Misplaced Pages

Mid America Off Road Association

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Treasurer: Debbie Carlen

#174825

82-504: The Mid America Off Road Association (MAORA) is an American off road racing sanctioning. It has sanctioned off road racing events since 1972. Web site www.maoraracing.us MAORA is a non-profit race sanctioning organization. MAORA was created in 1972 to organize off-road enthusiasts and generally promote the sport of off-road racing. MAORA offers two Driver's points series and sets the rules and regulations to be followed by racers, track owners and promoters. Club officers are elected annually by

164-403: A cathode , and an electrolyte that allows ions, often positively charged hydrogen ions (protons), to move between the two sides of the fuel cell. At the anode, a catalyst causes the fuel to undergo oxidation reactions that generate ions (often positively charged hydrogen ions) and electrons. The ions move from the anode to the cathode through the electrolyte. At the same time, electrons flow from

246-499: A cogeneration power plant in hospitals, universities and large office buildings. In recognition of the fuel cell industry and America's role in fuel cell development, the United States Senate recognized October 8, 2015 as National Hydrogen and Fuel Cell Day , passing S. RES 217. The date was chosen in recognition of the atomic weight of hydrogen (1.008). Fuel cells come in many varieties; however, they all work in

328-513: A trace gas in the atmosphere of Earth , where it plays a role in absorbing sunlight and regulating the chemistry of the troposphere , especially in determining ozone concentrations. Nitrogen dioxide also forms in most combustion processes. At elevated temperatures nitrogen combines with oxygen to form nitrogen dioxide: For the general public, the most prominent sources of NO 2 are internal combustion engines , as combustion temperatures are high enough to thermally combine some of

410-560: A 1-hour exposure. It is also included in the NO x family of atmospheric pollutants . Nitrogen dioxide is a reddish-brown gas with a pungent, acrid odor above 21.2 °C (70.2 °F; 294.3 K) and becomes a yellowish-brown liquid below 21.2 °C (70.2 °F; 294.3 K). It forms an equilibrium with its dimer , dinitrogen tetroxide ( N 2 O 4 ), and converts almost entirely to N 2 O 4 below −11.2 °C (11.8 °F; 261.9 K). The bond length between

492-727: A SOFC system are less than those from a fossil fuel combustion plant. The chemical reactions for the SOFC system can be expressed as follows: SOFC systems can run on fuels other than pure hydrogen gas. However, since hydrogen is necessary for the reactions listed above, the fuel selected must contain hydrogen atoms. For the fuel cell to operate, the fuel must be converted into pure hydrogen gas. SOFCs are capable of internally reforming light hydrocarbons such as methane (natural gas), propane, and butane. These fuel cells are at an early stage of development. Challenges exist in SOFC systems due to their high operating temperatures. One such challenge

574-471: A battery, except as hydrogen, but in some applications, such as stand-alone power plants based on discontinuous sources such as solar or wind power , they are combined with electrolyzers and storage systems to form an energy storage system. As of 2019, 90% of hydrogen was used for oil refining, chemicals and fertilizer production (where hydrogen is required for the Haber–Bosch process ), and 98% of hydrogen

656-820: A century later following the invention of the hydrogen–oxygen fuel cell by Francis Thomas Bacon in 1932. The alkaline fuel cell , also known as the Bacon fuel cell after its inventor, has been used in NASA space programs since the mid-1960s to generate power for satellites and space capsules . Since then, fuel cells have been used in many other applications. Fuel cells are used for primary and backup power for commercial, industrial and residential buildings and in remote or inaccessible areas. They are also used to power fuel cell vehicles , including forklifts, automobiles, buses, trains, boats, motorcycles, and submarines. There are many types of fuel cells, but they all consist of an anode ,

738-662: A complete, closed-loop system: Solar panels power an electrolyzer, which makes hydrogen. The hydrogen is stored in a 500-U.S.-gallon (1,900 L) tank at 200 pounds per square inch (1,400 kPa), and runs a ReliOn fuel cell to provide full electric back-up to the off-the-grid residence. Another closed system loop was unveiled in late 2011 in Hempstead, NY. Fuel cells can be used with low-quality gas from landfills or waste-water treatment plants to generate power and lower methane emissions . A 2.8 MW fuel cell plant in California

820-449: A concentrated solution of KOH or NaOH which serves as an electrolyte. H 2 gas and O 2 gas are bubbled into the electrolyte through the porous carbon electrodes. Thus the overall reaction involves the combination of hydrogen gas and oxygen gas to form water. The cell runs continuously until the reactant's supply is exhausted. This type of cell operates efficiently in the temperature range 343–413   K (70 -140 °C) and provides

902-595: A durability of over 120,000 km (75,000 miles) with less than 10% degradation. In a 2017 Well-to-Wheels simulation analysis that "did not address the economics and market constraints", General Motors and its partners estimated that, for an equivalent journey, a fuel cell electric vehicle running on compressed gaseous hydrogen produced from natural gas could use about 40% less energy and emit 45% less greenhouse gasses than an internal combustion vehicle. Nitrogen dioxide Dinitrogen tetroxide Dinitrogen trioxide Nitric oxide Nitrous oxide Nitrogen dioxide

SECTION 10

#1732787649175

984-599: A fuel (often hydrogen ) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied. The first fuel cells were invented by Sir William Grove in 1838. The first commercial use of fuel cells came almost

1066-597: A fuel-to-electricity efficiency of 50%, considerably higher than the 37–42% efficiency of a phosphoric acid fuel cell plant. Efficiencies can be as high as 65% when the fuel cell is paired with a turbine, and 85% if heat is captured and used in a combined heat and power (CHP) system. FuelCell Energy, a Connecticut-based fuel cell manufacturer, develops and sells MCFC fuel cells. The company says that their MCFC products range from 300 kW to 2.8 MW systems that achieve 47% electrical efficiency and can utilize CHP technology to obtain higher overall efficiencies. One product,

1148-461: A high operating temperature provides an advantage by removing the need for a precious metal catalyst like platinum, thereby reducing cost. Additionally, waste heat from SOFC systems may be captured and reused, increasing the theoretical overall efficiency to as high as 80–85%. The high operating temperature is largely due to the physical properties of the YSZ electrolyte. As temperature decreases, so does

1230-403: A higher current to be supplied. Such a design is called a fuel cell stack . The cell surface area can also be increased, to allow higher current from each cell. In the archetypical hydrogen–oxide proton-exchange membrane fuel cell (PEMFC) design, a proton-conducting polymer membrane (typically nafion ) contains the electrolyte solution that separates the anode and cathode sides. This

1312-432: A hot water storage tank to smooth out the thermal heat production was a serious disadvantage in the domestic market place where space in domestic properties is at a great premium. Delta-ee consultants stated in 2013 that with 64% of global sales the fuel cell micro-combined heat and power passed the conventional systems in sales in 2012. The Japanese ENE FARM project stated that 34.213 PEMFC and 2.224 SOFC were installed in

1394-589: A hydrogen source would create less than one ounce of pollution (other than CO 2 ) for every 1,000 kW·h produced, compared to 25 pounds of pollutants generated by conventional combustion systems. Fuel Cells also produce 97% less nitrogen oxide emissions than conventional coal-fired power plants. One such pilot program is operating on Stuart Island in Washington State. There the Stuart Island Energy Initiative has built

1476-455: A hydrogen-rich gas in the anode, eliminating the need to produce hydrogen externally. The reforming process creates CO 2 emissions. MCFC-compatible fuels include natural gas, biogas and gas produced from coal. The hydrogen in the gas reacts with carbonate ions from the electrolyte to produce water, carbon dioxide, electrons and small amounts of other chemicals. The electrons travel through an external circuit, creating electricity, and return to

1558-459: A potential of about 0.9   V. Alkaline anion exchange membrane fuel cell (AAEMFC) is a type of AFC which employs a solid polymer electrolyte instead of aqueous potassium hydroxide (KOH) and it is superior to aqueous AFC. Solid oxide fuel cells (SOFCs) use a solid material, most commonly a ceramic material called yttria-stabilized zirconia (YSZ), as the electrolyte . Because SOFCs are made entirely of solid materials, they are not limited to

1640-770: A power-plant-to-wheel efficiency of 22% if the hydrogen is stored as high-pressure gas, and 17% if it is stored as liquid hydrogen . Stationary fuel cells are used for commercial, industrial and residential primary and backup power generation. Fuel cells are very useful as power sources in remote locations, such as spacecraft, remote weather stations, large parks, communications centers, rural locations including research stations, and in certain military applications. A fuel cell system running on hydrogen can be compact and lightweight, and have no major moving parts. Because fuel cells have no moving parts and do not involve combustion, in ideal conditions they can achieve up to 99.9999% reliability. This equates to less than one minute of downtime in

1722-425: A requirement, as in enclosed spaces such as warehouses, and where hydrogen is considered an acceptable reactant, a [PEM fuel cell] is becoming an increasingly attractive choice [if exchanging batteries is inconvenient]". In 2013 military organizations were evaluating fuel cells to determine if they could significantly reduce the battery weight carried by soldiers. In a fuel cell vehicle the tank-to-wheel efficiency

SECTION 20

#1732787649175

1804-401: A six-year period. Since fuel cell electrolyzer systems do not store fuel in themselves, but rather rely on external storage units, they can be successfully applied in large-scale energy storage, rural areas being one example. There are many different types of stationary fuel cells so efficiencies vary, but most are between 40% and 60% energy efficient. However, when the fuel cell's waste heat

1886-411: A system or device that converts energy is measured by the ratio of the amount of useful energy put out by the system ("output energy") to the total amount of energy that is put in ("input energy") or by useful output energy as a percentage of the total input energy. In the case of fuel cells, useful output energy is measured in electrical energy produced by the system. Input energy is the energy stored in

1968-437: A welding machine. In the 1960s, Pratt & Whitney licensed Bacon's U.S. patents for use in the U.S. space program to supply electricity and drinking water (hydrogen and oxygen being readily available from the spacecraft tanks). In 1991, the first hydrogen fuel cell automobile was developed by Roger E. Billings. UTC Power was the first company to manufacture and commercialize a large, stationary fuel cell system for use as

2050-572: Is flow batteries , in which the fuel can be regenerated by recharging. Individual fuel cells produce relatively small electrical potentials, about 0.7 volts, so cells are "stacked", or placed in series, to create sufficient voltage to meet an application's requirements. In addition to electricity, fuel cells produce water vapor, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions. PEMFC cells generally produce fewer nitrogen oxides than SOFC cells: they operate at lower temperatures, use hydrogen as fuel, and limit

2132-402: Is a chemical compound with the formula NO 2 . One of several nitrogen oxides , nitrogen dioxide is a reddish-brown gas. It is a paramagnetic , bent molecule with C 2v point group symmetry . Industrially, NO 2 is an intermediate in the synthesis of nitric acid , millions of tons of which are produced each year, primarily for the production of fertilizers . Nitrogen dioxide

2214-477: Is a free radical , so the formula for nitrogen dioxide is often written as NO 2 . The reddish-brown color is a consequence of preferential absorption of light in the blue region of the spectrum (400–500 nm), although the absorption extends throughout the visible (at shorter wavelengths) and into the infrared (at longer wavelengths). Absorption of light at wavelengths shorter than about 400 nm results in photolysis (to form NO + O , atomic oxygen); in

2296-651: Is greater than 45% at low loads and shows average values of about 36% when a driving cycle like the NEDC ( New European Driving Cycle ) is used as test procedure. The comparable NEDC value for a Diesel vehicle is 22%. In 2008 Honda released a demonstration fuel cell electric vehicle (the Honda FCX Clarity ) with fuel stack claiming a 60% tank-to-wheel efficiency. It is also important to take losses due to fuel production, transportation, and storage into account. Fuel cell vehicles running on compressed hydrogen may have

2378-405: Is poisonous and can be fatal if inhaled in large quantities. Cooking with a gas stove produces nitrogen dioxide which causes poorer indoor air quality . Combustion of gas can lead to increased concentrations of nitrogen dioxide throughout the home environment which is linked to respiratory issues and diseases . The LC 50 ( median lethal dose ) for humans has been estimated to be 174 ppm for

2460-482: Is produced by steam methane reforming , which emits carbon dioxide. The overall efficiency (electricity to hydrogen and back to electricity) of such plants (known as round-trip efficiency ), using pure hydrogen and pure oxygen can be "from 35 up to 50 percent", depending on gas density and other conditions. The electrolyzer/fuel cell system can store indefinite quantities of hydrogen, and is therefore suited for long-term storage. Solid-oxide fuel cells produce heat from

2542-589: Is referred to as the heart of the PEMFC and is usually made of a proton-exchange membrane sandwiched between two catalyst -coated carbon papers . Platinum and/or similar types of noble metals are usually used as the catalyst for PEMFC, and these can be contaminated by carbon monoxide , necessitating a relatively pure hydrogen fuel. The electrolyte could be a polymer membrane . Phosphoric acid fuel cells (PAFCs) were first designed and introduced in 1961 by G. V. Elmore and H. A. Tanner . In these cells, phosphoric acid

Mid America Off Road Association - Misplaced Pages Continue

2624-438: Is said to be the largest of the type. Small-scale (sub-5kWhr) fuel cells are being developed for use in residential off-grid deployment. Combined heat and power (CHP) fuel cell systems, including micro combined heat and power (MicroCHP) systems are used to generate both electricity and heat for homes (see home fuel cell ), office building and factories. The system generates constant electric power (selling excess power back to

2706-594: Is the cells' short life span. The high-temperature and carbonate electrolyte lead to corrosion of the anode and cathode. These factors accelerate the degradation of MCFC components, decreasing the durability and cell life. Researchers are addressing this problem by exploring corrosion-resistant materials for components as well as fuel cell designs that may increase cell life without decreasing performance. MCFCs hold several advantages over other fuel cell technologies, including their resistance to impurities. They are not prone to "carbon coking", which refers to carbon build-up on

2788-534: Is the potential for carbon dust to build up on the anode, which slows down the internal reforming process. Research to address this "carbon coking" issue at the University of Pennsylvania has shown that the use of copper-based cermet (heat-resistant materials made of ceramic and metal) can reduce coking and the loss of performance. Another disadvantage of SOFC systems is the long start-up, making SOFCs less useful for mobile applications. Despite these disadvantages,

2870-438: Is used are also exposed and are at risk for occupational lung diseases , and NIOSH has set exposure limits and safety standards. Workers in high voltage areas especially those with spark or plasma creation are at risk. Agricultural workers can be exposed to NO 2 arising from grain decomposing in silos; chronic exposure can lead to lung damage in a condition called " silo-filler's disease ". NO 2 diffuses into

2952-506: Is used as a non-conductive electrolyte to pass protons from the anode to the cathode and to force electrons to travel from anode to cathode through an external electrical circuit. These cells commonly work in temperatures of 150 to 200 °C. This high temperature will cause heat and energy loss if the heat is not removed and used properly. This heat can be used to produce steam for air conditioning systems or any other thermal energy-consuming system. Using this heat in cogeneration can enhance

3034-421: Is used for nitrations under anhydrous conditions. NO 2 is used as an intermediate in the manufacturing of nitric acid , as a nitrating agent in the manufacturing of chemical explosives , as a polymerization inhibitor for acrylates , as a flour bleaching agent , and as a room temperature sterilization agent. It is also used as an oxidizer in rocket fuel , for example in red fuming nitric acid ; it

3116-436: Is used to heat a building in a cogeneration system this efficiency can increase to 85%. This is significantly more efficient than traditional coal power plants, which are only about one third energy efficient. Assuming production at scale, fuel cells could save 20–40% on energy costs when used in cogeneration systems. Fuel cells are also much cleaner than traditional power generation; a fuel cell power plant using natural gas as

3198-693: Is used, the CO 2 is released when methane from natural gas is combined with steam, in a process called steam methane reforming , to produce the hydrogen. This can take place in a different location to the fuel cell, potentially allowing the hydrogen fuel cell to be used indoors—for example, in forklifts. The different components of a PEMFC are The materials used for different parts of the fuel cells differ by type. The bipolar plates may be made of different types of materials, such as, metal, coated metal, graphite , flexible graphite, C–C composite , carbon – polymer composites etc. The membrane electrode assembly (MEA)

3280-623: The Electrochemical Society journal Interface in 2008, wrote, "While fuel cells are efficient relative to combustion engines, they are not as efficient as batteries, primarily due to the inefficiency of the oxygen reduction reaction (and ... the oxygen evolution reaction, should the hydrogen be formed by electrolysis of water). ... [T]hey make the most sense for operation disconnected from the grid, or when fuel can be provided continuously. For applications that require frequent and relatively rapid start-ups ... where zero emissions are

3362-511: The ionic conductivity of YSZ. Therefore, to obtain the optimum performance of the fuel cell, a high operating temperature is required. According to their website, Ceres Power , a UK SOFC fuel cell manufacturer, has developed a method of reducing the operating temperature of their SOFC system to 500–600 degrees Celsius. They replaced the commonly used YSZ electrolyte with a CGO (cerium gadolinium oxide) electrolyte. The lower operating temperature allows them to use stainless steel instead of ceramic as

Mid America Off Road Association - Misplaced Pages Continue

3444-512: The nitrogen atom and the oxygen atom is 119.7  pm . This bond length is consistent with a bond order between one and two. Unlike ozone ( O 3 ) the ground electronic state of nitrogen dioxide is a doublet state , since nitrogen has one unpaired electron, which decreases the alpha effect compared with nitrite and creates a weak bonding interaction with the oxygen lone pairs. The lone electron in NO 2 also means that this compound

3526-428: The waste heat produced by the primary power cycle - whether fuel cell, nuclear fission or combustion - is captured and put to use, increasing the efficiency of the system to up to 85–90%. The theoretical maximum efficiency of any type of power generation system is never reached in practice, and it does not consider other steps in power generation, such as production, transportation and storage of fuel and conversion of

3608-494: The DFC-ERG, is combined with a gas turbine and, according to the company, it achieves an electrical efficiency of 65%. The electric storage fuel cell is a conventional battery chargeable by electric power input, using the conventional electro-chemical effect. However, the battery further includes hydrogen (and oxygen) inputs for alternatively charging the battery chemically. Glossary of terms in table: The energy efficiency of

3690-618: The United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and it is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities. Exposure to low levels of NO 2 over time can cause changes in lung function. Cooking with a gas stove is associated with poorer indoor air quality . Combustion of gas can lead to increased concentrations of nitrogen dioxide throughout

3772-503: The ambient atmosphere, although it does proceed upon NO 2 uptake to surfaces. Such surface reaction is thought to produce gaseous HNO 2 (often written as HONO ) in outdoor and indoor environments. NO 2 is used to generate anhydrous metal nitrates from the oxides: Alkyl and metal iodides give the corresponding nitrates: The reactiivity of nitrogen dioxide toward organic compounds has long been known. For example, it reacts with amides to give N-nitroso derivatives. It

3854-493: The anode that results in reduced performance by slowing down the internal fuel reforming process. Therefore, carbon-rich fuels like gases made from coal are compatible with the system. The United States Department of Energy claims that coal, itself, might even be a fuel option in the future, assuming the system can be made resistant to impurities such as sulfur and particulates that result from converting coal into hydrogen. MCFCs also have relatively high efficiencies. They can reach

3936-478: The anode to the cathode through an external circuit, producing direct current electricity. At the cathode, another catalyst causes ions, electrons, and oxygen to react, forming water and possibly other products. Fuel cells are classified by the type of electrolyte they use and by the difference in start-up time ranging from 1 second for proton-exchange membrane fuel cells (PEM fuel cells, or PEMFC) to 10 minutes for solid oxide fuel cells (SOFC). A related technology

4018-423: The anode to the cathode), as is the case in all other types of fuel cells. Oxygen gas is fed through the cathode, where it absorbs electrons to create oxygen ions. The oxygen ions then travel through the electrolyte to react with hydrogen gas at the anode. The reaction at the anode produces electricity and water as by-products. Carbon dioxide may also be a by-product depending on the fuel, but the carbon emissions from

4100-545: The atmosphere the addition of the oxygen atom so formed to O 2 results in ozone. Industrially, nitrogen dioxide is produced and transported as its cryogenic liquid dimer, dinitrogen tetroxide . It is produced industrially by the oxidation of ammonia, the Ostwald Process . This reaction is the first step in the production of nitric acid: It can also be produced by the oxidation of nitrosyl chloride : Instead, most laboratory syntheses stabilize and then heat

4182-548: The cathode. There, oxygen from the air and carbon dioxide recycled from the anode react with the electrons to form carbonate ions that replenish the electrolyte, completing the circuit. The chemical reactions for an MCFC system can be expressed as follows: As with SOFCs, MCFC disadvantages include slow start-up times because of their high operating temperature. This makes MCFC systems not suitable for mobile applications, and this technology will most likely be used for stationary fuel cell purposes. The main challenge of MCFC technology

SECTION 50

#1732787649175

4264-462: The cell substrate, which reduces cost and start-up time of the system. Molten carbonate fuel cells (MCFCs) require a high operating temperature, 650 °C (1,200 °F), similar to SOFCs . MCFCs use lithium potassium carbonate salt as an electrolyte, and this salt liquefies at high temperatures, allowing for the movement of charge within the cell – in this case, negative carbonate ions. Like SOFCs, MCFCs are capable of converting fossil fuel to

4346-606: The development of his first crude fuel cells. He used a combination of sheet iron, copper, and porcelain plates, and a solution of sulphate of copper and dilute acid. In a letter to the same publication written in December 1838 but published in June 1839, German physicist Christian Friedrich Schönbein discussed the first crude fuel cell that he had invented. His letter discussed the current generated from hydrogen and oxygen dissolved in water. Grove later sketched his design, in 1842, in

4428-549: The diffusion of nitrogen into the anode via the proton exchange membrane, which forms NOx. The energy efficiency of a fuel cell is generally between 40 and 60%; however, if waste heat is captured in a cogeneration scheme, efficiencies of up to 85% can be obtained. The first references to hydrogen fuel cells appeared in 1838. In a letter dated October 1838 but published in the December 1838 edition of The London and Edinburgh Philosophical Magazine and Journal of Science , Welsh physicist and barrister Sir William Grove wrote about

4510-404: The efficiency of phosphoric acid fuel cells from 40 to 50% to about 80%. Since the proton production rate on the anode is small, platinum is used as a catalyst to increase this ionization rate. A key disadvantage of these cells is the use of an acidic electrolyte. This increases the corrosion or oxidation of components exposed to phosphoric acid. Solid acid fuel cells (SAFCs) are characterized by

4592-447: The electricity into mechanical power. However, this calculation allows the comparison of different types of power generation. The theoretical maximum efficiency of a fuel cell approaches 100%, while the theoretical maximum efficiency of internal combustion engines is approximately 58%. Values are given from 40% for acidic, 50% for molten carbonate, to 60% for alkaline, solid oxide and PEM fuel cells. Fuel cells cannot store energy like

4674-467: The epithelial lining fluid (ELF) of the respiratory epithelium and dissolves. There, it chemically reacts with antioxidant and lipid molecules in the ELF. The health effects of NO 2 are caused by the reaction products or their metabolites, which are reactive nitrogen species and reactive oxygen species that can drive bronchoconstriction , inflammation, reduced immune response, and may have effects on

4756-442: The flat plane configuration of other types of fuel cells and are often designed as rolled tubes. They require high operating temperatures (800–1000 °C) and can be run on a variety of fuels including natural gas. SOFCs are unique because negatively charged oxygen ions travel from the cathode (positive side of the fuel cell) to the anode (negative side of the fuel cell) instead of protons travelling vice versa (i.e., from

4838-463: The fuel. According to the U.S. Department of Energy, fuel cells are generally between 40 and 60% energy efficient. This is higher than some other systems for energy generation. For example, the internal combustion engine of a car can be about 43% energy efficient. Steam power plants usually achieve efficiencies of 30-40% while combined cycle gas turbine and steam plants can achieve efficiencies above 60%. In combined heat and power (CHP) systems,

4920-506: The grid when it is not consumed), and at the same time produces hot air and water from the waste heat . As the result CHP systems have the potential to save primary energy as they can make use of waste heat which is generally rejected by thermal energy conversion systems. A typical capacity range of home fuel cell is 1–3 kW el , 4–8 kW th . CHP systems linked to absorption chillers use their waste heat for refrigeration . The waste heat from fuel cells can be diverted during

5002-426: The heart. Acute harm due to NO 2 exposure is rare. 100–200 ppm can cause mild irritation of the nose and throat, 250–500 ppm can cause edema , leading to bronchitis or pneumonia , and levels above 1000 ppm can cause death due to asphyxiation from fluid in the lungs. There are often no symptoms at the time of exposure other than transient cough, fatigue or nausea, but over hours inflammation in

SECTION 60

#1732787649175

5084-462: The ions are reunited with the electrons and the two react with a third chemical, usually oxygen, to create water or carbon dioxide. Design features in a fuel cell include: A typical fuel cell produces a voltage from 0.6 to 0.7 V at a full-rated load. Voltage decreases as current increases, due to several factors: To deliver the desired amount of energy, the fuel cells can be combined in series to yield higher voltage , and in parallel to allow

5166-400: The load. At the anode a catalyst ionizes the fuel, turning the fuel into a positively charged ion and a negatively charged electron. The electrolyte is a substance specifically designed so ions can pass through it, but the electrons cannot. The freed electrons travel through a wire creating an electric current. The ions travel through the electrolyte to the cathode. Once reaching the cathode,

5248-419: The lungs causes edema. For skin or eye exposure, the affected area is flushed with saline. For inhalation, oxygen is administered, bronchodilators may be administered, and if there are signs of methemoglobinemia , a condition that arises when nitrogen-based compounds affect the hemoglobin in red blood cells, methylene blue may be administered. It is classified as an extremely hazardous substance in

5330-486: The membership. MAORA has 2 divisions of classes. One is the "Pro" classes, with the other being "Trophy Classes." The pro classes usually feature the more experienced racers, with more technologically advanced vehicles, whereas the trophy classes feature a "run-what-you-brung" format, meaning almost no rules. The more novice racers generally race in the Trophy classes. The pro classes race for money, while top finishers in

5412-609: The membrane to the cathode, but the electrons are forced to travel in an external circuit (supplying power) because the membrane is electrically insulating. On the cathode catalyst, oxygen molecules react with the electrons (which have traveled through the external circuit) and protons to form water. In addition to this pure hydrogen type, there are hydrocarbon fuels for fuel cells, including diesel , methanol ( see: direct-methanol fuel cells and indirect methanol fuel cells ) and chemical hydrides. The waste products with these types of fuel are carbon dioxide and water. When hydrogen

5494-428: The nitric acid to accelerate the decomposition. For example, the thermal decomposition of some metal nitrates generates NO 2 : Alternatively, dehydration of nitric acid produces nitronium nitrate ... ...which subsequently undergoes thermal decomposition: NO 2 is generated by the reduction of concentrated nitric acid with a metal (such as copper): Nitric acid decomposes slowly to nitrogen dioxide by

5576-409: The nitrogen and oxygen in the air to form NO 2 . Outdoors, NO 2 can be a result of traffic from motor vehicles. Indoors, exposure arises from cigarette smoke, and butane and kerosene heaters and stoves. Indoor exposure levels of NO 2 are, on average, at least three times higher in homes with gas stoves compared to electric stove. Workers in industries where NO 2

5658-490: The original fuel cell design by using a sulphonated polystyrene ion-exchange membrane as the electrolyte. Three years later another GE chemist, Leonard Niedrach, devised a way of depositing platinum onto the membrane, which served as a catalyst for the necessary hydrogen oxidation and oxygen reduction reactions. This became known as the "Grubb-Niedrach fuel cell". GE went on to develop this technology with NASA and McDonnell Aircraft, leading to its use during Project Gemini . This

5740-556: The overall reaction: The nitrogen dioxide so formed confers the characteristic yellow color often exhibited by this acid. However, the reaction is too slow to be a practical source of NO 2 . At low temperatures, NO 2 reversibly converts to the colourless gas dinitrogen tetroxide ( N 2 O 4 ): The exothermic equilibrium has enthalpy change Δ H = −57.23 kJ/mol . At 150 °C (302 °F; 423 K), NO 2 decomposes with release of oxygen via an endothermic process ( Δ H = 14 kJ/mol ): As suggested by

5822-769: The period 2012–2014, 30,000 units on LNG and 6,000 on LPG . Four fuel cell electric vehicles have been introduced for commercial lease and sale: the Honda Clarity , Toyota Mirai , Hyundai ix35 FCEV , and the Hyundai Nexo . By year-end 2019, about 18,000 FCEVs had been leased or sold worldwide. Fuel cell electric vehicles feature an average range of 505 km (314 mi) between refuelings and can be refueled in about 5 minutes. The U.S. Department of Energy's Fuel Cell Technology Program states that, as of 2011, fuel cells achieved 53–59% efficiency at one-quarter power and 42–53% vehicle efficiency at full power, and

5904-498: The recombination of the oxygen and hydrogen. The ceramic can run as hot as 800 °C (1,470 °F). This heat can be captured and used to heat water in a micro combined heat and power (m-CHP) application. When the heat is captured, total efficiency can reach 80–90% at the unit, but does not consider production and distribution losses. CHP units are being developed today for the European home market. Professor Jeremy P. Meyers, in

5986-405: The same general manner. They are made up of three adjacent segments: the anode , the electrolyte , and the cathode . Two chemical reactions occur at the interfaces of the three different segments. The net result of the two reactions is that fuel is consumed, water or carbon dioxide is created, and an electric current is created, which can be used to power electrical devices, normally referred to as

6068-514: The same journal. The fuel cell he made used similar materials to today's phosphoric acid fuel cell . In 1932, English engineer Francis Thomas Bacon successfully developed a 5 kW stationary fuel cell. NASA used the alkaline fuel cell (AFC), also known as the Bacon fuel cell after its inventor, from the mid-1960s. In 1955, W. Thomas Grubb, a chemist working for the General Electric Company (GE), further modified

6150-764: The summer directly into the ground providing further cooling while the waste heat during winter can be pumped directly into the building. The University of Minnesota owns the patent rights to this type of system. Co-generation systems can reach 85% efficiency (40–60% electric and the remainder as thermal). Phosphoric-acid fuel cells (PAFC) comprise the largest segment of existing CHP products worldwide and can provide combined efficiencies close to 90%. Molten carbonate (MCFC) and solid-oxide fuel cells (SOFC) are also used for combined heat and power generation and have electrical energy efficiencies around 60%. Disadvantages of co-generation systems include slow ramping up and down rates, high cost and short lifetime. Also their need to have

6232-463: The thousands of hours. The alkaline fuel cell (AFC) or hydrogen-oxygen fuel cell was designed and first demonstrated publicly by Francis Thomas Bacon in 1959. It was used as a primary source of electrical energy in the Apollo space program. The cell consists of two porous carbon electrodes impregnated with a suitable catalyst such as Pt, Ag, CoO, etc. The space between the two electrodes is filled with

6314-405: The trophy classes receive trophies. Although class descriptions do not say this, all vehicles MUST have approved fuel cells , roll cages , racing seats , and safety belts . All drivers must wear approved safety gear which includes fireproof suits and Snell approved helmets . Side by Side Fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of

6396-579: The use of a solid acid material as the electrolyte. At low temperatures, solid acids have an ordered molecular structure like most salts. At warmer temperatures (between 140 and 150   °C for CsHSO 4 ), some solid acids undergo a phase transition to become highly disordered "superprotonic" structures, which increases conductivity by several orders of magnitude. The first proof-of-concept SAFCs were developed in 2000 using cesium hydrogen sulfate (CsHSO 4 ). Current SAFC systems use cesium dihydrogen phosphate (CsH 2 PO 4 ) and have demonstrated lifetimes in

6478-528: The weakness of the N–O bond, NO 2 is a good oxidizer. Consequently, it will combust, sometimes explosively, in the presence of hydrocarbons . NO 2 reacts with water to give nitric acid and nitrous acid : This reaction is one of the steps in the Ostwald process for the industrial production of nitric acid from ammonia. This reaction is negligibly slow at low concentrations of NO 2 characteristic of

6560-540: Was called a solid polymer electrolyte fuel cell ( SPEFC ) in the early 1970s, before the proton-exchange mechanism was well understood. (Notice that the synonyms polymer electrolyte membrane and proton-exchange mechanism result in the same acronym .) On the anode side, hydrogen diffuses to the anode catalyst where it later dissociates into protons and electrons. These protons often react with oxidants causing them to become what are commonly referred to as multi-facilitated proton membranes. The protons are conducted through

6642-408: Was the first commercial use of a fuel cell. In 1959, a team led by Harry Ihrig built a 15 kW fuel cell tractor for Allis-Chalmers , which was demonstrated across the U.S. at state fairs. This system used potassium hydroxide as the electrolyte and compressed hydrogen and oxygen as the reactants. Later in 1959, Bacon and his colleagues demonstrated a practical five-kilowatt unit capable of powering

6724-599: Was used in the Titan rockets , to launch Project Gemini , in the maneuvering thrusters of the Space Shuttle , and in uncrewed space probes sent to various planets. Nitrogen dioxide typically arises via the oxidation of nitric oxide by oxygen in air (e.g. as result of corona discharge ): NO 2 is introduced into the environment by natural causes, including entry from the stratosphere , bacterial respiration, volcanos, and lightning. These sources make NO 2

#174825