioxide , nitrogen and water vapor , according to current theories. The gases and
Marine Department - Misplaced Pages Continue
3654-741: The World Ocean, such as the Caspian Sea . The deepest region of the ocean is at the Mariana Trench , located in the Pacific Ocean near the Northern Mariana Islands . The maximum depth has been estimated to be 10,971 meters (35,994 ft). The British naval vessel Challenger II surveyed the trench in 1951 and named the deepest part of the trench the " Challenger Deep ". In 1960, the Trieste successfully reached
3741-478: The amount of light penetration, as discussed in pelagic zone . The upper 200 metres is referred to as the photic or euphotic zone. This represents the region where enough light can penetrate to support photosynthesis, and it corresponds to the epipelagic zone. From 200 to 1000 metres lies the dysphotic zone, or the twilight zone (corresponding with the mesopelagic zone). There is still some light at these depths, but not enough to support photosynthesis. Below 1000 metres
3828-421: The amounts in other parts of the water cycle. The reverse is true during warm periods. During the last ice age, glaciers covered almost one-third of Earth's land mass with the result being that the oceans were about 122 m (400 ft) lower than today. During the last global "warm spell," about 125,000 years ago, the seas were about 5.5 m (18 ft) higher than they are now. About three million years ago
3915-479: The atmosphere are thought to have accumulated over millions of years. After Earth's surface had significantly cooled, the water vapor over time would have condensed, forming Earth's first oceans. The early oceans might have been significantly hotter than today and appeared green due to high iron content. Geological evidence helps constrain the time frame for liquid water existing on Earth. A sample of pillow basalt (a type of rock formed during an underwater eruption)
4002-407: The bottom of the trench, manned by a crew of two men. Oceanographers classify the ocean into vertical and horizontal zones based on physical and biological conditions. The pelagic zone consists of the water column of the open ocean, and can be divided into further regions categorized by light abundance and by depth. The ocean zones can be grouped by light penetration into (from top to bottom):
4089-421: The deepest depths. This is why things appear blue underwater. How colours are perceived by the eye depends on the wavelengths of light that are received by the eye. An object appears red to the eye because it reflects red light and absorbs other colours. So the only colour reaching the eye is red. Blue is the only colour of light available at depth underwater, so it is the only colour that can be reflected back to
4176-509: The elder of the Titans in classical Greek mythology . Oceanus was believed by the ancient Greeks and Romans to be the divine personification of an enormous river encircling the world. The concept of Ōkeanós has an Indo-European connection. Greek Ōkeanós has been compared to the Vedic epithet ā-śáyāna-, predicated of the dragon Vṛtra-, who captured the cows/rivers. Related to this notion,
4263-535: The establishment of globally cooler conditions and the expansion of glaciers across the Northern Hemisphere from 2.73 Ma. While the halocline appears to have prevailed through the late Pliocene and early Quaternary glacial–interglacial cycles , other studies have shown that the stratification boundary may have broken down in the late Quaternary at glacial terminations and during the early part of interglacials. Phytoplankton are restricted to
4350-400: The eye, and everything has a blue tinge under water. A red object at depth will not appear red to us because there is no red light available to reflect off of the object. Objects in water will only appear as their real colours near the surface where all wavelengths of light are still available, or if the other wavelengths of light are provided artificially, such as by illuminating the object with
4437-405: The familiar “ROYGBIV”; red, orange, yellow, green, blue, indigo, and violet. Water is very effective at absorbing incoming light, so the amount of light penetrating the ocean declines rapidly (is attenuated) with depth. At one metre depth only 45% of the solar energy that falls on the ocean surface remains. At 10 metres depth only 16% of the light is still present, and only 1% of the original light
SECTION 50
#17327725809844524-412: The formation of unusually high rogue waves . Most waves are less than 3 m (10 ft) high and it is not unusual for strong storms to double or triple that height. Rogue waves, however, have been documented at heights above 25 meters (82 ft). The top of a wave is known as the crest, the lowest point between waves is the trough and the distance between the crests is the wavelength. The wave
4611-421: The interface between water and air is called swell – a term used in sailing , surfing and navigation . These motions profoundly affect ships on the surface of the ocean and the well-being of people on those ships who might suffer from sea sickness . Wind blowing over the surface of a body of water forms waves that are perpendicular to the direction of the wind. The friction between air and water caused by
4698-482: The intertidal zone. The difference in height between the high tide and low tide is known as the tidal range or tidal amplitude. When the sun and moon are aligned (full moon or new moon), the combined effect results in the higher "spring tides", while the sun and moon misaligning (half moons) result in lesser tidal ranges. In the open ocean tidal ranges are less than 1 meter, but in coastal areas these tidal ranges increase to more than 10 meters in some areas. Some of
4785-739: The largest tidal ranges in the world occur in the Bay of Fundy and Ungava Bay in Canada, reaching up to 16 meters. Other locations with record high tidal ranges include the Bristol Channel between England and Wales, Cook Inlet in Alaska, and the Río Gallegos in Argentina. Tides are not to be confused with storm surges , which can occur when high winds pile water up against the coast in
4872-471: The majority of Earth's surface. It includes the Pacific , Atlantic , Indian , Southern/Antarctic , and Arctic oceans. As a general term, "the ocean" and "the sea" are often interchangeable. Strictly speaking, a "sea" is a body of water (generally a division of the world ocean) partly or fully enclosed by land. The word "sea" can also be used for many specific, much smaller bodies of seawater, such as
4959-430: The nutricline. Chemical factors include oxygen and trace elements. Biological factors include grazing and migrations. Upwelling carries nutrients from the deep waters into the photic zone, strengthening phytoplankton growth. The remixing and upwelling eventually bring nutrient-rich wastes back into the photic zone. The Ekman transport additionally brings more nutrients to the photic zone. Nutrient pulse frequency affects
5046-408: The ocean faces many environmental threats, such as marine pollution , overfishing , and the effects of climate change . Those effects include ocean warming , ocean acidification and sea level rise . The continental shelf and coastal waters are most affected by human activity. The terms "the ocean" or "the sea" used without specification refer to the interconnected body of salt water covering
5133-423: The ocean meets dry land. It is more shallow, with a depth of a few hundred meters or less. Human activity often has negative impacts on marine life within the continental shelf. Ocean temperatures depend on the amount of solar radiation reaching the ocean surface. In the tropics, surface temperatures can rise to over 30 °C (86 °F). Near the poles where sea ice forms, the temperature in equilibrium
5220-508: The ocean, on land and air. All these processes and components together make up ocean surface ecosystems . Tides are the regular rise and fall in water level experienced by oceans, primarily driven by the Moon 's gravitational tidal forces upon the Earth. Tidal forces affect all matter on Earth, but only fluids like the ocean demonstrate the effects on human timescales. (For example, tidal forces acting on rock may produce tidal locking between two planetary bodies.) Though primarily driven by
5307-469: The ocean. If the wind dies down, the wave formation is reduced, but already-formed waves continue to travel in their original direction until they meet land. The size of the waves depends on the fetch , the distance that the wind has blown over the water and the strength and duration of that wind. When waves meet others coming from different directions, interference between the two can produce broken, irregular seas. Constructive interference can lead to
SECTION 60
#17327725809845394-419: The oceans absorb CO 2 from the atmosphere , a higher concentration leads to ocean acidification (a drop in pH value ). The ocean provides many benefits to humans such as ecosystem services , access to seafood and other marine resources , and a means of transport . The ocean is known to be the habitat of over 230,000 species , but may hold considerably more – perhaps over two million species. Yet,
5481-425: The oceans could have been up to 50 m (165 ft) higher. The entire ocean, containing 97% of Earth's water, spans 70.8% of Earth 's surface, making it Earth's global ocean or world ocean . This makes Earth, along with its vibrant hydrosphere a "water world" or " ocean world ", particularly in Earth's early history when the ocean is thought to have possibly covered Earth completely. The ocean's shape
5568-434: The oceans have been mapped. The zone where land meets sea is known as the coast , and the part between the lowest spring tides and the upper limit reached by splashing waves is the shore . A beach is the accumulation of sand or shingle on the shore. A headland is a point of land jutting out into the sea and a larger promontory is known as a cape . The indentation of a coastline, especially between two headlands,
5655-537: The oceans may have always been on the Earth since the beginning of the planet's formation. In this model, atmospheric greenhouse gases kept the oceans from freezing when the newly forming Sun had only 70% of its current luminosity . The origin of Earth's oceans is unknown. Oceans are thought to have formed in the Hadean eon and may have been the cause for the emergence of life . Plate tectonics , post-glacial rebound , and sea level rise continually change
5742-448: The open ocean . It also varies with seasonal changes in turbidity, which can be strongly driven by phytoplankton concentrations, such that the depth of the photic zone often decreases as primary production increases. Moreover, the respiration rate is actually greater than the photosynthesis rate. The reason why phytoplankton production is so important is because it plays a prominent role when interwoven with other food webs . Most of
5829-508: The open ocean. Many of these organisms, such as phytoplankton, absorb light in the blue and red range through their photosynthetic pigments, leaving green as the dominant wavelength of reflected light. Therefore the higher the phytoplankton concentration in water, the greener it appears. Small silt particles may also absorb blue light, further shifting the colour of water away from blue when there are high concentrations of suspended particles. The ocean can be divided into depth layers depending on
5916-417: The photic zone conditions of the north-west Pacific Ocean , including nutrient supply and the efficiency of the soft-tissue biological pump , from the modern day back to marine isotope stage 5e , which coincides with the last interglacial period . Peaks in opal productivity in the marine isotope stage are associated with the breakdown of the regional halocline stratification and increased nutrient supply to
6003-451: The photic zone, the mesopelagic zone and the aphotic deep ocean zone: The pelagic part of the aphotic zone can be further divided into vertical regions according to depth and temperature: Distinct boundaries between ocean surface waters and deep waters can be drawn based on the properties of the water. These boundaries are called thermoclines (temperature), haloclines (salinity), chemoclines (chemistry), and pycnoclines (density). If
6090-404: The photic zone, which is approximately two hundred meters deep. This includes phytoplankton (plants), including dinoflagellates , diatoms , cyanobacteria , coccolithophores , and cryptomonads . It also includes zooplankton , the consumers in the photic zone. There are carnivorous meat eaters and herbivorous plant eaters. Next, copepods are the small crustaceans distributed everywhere in
6177-414: The photic zone. The initial development of the halocline and stratified water column has been attributed to the onset of major Northern Hemisphere glaciation at 2.73 Ma, which increased the flux of freshwater to the region, via increased monsoonal rainfall and/or glacial meltwater, and sea surface temperatures . The decrease of abyssal water upwelling associated with this may have contributed to
6264-444: The photic zone. Due to biological uptake, the photic zone has relatively low levels of nutrient concentrations. As a result, phytoplankton doesn't receive enough nutrients when there is high water-column stability. The spatial distribution of organisms can be controlled by a number of factors. Physical factors include: temperature, hydrostatic pressure, turbulent mixing such as the upward turbulent flux of inorganic nitrogen across
6351-409: The photic zone. Finally, there are nekton (animals that can propel themselves, like fish, squids, and crabs), which are the largest and the most obvious animals in the photic zone, but their quantity is the smallest among all the groups. Phytoplankton are microscopic plants living suspended in the water column that have little or no means of motility. They are primary producers that use solar energy as
6438-420: The photo zone only. As its growth is completely dependent upon photosynthesis. This results in the 50–100 m water level inside the ocean. Growth can also come from land factors, for example minerals that are dissolved from rocks, mineral nutrients from generations of plants and animals ,that made its way into the photic zone. An increase in the amount of phytoplankton also creates an increase in zooplankton,
6525-407: The phytoplankton competition. Photosynthesis produces more of it. Being the first link in the food chain, what happens to phytoplankton creates a rippling effect for other species. Besides phytoplankton, many other animals also live in this zone and utilize these nutrients. The majority of ocean life occurs in the photic zone, the smallest ocean zone by water volume. The photic zone, although small, has
6612-418: The power of a storm wave impacting on the foot of a cliff has a shattering effect as air in cracks and crevices is compressed and then expands rapidly with release of pressure. At the same time, sand and pebbles have an erosive effect as they are thrown against the rocks. This tends to undercut the cliff, and normal weathering processes such as the action of frost follows, causing further destruction. Gradually,
6699-431: The same term [REDACTED] This disambiguation page lists articles associated with the title Marine Department . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Marine_Department&oldid=1022297105 " Category : Disambiguation pages Hidden categories: Short description
6786-455: The seabed between adjoining plates to form mid-oceanic ridges and here convection currents within the mantle tend to drive the two plates apart. Parallel to these ridges and nearer the coasts, one oceanic plate may slide beneath another oceanic plate in a process known as subduction . Deep trenches are formed here and the process is accompanied by friction as the plates grind together. The movement proceeds in jerks which cause earthquakes, heat
6873-407: The seabed causing deltas to form in estuaries. All these materials move back and forth under the influence of waves, tides and currents. Dredging removes material and deepens channels but may have unexpected effects elsewhere on the coastline. Governments make efforts to prevent flooding of the land by the building of breakwaters , seawalls , dykes and levees and other sea defences. For instance,
6960-401: The shore at the rate of six to eight per minute and these are known as constructive waves as they tend to move material up the beach and have little erosive effect. Storm waves arrive on shore in rapid succession and are known as destructive waves as the swash moves beach material seawards. Under their influence, the sand and shingle on the beach is ground together and abraded. Around high tide,
7047-405: The solar energy reaching the Earth is in the range of visible light, with wavelengths between about 400-700 nm. Each colour of visible light has a unique wavelength, and together they make up white light. The shortest wavelengths are on the violet and ultraviolet end of the spectrum, while the longest wavelengths are at the red and infrared end. In between, the colours of the visible spectrum comprise
7134-512: The surface to the ocean floor. The water column is further divided into zones based on depth and the amount of light present. The photic zone starts at the surface and is defined to be "the depth at which light intensity is only 1% of the surface value" (approximately 200 m in the open ocean). This is the zone where photosynthesis can occur. In this process plants and microscopic algae (free floating phytoplankton ) use light, water, carbon dioxide, and nutrients to produce organic matter. As
7221-456: The system forms). As the world's ocean is the principal component of Earth's hydrosphere , it is integral to life on Earth, forms part of the carbon cycle and water cycle , and – as a huge heat reservoir – influences climate and weather patterns. The motions of the ocean surface, known as undulations or wind waves , are the partial and alternate rising and falling of the ocean surface. The series of mechanical waves that propagate along
7308-434: The very clearest ocean water, and is similar to blue light scattering in the sky . Ocean water represents the largest body of water within the global water cycle (oceans contain 97% of Earth's water ). Evaporation from the ocean moves water into the atmosphere to later rain back down onto land and the ocean. Oceans have a significant effect on the biosphere . The ocean as a whole is thought to cover approximately 90% of
7395-476: The world, and from the surface into the deep ocean. All this has impacts on the global climate system . Ocean water contains dissolved gases, including oxygen , carbon dioxide and nitrogen . An exchange of these gases occurs at the ocean's surface. The solubility of these gases depends on the temperature and salinity of the water. The carbon dioxide concentration in the atmosphere is rising due to CO 2 emissions , mainly from fossil fuel combustion. As
7482-410: The zooplankton feeds on the phytoplankton as they are at the bottom of the food chain. Dimethylsulfide loss within the photic zone is controlled by microbial uptake and photochemical degradation. But what exactly is dimethylsulfide and why is it important? This compound (see the photo) helps regulate sulfur cycle and ecology within the ocean. Marine bacteria, algae, coral and most other organisms within
7569-775: Was recovered from the Isua Greenstone Belt and provides evidence that water existed on Earth 3.8 billion years ago. In the Nuvvuagittuq Greenstone Belt , Quebec , Canada, rocks dated at 3.8 billion years old by one study and 4.28 billion years old by another show evidence of the presence of water at these ages. If oceans existed earlier than this, any geological evidence either has yet to be discovered, or has since been destroyed by geological processes like crustal recycling . However, in August 2020, researchers reported that sufficient water to fill
#983016