A capsid is the protein shell of a virus , enclosing its genetic material . It consists of several oligomeric (repeating) structural subunits made of protein called protomers . The observable 3-dimensional morphological subunits, which may or may not correspond to individual proteins, are called capsomeres . The proteins making up the capsid are called capsid proteins or viral coat proteins ( VCP ). The capsid and inner genome is called the nucleocapsid .
82-411: Megavirus is a viral genus, phylogenetically related to Acanthamoeba polyphaga mimivirus (APMV). In colloquial speech, Megavirus chilense is more commonly referred to as just "Megavirus". Until the discovery of pandoraviruses in 2013, it had the largest capsid diameter of all known viruses, as well as the largest and most complex genome among all known viruses. Megavirus was isolated from
164-432: A sphere , while the helical shape resembles the shape of a spring , taking the space of a cylinder but not being a cylinder itself. The capsid faces may consist of one or more proteins. For example, the foot-and-mouth disease virus capsid has faces consisting of three proteins named VP1–3. Some viruses are enveloped , meaning that the capsid is coated with a lipid membrane known as the viral envelope . The envelope
246-419: A truncated icosahedron and their respective duals a triakis icosahedron , a rhombic triacontahedron , or a pentakis dodecahedron . An elongated icosahedron is a common shape for the heads of bacteriophages. Such a structure is composed of a cylinder with a cap at either end. The cylinder is composed of 10 elongated triangular faces. The Q number (or T mid ), which can be any positive integer, specifies
328-425: A virion , consists of nucleic acid surrounded by a protective coat of protein called a capsid . These are formed from protein subunits called capsomeres . Viruses can have a lipid "envelope" derived from the host cell membrane . The capsid is made from proteins encoded by the viral genome and its shape serves as the basis for morphological distinction. Virally-coded protein subunits will self-assemble to form
410-450: A 16.33 protein subunits per helical turn, while the influenza A virus has a 28 amino acid tail loop. The functions of the capsid are to: The virus must assemble a stable, protective protein shell to protect the genome from lethal chemical and physical agents. These include extremes of pH or temperature and proteolytic and nucleolytic enzymes . For non-enveloped viruses, the capsid itself may be involved in interaction with receptors on
492-622: A basic optical microscope. In 2013, the Pandoravirus genus was discovered in Chile and Australia, and has genomes about twice as large as Megavirus and Mimivirus. All giant viruses have dsDNA genomes and they are classified into several families: Mimiviridae , Pithoviridae, Pandoraviridae , Phycodnaviridae , and the Mollivirus genus. Some viruses that infect Archaea have complex structures unrelated to any other form of virus, with
574-418: A capsid diameter of 400 nm. Protein filaments measuring 100 nm project from the surface. The capsid appears hexagonal under an electron microscope, therefore the capsid is probably icosahedral. In 2011, researchers discovered the largest then known virus in samples of water collected from the ocean floor off the coast of Las Cruces, Chile. Provisionally named Megavirus chilensis , it can be seen with
656-581: A capsid, in general requiring the presence of the virus genome. Complex viruses code for proteins that assist in the construction of their capsid. Proteins associated with nucleic acid are known as nucleoproteins , and the association of viral capsid proteins with viral nucleic acid is called a nucleocapsid. The capsid and entire virus structure can be mechanically (physically) probed through atomic force microscopy . In general, there are five main morphological virus types: The poxviruses are large, complex viruses that have an unusual morphology. The viral genome
738-596: A cell, viruses exist in the form of independent viral particles, or virions , consisting of (i) genetic material , i.e., long molecules of DNA or RNA that encode the structure of the proteins by which the virus acts; (ii) a protein coat, the capsid , which surrounds and protects the genetic material; and in some cases (iii) an outside envelope of lipids . The shapes of these virus particles range from simple helical and icosahedral forms to more complex structures. Most virus species have virions too small to be seen with an optical microscope and are one-hundredth
820-639: A cellular structure, which is often seen as the basic unit of life. Viruses do not have their own metabolism and require a host cell to make new products. They therefore cannot naturally reproduce outside a host cell —although some bacteria such as rickettsia and chlamydia are considered living organisms despite the same limitation. Accepted forms of life use cell division to reproduce, whereas viruses spontaneously assemble within cells. They differ from autonomous growth of crystals as they inherit genetic mutations while being subject to natural selection. Virus self-assembly within host cells has implications for
902-493: A different DNA (or RNA) molecule. This can occur when viruses infect cells simultaneously and studies of viral evolution have shown that recombination has been rampant in the species studied. Recombination is common to both RNA and DNA viruses. Coronaviruses have a single-strand positive-sense RNA genome. Replication of the genome is catalyzed by an RNA-dependent RNA polymerase . The mechanism of recombination used by coronaviruses likely involves template switching by
SECTION 10
#1732779764101984-559: A few species, or broad for viruses capable of infecting many. Viral infections in animals provoke an immune response that usually eliminates the infecting virus. Immune responses can also be produced by vaccines , which confer an artificially acquired immunity to the specific viral infection. Some viruses, including those that cause HIV/AIDS , HPV infection , and viral hepatitis , evade these immune responses and result in chronic infections. Several classes of antiviral drugs have been developed. The English word "virus" comes from
1066-549: A fluid, by Wendell Meredith Stanley , and the invention of the electron microscope in 1931 allowed their complex structures to be visualised. Scientific opinions differ on whether viruses are a form of life or organic structures that interact with living organisms. They have been described as "organisms at the edge of life", since they resemble organisms in that they possess genes , evolve by natural selection , and reproduce by creating multiple copies of themselves through self-assembly. Although they have genes, they do not have
1148-445: A genome size of only two kilobases; the largest—the pandoraviruses —have genome sizes of around two megabases which code for about 2500 proteins. Virus genes rarely have introns and often are arranged in the genome so that they overlap . In general, RNA viruses have smaller genome sizes than DNA viruses because of a higher error-rate when replicating, and have a maximum upper size limit. Beyond this, errors when replicating render
1230-513: A ladder. The virus particles of some virus families, such as those belonging to the Hepadnaviridae , contain a genome that is partially double-stranded and partially single-stranded. For most viruses with RNA genomes and some with single-stranded DNA (ssDNA) genomes, the single strands are said to be either positive-sense (called the 'plus-strand') or negative-sense (called the 'minus-strand'), depending on if they are complementary to
1312-436: A life form, because they carry genetic material, reproduce, and evolve through natural selection , although they lack some key characteristics, such as cell structure, that are generally considered necessary criteria for defining life. Because they possess some but not all such qualities, viruses have been described as "organisms at the edge of life" and as replicators . Viruses spread in many ways. One transmission pathway
1394-472: A limited range of hosts and many are species-specific. Some, such as smallpox virus for example, can infect only one species—in this case humans, and are said to have a narrow host range . Other viruses, such as rabies virus, can infect different species of mammals and are said to have a broad range. The viruses that infect plants are harmless to animals, and most viruses that infect other animals are harmless to humans. The host range of some bacteriophages
1476-408: A prime target for natural selection. Segmented genomes confer evolutionary advantages; different strains of a virus with a segmented genome can shuffle and combine genes and produce progeny viruses (or offspring) that have unique characteristics. This is called reassortment or 'viral sex'. Genetic recombination is a process by which a strand of DNA (or RNA) is broken and then joined to the end of
1558-430: A protocol pioneered by Timothy Rowbotham for isolating intracellular parasitic bacteria. Megavirus infects amoebas. The Megavirus particle exhibits a protein capsid diameter of 440 nanometres (as seen by electron microscopy on thin sections of epoxy resin inclusions), enclosed into a solid mesh of bacterial-like capsular material 75 nm to 100 nm thick. The capsid appears hexagonal, but its icosahedral symmetry
1640-445: A pseudo T = 3 (or P = 3) capsid, which is organized according to a T = 3 lattice, but with distinct polypeptides occupying the three quasi-equivalent positions T-numbers can be represented in different ways, for example T = 1 can only be represented as an icosahedron or a dodecahedron and, depending on the type of quasi-symmetry, T = 3 can be presented as a truncated dodecahedron , an icosidodecahedron , or
1722-403: A set of translational and rotational matrices which are coded in the protein data bank. Helical symmetry is given by the formula P = μ x ρ , where μ is the number of structural units per turn of the helix, ρ is the axial rise per unit and P is the pitch of the helix. The structure is said to be open due to the characteristic that any volume can be enclosed by varying
SECTION 20
#17327797641011804-412: A single viral particle that is released from the cell and is capable of infecting other cells of the same type. Viruses are found wherever there is life and have probably existed since living cells first evolved . The origin of viruses is unclear because they do not form fossils, so molecular techniques are used to infer how they arose. In addition, viral genetic material occasionally integrates into
1886-460: A small part of the total diversity of viruses has been studied. As of 2022, 6 realms, 10 kingdoms, 17 phyla, 2 subphyla, 40 classes, 72 orders, 8 suborders, 264 families, 182 subfamilies , 2,818 genera, 84 subgenera , and 11,273 species of viruses have been defined by the ICTV. The general taxonomic structure of taxon ranges and the suffixes used in taxonomic names are shown hereafter. As of 2022,
1968-607: A water sample collected in April 2010 off the coast of Chile , near the marine station in Las Cruces, by Jean-Michel Claverie and Chantal Abergel from the Structural & Genomic Information laboratory (IGS, CNRS and Aix-Marseille University). Megavirus was isolated by co-cultivation with a variety of Acanthamoeba laboratory strains ( Acanthamoeba polyphaga , Acanthamoeba castellanii , Acanthamoeba griffini ) following
2050-605: A wide diversity of sizes and shapes, called ' morphologies '. In general, viruses are much smaller than bacteria and more than a thousand bacteriophage viruses would fit inside an Escherichia coli bacterium's cell. Many viruses that have been studied are spherical and have a diameter between 20 and 300 nanometres . Some filoviruses , which are filaments, have a total length of up to 1400 nm; their diameters are only about 80 nm. Most viruses cannot be seen with an optical microscope , so scanning and transmission electron microscopes are used to visualise them. To increase
2132-553: A wide variety of unusual shapes, ranging from spindle-shaped structures to viruses that resemble hooked rods, teardrops or even bottles. Other archaeal viruses resemble the tailed bacteriophages, and can have multiple tail structures. An enormous variety of genomic structures can be seen among viral species ; as a group, they contain more structural genomic diversity than plants, animals, archaea, or bacteria. There are millions of different types of viruses, although fewer than 7,000 types have been described in detail. As of January 2021,
2214-416: Is a feature of many bacterial and some animal viruses. Some viruses undergo a lysogenic cycle where the viral genome is incorporated by genetic recombination into a specific place in the host's chromosome. The viral genome is then known as a " provirus " or, in the case of bacteriophages a " prophage ". Whenever the host divides, the viral genome is also replicated. The viral genome is mostly silent within
2296-405: Is a major change in the genome of the virus. This can be a result of recombination or reassortment . The Influenza A virus is highly prone to reassortment; occasionally this has resulted in novel strains which have caused pandemics . RNA viruses often exist as quasispecies or swarms of viruses of the same species but with slightly different genome nucleoside sequences. Such quasispecies are
2378-437: Is a submicroscopic infectious agent that replicates only inside the living cells of an organism . Viruses infect all life forms , from animals and plants to microorganisms , including bacteria and archaea . Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity. Since Dmitri Ivanovsky 's 1892 article describing a non-bacterial pathogen infecting tobacco plants and
2460-481: Is acquired by the capsid from an intracellular membrane in the virus' host; examples include the inner nuclear membrane, the Golgi membrane, and the cell's outer membrane . Once the virus has infected a cell and begins replicating itself, new capsid subunits are synthesized using the protein biosynthesis mechanism of the cell. In some viruses, including those with helical capsids and especially those with RNA genomes,
2542-400: Is associated with proteins within a central disc structure known as a nucleoid . The nucleoid is surrounded by a membrane and two lateral bodies of unknown function. The virus has an outer envelope with a thick layer of protein studded over its surface. The whole virion is slightly pleomorphic , ranging from ovoid to brick-shaped. Mimivirus is one of the largest characterised viruses, with
Megavirus - Misplaced Pages Continue
2624-439: Is caused by cessation of its normal activities because of suppression by virus-specific proteins, not all of which are components of the virus particle. The distinction between cytopathic and harmless is gradual. Some viruses, such as Epstein–Barr virus , can cause cells to proliferate without causing malignancy, while others, such as papillomaviruses , are established causes of cancer. Some viruses cause no apparent changes to
2706-560: Is controversy over whether the bornavirus , previously thought to cause neurological diseases in horses, could be responsible for psychiatric illnesses in humans. Capsid Capsids are broadly classified according to their structure. The majority of the viruses have capsids with either helical or icosahedral structure. Some viruses, such as bacteriophages , have developed more complicated structures due to constraints of elasticity and electrostatics. The icosahedral shape, which has 20 equilateral triangular faces, approximates
2788-512: Is correct. It seems unlikely that all currently known viruses have a common ancestor, and viruses have probably arisen numerous times in the past by one or more mechanisms. The first evidence of the existence of viruses came from experiments with filters that had pores small enough to retain bacteria. In 1892, Dmitri Ivanovsky used one of these filters to show that sap from a diseased tobacco plant remained infectious to healthy tobacco plants despite having been filtered. Martinus Beijerinck called
2870-507: Is first recorded in 1728, long before the discovery of viruses by Dmitri Ivanovsky in 1892. The English plural is viruses (sometimes also vira ), whereas the Latin word is a mass noun , which has no classically attested plural ( vīra is used in Neo-Latin ). The adjective viral dates to 1948. The term virion (plural virions ), which dates from 1959, is also used to refer to
2952-607: Is identical in sequence to the viral mRNA and is thus a coding strand, while negative-sense viral ssDNA is complementary to the viral mRNA and is thus a template strand. Several types of ssDNA and ssRNA viruses have genomes that are ambisense in that transcription can occur off both strands in a double-stranded replicative intermediate. Examples include geminiviruses , which are ssDNA plant viruses and arenaviruses , which are ssRNA viruses of animals. Genome size varies greatly between species. The smallest—the ssDNA circoviruses, family Circoviridae —code for only two proteins and have
3034-436: Is imperfect, due to the presence of the "stargate", at a single specific vertex of the icosahedron. The stargate is a five-pronged star structure forming the portal through which the internal core of the particle is delivered to the host's cytoplasm. This core is enclosed within two lipid membranes in the particle, also containing a large and diverse complement of viral proteins (e.g. the all transcriptional complex). Surprisingly,
3116-431: Is limited to a single strain of bacteria and they can be used to trace the source of outbreaks of infections by a method called phage typing . The complete set of viruses in an organism or habitat is called the virome ; for example, all human viruses constitute the human virome . A novel virus is one that has not previously been recorded. It can be a virus that is isolated from its natural reservoir or isolated as
3198-591: Is made of 60N protein subunits. The number and arrangement of capsomeres in an icosahedral capsid can be classified using the "quasi-equivalence principle" proposed by Donald Caspar and Aaron Klug . Like the Goldberg polyhedra , an icosahedral structure can be regarded as being constructed from pentamers and hexamers. The structures can be indexed by two integers h and k , with h ≥ 1 {\displaystyle h\geq 1} and k ≥ 0 {\displaystyle k\geq 0} ;
3280-475: Is through disease-bearing organisms known as vectors : for example, viruses are often transmitted from plant to plant by insects that feed on plant sap , such as aphids ; and viruses in animals can be carried by blood-sucking insects. Many viruses spread in the air by coughing and sneezing, including influenza viruses , SARS-CoV-2 , chickenpox , smallpox , and measles . Norovirus and rotavirus , common causes of viral gastroenteritis , are transmitted by
3362-477: The CD4 molecule—a chemokine receptor —which is most commonly found on the surface of CD4+ T-Cells . This mechanism has evolved to favour those viruses that infect only cells in which they are capable of replication. Attachment to the receptor can induce the viral envelope protein to undergo changes that result in the fusion of viral and cellular membranes, or changes of non-enveloped virus surface proteins that allow
Megavirus - Misplaced Pages Continue
3444-555: The International Committee on Taxonomy of Viruses (ICTV) was formed. The system proposed by Lwoff, Horne and Tournier was initially not accepted by the ICTV because the small genome size of viruses and their high rate of mutation made it difficult to determine their ancestry beyond order. As such, the Baltimore classification system has come to be used to supplement the more traditional hierarchy. Starting in 2018,
3526-690: The Latin vīrus , which refers to poison and other noxious liquids. Vīrus comes from the same Indo-European root as Sanskrit viṣa , Avestan vīša , and Ancient Greek ἰός ( iós ), which all mean "poison". The first attested use of "virus" in English appeared in 1398 in John Trevisa 's translation of Bartholomeus Anglicus 's De Proprietatibus Rerum . Virulent , from Latin virulentus ('poisonous'), dates to c. 1400 . A meaning of 'agent that causes infectious disease'
3608-667: The Megavirus is larger than some bacteria. The Megavirus chilense genome is a linear, double-stranded molecule of DNA with 1,259,197 base pairs in length. It exhibits 7 aminoacyl tRNA synthetases (Table 2), the archetypes of enzymes previously thought only to be encoded by cellular organisms. While 4 of these enzymes were known to be present in Mimivirus and Mamavirus (for tyrosine, arginine, cysteine, and methionine), Megavirus exhibits three more (for tryptophan, asparagine, and isoleucine). Biological virus A virus
3690-490: The NCBI Virus genome database has more than 193,000 complete genome sequences, but there are doubtlessly many more to be discovered. A virus has either a DNA or an RNA genome and is called a DNA virus or an RNA virus , respectively. Most viruses have RNA genomes. Plant viruses tend to have single-stranded RNA genomes and bacteriophages tend to have double-stranded DNA genomes. Viral genomes are circular, as in
3772-539: The common cold , influenza , chickenpox , and cold sores . Many serious diseases such as rabies , Ebola virus disease , AIDS (HIV) , avian influenza , and SARS are caused by viruses. The relative ability of viruses to cause disease is described in terms of virulence . Other diseases are under investigation to discover if they have a virus as the causative agent, such as the possible connection between human herpesvirus 6 (HHV6) and neurological diseases such as multiple sclerosis and chronic fatigue syndrome . There
3854-422: The faecal–oral route , passed by hand-to-mouth contact or in food or water. The infectious dose of norovirus required to produce infection in humans is fewer than 100 particles. HIV is one of several viruses transmitted through sexual contact and by exposure to infected blood. The variety of host cells that a virus can infect is called its host range : this is narrow for viruses specialized to infect only
3936-430: The germline of the host organisms, by which they can be passed on vertically to the offspring of the host for many generations. This provides an invaluable source of information for paleovirologists to trace back ancient viruses that existed as far back as millions of years ago. There are three main hypotheses that aim to explain the origins of viruses: In the past, there were problems with all of these hypotheses:
4018-417: The polyomaviruses and papillomaviruses have pentamers instead of hexamers in hexavalent positions on a quasi T = 7 lattice. Members of the double-stranded RNA virus lineage, including reovirus , rotavirus and bacteriophage φ6 have capsids built of 120 copies of capsid protein, corresponding to a T = 2 capsid, or arguably a T = 1 capsid with a dimer in the asymmetric unit. Similarly, many small viruses have
4100-457: The polyomaviruses , or linear, as in the adenoviruses . The type of nucleic acid is irrelevant to the shape of the genome. Among RNA viruses and certain DNA viruses, the genome is often divided into separate parts, in which case it is called segmented. For RNA viruses, each segment often codes for only one protein and they are usually found together in one capsid. All segments are not required to be in
4182-447: The three domains . This discovery has led modern virologists to reconsider and re-evaluate these three classical hypotheses. The evidence for an ancestral world of RNA cells and computer analysis of viral and host DNA sequences give a better understanding of the evolutionary relationships between different viruses and may help identify the ancestors of modern viruses. To date, such analyses have not proved which of these hypotheses
SECTION 50
#17327797641014264-527: The ICTV began to acknowledge deeper evolutionary relationships between viruses that have been discovered over time and adopted a 15-rank classification system ranging from realm to species. Additionally, some species within the same genus are grouped into a genogroup . The ICTV developed the current classification system and wrote guidelines that put a greater weight on certain virus properties to maintain family uniformity. A unified taxonomy (a universal system for classifying viruses) has been established. Only
4346-613: The assembly of bacteriophage T4 virions during infection. Like GroES, gp31 forms a stable complex with GroEL chaperonin that is absolutely necessary for the folding and assembly in vivo of the bacteriophage T4 major capsid protein gp23. Many rod-shaped and filamentous plant viruses have capsids with helical symmetry . The helical structure can be described as a set of n 1-D molecular helices related by an n -fold axial symmetry. The helical transformation are classified into two categories: one-dimensional and two-dimensional helical systems. Creating an entire helical structure relies on
4428-501: The bacteriophage PRD1, the algal virus Paramecium bursaria Chlorella virus-1 (PBCV-1), mimivirus and the mammalian adenovirus have been placed in the same lineage, whereas tailed, double-stranded DNA bacteriophages ( Caudovirales ) and herpesvirus belong to a second lineage. The icosahedral structure is extremely common among viruses. The icosahedron consists of 20 triangular faces delimited by 12 fivefold vertexes and consists of 60 asymmetric units. Thus, an icosahedral virus
4510-489: The basis of similarities. In 1962, André Lwoff , Robert Horne , and Paul Tournier were the first to develop a means of virus classification, based on the Linnaean hierarchical system. This system based classification on phylum , class , order , family , genus , and species . Viruses were grouped according to their shared properties (not those of their hosts) and the type of nucleic acid forming their genomes. In 1966,
4592-455: The capsid proteins co-assemble with their genomes. In other viruses, especially more complex viruses with double-stranded DNA genomes, the capsid proteins assemble into empty precursor procapsids that include a specialized portal structure at one vertex. Through this portal, viral DNA is translocated into the capsid. Structural analyses of major capsid protein (MCP) architectures have been used to categorise viruses into lineages. For example,
4674-410: The contrast between viruses and the background, electron-dense "stains" are used. These are solutions of salts of heavy metals, such as tungsten , that scatter the electrons from regions covered with the stain. When virions are coated with stain (positive staining), fine detail is obscured. Negative staining overcomes this problem by staining the background only. A complete virus particle, known as
4756-418: The discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, more than 11,000 of the millions of virus species have been described in detail. The study of viruses is known as virology , a subspeciality of microbiology . When infected, a host cell is often forced to rapidly produce thousands of copies of the original virus. When not inside an infected cell or in the process of infecting
4838-500: The divergence of cellular organisms into the three contemporary domains of life, whereas others were hijacked relatively recently. As a result, some capsid proteins are widespread in viruses infecting distantly related organisms (e.g., capsid proteins with the jelly-roll fold ), whereas others are restricted to a particular group of viruses (e.g., capsid proteins of alphaviruses). A computational model (2015) has shown that capsids may have originated before viruses and that they served as
4920-431: The extreme of the ssRNA virus case. Viruses undergo genetic change by several mechanisms. These include a process called antigenic drift where individual bases in the DNA or RNA mutate to other bases. Most of these point mutations are "silent"—they do not change the protein that the gene encodes—but others can confer evolutionary advantages such as resistance to antiviral drugs . Antigenic shift occurs when there
5002-446: The filtered, infectious substance a "virus" and this discovery is considered to be the beginning of virology. The subsequent discovery and partial characterization of bacteriophages by Frederick Twort and Félix d'Herelle further catalyzed the field, and by the early 20th century many viruses had been discovered. In 1926, Thomas Milton Rivers defined viruses as obligate parasites. Viruses were demonstrated to be particles, rather than
SECTION 60
#17327797641015084-399: The form of single-stranded nucleoprotein complexes, through pores called plasmodesmata . Bacteria, like plants, have strong cell walls that a virus must breach to infect the cell. Given that bacterial cell walls are much thinner than plant cell walls due to their much smaller size, some viruses have evolved mechanisms that inject their genome into the bacterial cell across the cell wall, while
5166-639: The host cell, leading to penetration of the host cell membrane and internalization of the capsid. Delivery of the genome occurs by subsequent uncoating or disassembly of the capsid and release of the genome into the cytoplasm, or by ejection of the genome through a specialized portal structure directly into the host cell nucleus. It has been suggested that many viral capsid proteins have evolved on multiple occasions from functionally diverse cellular proteins. The recruitment of cellular proteins appears to have occurred at different stages of evolution so that some cellular proteins were captured and refunctionalized prior to
5248-406: The host. At some point, the provirus or prophage may give rise to the active virus, which may lyse the host cells. Enveloped viruses (e.g., HIV) typically are released from the host cell by budding . During this process, the virus acquires its envelope, which is a modified piece of the host's plasma or other, internal membrane. The genetic material within virus particles, and the method by which
5330-517: The infected cell. Cells in which the virus is latent and inactive show few signs of infection and often function normally. This causes persistent infections and the virus is often dormant for many months or years. This is often the case with herpes viruses . Viruses are by far the most abundant biological entities on Earth and they outnumber all the others put together. They infect all types of cellular life including animals, plants, bacteria and fungi . Different types of viruses can infect only
5412-471: The length of the helix. The most understood helical virus is the tobacco mosaic virus. The virus is a single molecule of (+) strand RNA. Each coat protein on the interior of the helix bind three nucleotides of the RNA genome. Influenza A viruses differ by comprising multiple ribonucleoproteins, the viral NP protein organizes the RNA into a helical structure. The size is also different; the tobacco mosaic virus has
5494-416: The material is replicated, varies considerably between different types of viruses. The range of structural and biochemical effects that viruses have on the host cell is extensive. These are called ' cytopathic effects '. Most virus infections eventually result in the death of the host cell. The causes of death include cell lysis, alterations to the cell's surface membrane and apoptosis . Often cell death
5576-454: The number of triangles, composed of asymmetric subunits, that make up the 10 triangles of the cylinder. The caps are classified by the T (or T end ) number. The bacterium E. coli is the host for bacteriophage T4 that has a prolate head structure. The bacteriophage encoded gp31 protein appears to be functionally homologous to E. coli chaperone protein GroES and able to substitute for it in
5658-461: The original virus. Their life cycle differs greatly between species, but there are six basic stages in their life cycle: Attachment is a specific binding between viral capsid proteins and specific receptors on the host cellular surface. This specificity determines the host range and type of host cell of a virus. For example, HIV infects a limited range of human leucocytes . This is because its surface protein, gp120 , specifically interacts with
5740-416: The polymerase during genome replication. This process appears to be an adaptation for coping with genome damage. Viral populations do not grow through cell division, because they are acellular. Instead, they use the machinery and metabolism of a host cell to produce multiple copies of themselves, and they assemble in the cell. When infected, the host cell is forced to rapidly produce thousands of copies of
5822-965: The ranks of subrealm, subkingdom, and subclass are unused, whereas all other ranks are in use. The Nobel Prize-winning biologist David Baltimore devised the Baltimore classification system. The ICTV classification system is used in conjunction with the Baltimore classification system in modern virus classification. The Baltimore classification of viruses is based on the mechanism of mRNA production. Viruses must generate mRNAs from their genomes to produce proteins and replicate themselves, but different mechanisms are used to achieve this in each virus family. Viral genomes may be single-stranded (ss) or double-stranded (ds), RNA or DNA, and may or may not use reverse transcriptase (RT). In addition, ssRNA viruses may be either sense (+) or antisense (−). This classification places viruses into seven groups: Examples of common human diseases caused by viruses include
5904-422: The regressive hypothesis did not explain why even the smallest of cellular parasites do not resemble viruses in any way. The escape hypothesis did not explain the complex capsids and other structures on virus particles. The virus-first hypothesis contravened the definition of viruses in that they require host cells. Viruses are now recognised as ancient and as having origins that pre-date the divergence of life into
5986-484: The result of spread to an animal or human host where the virus had not been identified before. It can be an emergent virus , one that represents a new virus, but it can also be an extant virus that has not been previously identified . The SARS-CoV-2 coronavirus that caused the COVID-19 pandemic is an example of a novel virus. Classification seeks to describe the diversity of viruses by naming and grouping them on
6068-451: The same virion for the virus to be infectious, as demonstrated by brome mosaic virus and several other plant viruses. A viral genome, irrespective of nucleic acid type, is almost always either single-stranded (ss) or double-stranded (ds). Single-stranded genomes consist of an unpaired nucleic acid, analogous to one-half of a ladder split down the middle. Double-stranded genomes consist of two complementary paired nucleic acids, analogous to
6150-462: The size of most bacteria. The origins of viruses in the evolutionary history of life are still unclear. Some viruses may have evolved from plasmids , which are pieces of DNA that can move between cells. Other viruses may have evolved from bacteria. In evolution, viruses are an important means of horizontal gene transfer , which increases genetic diversity in a way analogous to sexual reproduction . Viruses are considered by some biologists to be
6232-578: The structure can be thought of as taking h steps from the edge of a pentamer, turning 60 degrees counterclockwise, then taking k steps to get to the next pentamer. The triangulation number T for the capsid is defined as: In this scheme, icosahedral capsids contain 12 pentamers plus 10( T − 1) hexamers. The T -number is representative of the size and complexity of the capsids. Geometric examples for many values of h , k , and T can be found at List of geodesic polyhedra and Goldberg polyhedra . Many exceptions to this rule exist: For example,
6314-399: The structure-mediated self-assembly of the virus particles, some modification of the proteins often occurs. In viruses such as HIV, this modification (sometimes called maturation) occurs after the virus has been released from the host cell. Release – Viruses can be released from the host cell by lysis , a process that kills the cell by bursting its membrane and cell wall if present: this
6396-457: The study of the origin of life , as it lends further credence to the hypothesis that life could have started as self-assembling organic molecules . The virocell model first proposed by Patrick Forterre considers the infected cell to be the "living form" of viruses and that virus particles (virions) are analogous to spores . Although the living versus non-living debate continues, the virocell model has gained some acceptance. Viruses display
6478-446: The viral messenger RNA (mRNA). Positive-sense viral RNA is in the same sense as viral mRNA and thus at least a part of it can be immediately translated by the host cell. Negative-sense viral RNA is complementary to mRNA and thus must be converted to positive-sense RNA by an RNA-dependent RNA polymerase before translation. DNA nomenclature for viruses with genomic ssDNA is similar to RNA nomenclature, in that positive-strand viral ssDNA
6560-824: The viral capsid remains outside. Uncoating is a process in which the viral capsid is removed: This may be by degradation by viral enzymes or host enzymes or by simple dissociation; the end-result is the releasing of the viral genomic nucleic acid. Replication of viruses involves primarily multiplication of the genome. Replication involves the synthesis of viral messenger RNA (mRNA) from "early" genes (with exceptions for positive-sense RNA viruses), viral protein synthesis , possible assembly of viral proteins, then viral genome replication mediated by early or regulatory protein expression. This may be followed, for complex viruses with larger genomes, by one or more further rounds of mRNA synthesis: "late" gene expression is, in general, of structural or virion proteins. Assembly – Following
6642-503: The virus to enter. Penetration or viral entry follows attachment: Virions enter the host cell through receptor-mediated endocytosis or membrane fusion . The infection of plant and fungal cells is different from that of animal cells. Plants have a rigid cell wall made of cellulose , and fungi one of chitin, so most viruses can get inside these cells only after trauma to the cell wall. Nearly all plant viruses (such as tobacco mosaic virus) can also move directly from cell to cell, in
6724-460: The virus useless or uncompetitive. To compensate, RNA viruses often have segmented genomes—the genome is split into smaller molecules—thus reducing the chance that an error in a single-component genome will incapacitate the entire genome. In contrast, DNA viruses generally have larger genomes because of the high fidelity of their replication enzymes. Single-strand DNA viruses are an exception to this rule, as mutation rates for these genomes can approach
#100899