Creed & Company was a British telecommunications company founded by Frederick George Creed which was an important pioneer in the field of teleprinter machines. It was merged into the International Telephone and Telegraph Corporation (ITT) in 1928.
63-501: The Baudot code ( French pronunciation: [bodo] ) is an early character encoding for telegraphy invented by Émile Baudot in the 1870s. It was the predecessor to the International Telegraph Alphabet No. 2 (ITA2), the most common teleprinter code in use before ASCII . Each character in the alphabet is represented by a series of five bits , sent over a communication channel such as
126-402: A byte order mark or escape sequences ; compressing schemes try to minimize the number of bytes used per code unit (such as SCSU and BOCU ). Although UTF-32BE and UTF-32LE are simpler CESes, most systems working with Unicode use either UTF-8 , which is backward compatible with fixed-length ASCII and maps Unicode code points to variable-length sequences of octets, or UTF-16BE , which
189-437: A string of the letters "ab̲c𐐀"—that is, a string containing a Unicode combining character ( U+0332 ̲ COMBINING LOW LINE ) as well as a supplementary character ( U+10400 𐐀 DESERET CAPITAL LETTER LONG I ). This string has several Unicode representations which are logically equivalent, yet while each is suited to a diverse set of circumstances or range of requirements: Note in particular that 𐐀
252-485: A Null in the middle of a message (immediately followed by an Erasure/Delete/LS control if followed by a letter, or by a FS control if followed by a figure). Sending Null controls also did not cause the paper band to advance to the next row (as nothing was punched), so this saved precious lengths of punchable paper band. On the other hand, the Erasure/Delete/LS control code was always punched and always shifted to
315-510: A fragment of text have been replaced by an arbitrary number of LS codes, what follows is still preserved and decodable. It can also be used as an initiator to make sure that the decoding of the first code will not give a digit or another symbol from the figures page (because the Null code can be arbitrarily inserted near the end or beginning of a punch band, and has to be ignored, whereas the Space code
378-441: A manual keyboard, and no teleprinter equipment was ever constructed that used it in its original form. The code was entered on a keyboard which had just five piano-type keys and was operated using two fingers of the left hand and three fingers of the right hand. Once the keys had been pressed, they were locked down until mechanical contacts in a distributor unit passed over the sector connected to that particular keyboard, at which time
441-532: A message it was first necessary to calibrate the impulse rate, a sequence of regularly timed "mark" pulses (1), by a group of five pulses, which could also be detected by simple passive electronic devices to turn on the teleprinter. This sequence of pulses generated a series of Erasure/Delete characters while also initializing the state of the receiver to the Letters shift mode. However, the first pulse could be lost, so this power on procedure could then be terminated by
504-699: A new BEL code rang a bell or otherwise produced an audible signal at the receiver. Additionally, the WRU or "Who aRe yoU?" code was introduced, which caused a receiving machine to send an identification stream back to the sender. In 1932, the CCITT introduced the International Telegraph Alphabet No. 2 ( ITA2 ) code as an international standard, which was based on the Western Union code with some minor changes. The US standardized on
567-420: A paper tape (much like DEL in 7-bit ASCII ). The sequence RYRYRY... is often used in test messages, and at the start of every transmission. Since R is 01010 and Y is 10101, the sequence exercises much of a teleprinter's mechanical components at maximum stress. Also, at one time, fine-tuning of the receiver was done using two coloured lights (one for each tone). 'RYRYRY...' produced 0101010101..., which made
630-420: A particular sequence of bits. Instead, characters would first be mapped to a universal intermediate representation in the form of abstract numbers called code points . Code points would then be represented in a variety of ways and with various default numbers of bits per character (code units) depending on context. To encode code points higher than the length of the code unit, such as above 256 for eight-bit units,
693-443: A process known as transcoding . Some of these are cited below. Cross-platform : Windows : The most used character encoding on the web is UTF-8 , used in 98.2% of surveyed web sites, as of May 2024. In application programs and operating system tasks, both UTF-8 and UTF-16 are popular options. Creed %26 Company The company was founded by Frederick George Creed and Danish telegraph engineer Harald Bille, and
SECTION 10
#1732775607435756-429: A reperforator would make a perforated copy of the message. Because there was no longer a connection between the operator's hand movement and the bits transmitted, there was no concern about arranging the code to minimize operator fatigue. Instead, Murray designed the code to minimize wear on the machinery by assigning the code combinations with the fewest punched holes to the most frequently used characters . For example,
819-461: A single glyph . The former simplifies the text handling system, but the latter allows any letter/diacritic combination to be used in text. Ligatures pose similar problems. Exactly how to handle glyph variants is a choice that must be made when constructing a particular character encoding. Some writing systems, such as Arabic and Hebrew, need to accommodate things like graphemes that are joined in different ways in different contexts, but represent
882-539: A single LS) to return to lowercase mode. The cell marked as "Reserved" is also usable (using the FS code from the figures shift page) to switch the page of figures (which normally contains digits and national lowercase letters or symbols) to a fourth page (where national letters are uppercase and other symbols may be encoded). ITA2 is still used in telecommunications devices for the deaf (TDD), Telex , and some amateur radio applications, such as radioteletype ("RTTY"). ITA2
945-451: A single Null immediately followed by an Erasure/Delete character. To preserve the synchronization between devices, the Null code could not be used arbitrarily in the middle of messages (this was an improvement to the initial Baudot system where spaces were not explicitly differentiated, so it was difficult to maintain the pulse counters for repeating spaces on teleprinters). But it was then possible to resynchronize devices at any time by sending
1008-549: A single character per code unit. However, due to the emergence of more sophisticated character encodings, the distinction between these terms has become important. "Code page" is a historical name for a coded character set. Originally, a code page referred to a specific page number in the IBM standard character set manual, which would define a particular character encoding. Other vendors, including Microsoft , SAP , and Oracle Corporation , also published their own sets of code pages;
1071-455: A six-bit code to a five-bit code, as suggested by Carl Friedrich Gauss and Wilhelm Weber in 1834, with equal on and off intervals, which allowed for transmission of the Roman alphabet, and included punctuation and control signals. The code itself was not patented (only the machine) because French patent law does not allow concepts to be patented. Baudot's 5-bit code was adapted to be sent from
1134-432: A stream of octets (bytes). The purpose of this decomposition is to establish a universal set of characters that can be encoded in a variety of ways. To describe this model precisely, Unicode uses its own set of terminology to describe its process: An abstract character repertoire (ACR) is the full set of abstract characters that a system supports. Unicode has an open repertoire, meaning that new characters will be added to
1197-616: A telegraph wire or a radio signal by asynchronous serial communication . The symbol rate measurement is known as baud , and is derived from the same name. In the below table, Columns I, II, III, IV, and V show the code; the Let. and Fig. columns show the letters and numbers for the Continental and UK versions; and the sort keys present the table in the order: alphabetical, Gray and UK Baudot developed his first multiplexed telegraph in 1872 and patented it in 1874. In 1876, he changed from
1260-615: A version of ITA2 called the American Teletypewriter code (US TTY) which was the basis for 5-bit teletypewriter codes until the debut of 7-bit ASCII in 1963. Some code points (marked blue in the table) were reserved for national-specific usage. The code position assigned to Null was in fact used only for the idle state of teleprinters. During long periods of idle time, the impulse rate was not synchronized between both devices (which could even be powered off or not permanently interconnected on commuted phone lines). To start
1323-505: A well-defined and extensible encoding system, has replaced most earlier character encodings, but the path of code development to the present is fairly well known. The Baudot code, a five- bit encoding, was created by Émile Baudot in 1870, patented in 1874, modified by Donald Murray in 1901, and standardized by CCITT as International Telegraph Alphabet No. 2 (ITA2) in 1930. The name baudot has been erroneously applied to ITA2 and its many variants. ITA2 suffered from many shortcomings and
SECTION 20
#17327756074351386-478: Is backward compatible with fixed-length UCS-2BE and maps Unicode code points to variable-length sequences of 16-bit words. See comparison of Unicode encodings for a detailed discussion. Finally, there may be a higher-level protocol which supplies additional information to select the particular variant of a Unicode character, particularly where there are regional variants that have been 'unified' in Unicode as
1449-600: Is also used in Enhanced Broadcast Solution, an early 21st-century financial protocol specified by Deutsche Börse , to reduce the character encoding footprint. Nearly all 20th-century teleprinter equipment used Western Union's code, ITA2, or variants thereof. Radio amateurs casually call ITA2 and variants "Baudot" incorrectly, and even the American Radio Relay League 's Amateur Radio Handbook does so, though in more recent editions
1512-442: Is defined by a CEF. A character encoding scheme (CES) is the mapping of code units to a sequence of octets to facilitate storage on an octet-based file system or transmission over an octet-based network. Simple character encoding schemes include UTF-8 , UTF-16BE , UTF-32BE , UTF-16LE , and UTF-32LE ; compound character encoding schemes, such as UTF-16 , UTF-32 and ISO/IEC 2022 , switch between several simple schemes by using
1575-444: Is defined by the encoding. Thus, the number of code units required to represent a code point depends on the encoding: Exactly what constitutes a character varies between character encodings. For example, for letters with diacritics , there are two distinct approaches that can be taken to encode them: they can be encoded either as a single unified character (known as a precomposed character), or as separate characters that combine into
1638-416: Is no longer used. In 1901, Baudot's code was modified by Donald Murray (1865–1945), prompted by his development of a typewriter-like keyboard. The Murray system employed an intermediate step: an operator used a keyboard perforator to punch a paper tape and then a transmitter to send the message from the punched tape . At the receiving end of the line, a printing mechanism would print on a paper tape, and/or
1701-430: Is preferred, usually in the larger context of locales. IBM's Character Data Representation Architecture (CDRA) designates entities with coded character set identifiers ( CCSIDs ), each of which is variously called a "charset", "character set", "code page", or "CHARMAP". The code unit size is equivalent to the bit measurement for the particular encoding: A code point is represented by a sequence of code units. The mapping
1764-492: Is represented with either one 32-bit value (UTF-32), two 16-bit values (UTF-16), or four 8-bit values (UTF-8). Although each of those forms uses the same total number of bits (32) to represent the glyph, it is not obvious how the actual numeric byte values are related. As a result of having many character encoding methods in use (and the need for backward compatibility with archived data), many computer programs have been developed to translate data between character encoding schemes,
1827-602: Is significant in text). The cells marked as reserved for extensions (which use the LS code again a second time—just after the first LS code—to shift from the figures page to the letters shift page) has been defined to shift into a new mode. In this new mode, the letters page contains only lowercase letters, but retains access to a third code page for uppercase letters, either by encoding for a single letter (by sending LS before that letter), or locking (with FS+LS) for an unlimited number of capital letters or digits before then unlocking (with
1890-577: The Cyrillic letter mode was activated by the character (00000). Because of the larger number of characters in the Cyrillic alphabet, the characters ! , & , £ were omitted and replaced by Cyrillics, and BEL has the same code as Cyrillic letter Ю. The Cyrillic letters Ъ and Ё are omitted, and Ч is merged with the numeral 4. Character encoding Character encoding is the process of assigning numbers to graphical characters , especially
1953-604: The World Wide Web is UTF-8 , which is used in 98.2% of surveyed web sites, as of May 2024. In application programs and operating system tasks, both UTF-8 and UTF-16 are popular options. The history of character codes illustrates the evolving need for machine-mediated character-based symbolic information over a distance, using once-novel electrical means. The earliest codes were based upon manual and hand-written encoding and cyphering systems, such as Bacon's cipher , Braille , international maritime signal flags , and
Baudot code - Misplaced Pages Continue
2016-596: The (initial) letters mode. According to some sources, the Null code point was reserved for country-internal usage only. The Shift to Letters code (LS) is also usable as a way to cancel/delete text from a punched tape after it has been read, allowing the safe destruction of a message before discarding the punched band. Functionally, it can also play the same filler role as the Delete code in ASCII (or other 7-bit and 8-bit encodings, including EBCDIC for punched cards). After codes in
2079-486: The 1980s faced the dilemma that, on the one hand, it seemed necessary to add more bits to accommodate additional characters, but on the other hand, for the users of the relatively small character set of the Latin alphabet (who still constituted the majority of computer users), those additional bits were a colossal waste of then-scarce and expensive computing resources (as they would always be zeroed out for such users). In 1985,
2142-532: The 4-digit encoding of Chinese characters for a Chinese telegraph code ( Hans Schjellerup , 1869). With the adoption of electrical and electro-mechanical techniques these earliest codes were adapted to the new capabilities and limitations of the early machines. The earliest well-known electrically transmitted character code, Morse code , introduced in the 1840s, used a system of four "symbols" (short signal, long signal, short space, long space) to generate codes of variable length. Though some commercial use of Morse code
2205-519: The Unicode standard is U+0000 to U+10FFFF, inclusive, divided in 17 planes , identified by the numbers 0 to 16. Characters in the range U+0000 to U+FFFF are in plane 0, called the Basic Multilingual Plane (BMP). This plane contains the most commonly-used characters. Characters in the range U+10000 to U+10FFFF in the other planes are called supplementary characters . The following table shows examples of code point values: Consider
2268-464: The average personal computer user's hard disk drive could store only about 10 megabytes, and it cost approximately US$ 250 on the wholesale market (and much higher if purchased separately at retail), so it was very important at the time to make every bit count. The compromise solution that was eventually found and developed into Unicode was to break the assumption (dating back to telegraph codes) that each character should always directly correspond to
2331-410: The continental code are replaced by fractionals in the inland code. Code elements 1, 2 and 3 are transmitted by keys 1, 2 and 3, and these are operated by the first three fingers of the right hand. Code elements 4 and 5 are transmitted by keys 4 and 5, and these are operated by the first two fingers of the left hand." Baudot's code became known as the International Telegraph Alphabet No. 1 ( ITA1 ). It
2394-468: The corresponding characters are typed. "ENQuiry" will trigger the other machine's answerback. It means "Who are you?" CR is carriage return , LF is line feed , BEL is the bell character which rang a small bell (often used to alert operators to an incoming message), SP is space, and NUL is the null character (blank tape). Note: the binary conversions of the codepoints are often shown in reverse order, depending on (presumably) from which side one views
2457-543: The era had their own character codes, often six-bit, but usually had the ability to read tapes produced on IBM equipment. These BCD encodings were the precursors of IBM's Extended Binary-Coded Decimal Interchange Code (usually abbreviated as EBCDIC), an eight-bit encoding scheme developed in 1963 for the IBM System/360 that featured a larger character set, including lower case letters. In trying to develop universally interchangeable character encodings, researchers in
2520-503: The following characters are to be interpreted as being in the FIGS set, until this is reset by the LTRS (11111) character. In use, the LTRS or FIGS shift key is pressed and released, transmitting the corresponding shift character to the other machine. The desired letters or figures characters are then typed. Unlike a typewriter or modern computer keyboard, the shift key isn't kept depressed whilst
2583-533: The keyboard was unlocked ready for the next character to be entered, with an audible click (known as the "cadence signal") to warn the operator. Operators had to maintain a steady rhythm, and the usual speed of operation was 30 words per minute. The table "shows the allocation of the Baudot code which was employed in the British Post Office for continental and inland services. A number of characters in
Baudot code - Misplaced Pages Continue
2646-401: The lights glow with equal brightness when the tuning was correct. This tuning sequence is only useful when ITA2 is used with two-tone FSK modulation, such as is commonly seen in radioteletype (RTTY) usage. US implementations of Baudot code may differ in the addition of a few characters, such as #, & on the FIGS layer. The Russian version of Baudot code ( MTK-2 ) used three shift modes;
2709-479: The most well-known code page suites are " Windows " (based on Windows-1252) and "IBM"/"DOS" (based on code page 437 ). Despite no longer referring to specific page numbers in a standard, many character encodings are still referred to by their code page number; likewise, the term "code page" is often still used to refer to character encodings in general. The term "code page" is not used in Unix or Linux, where "charmap"
2772-544: The one-hole letters are E and T. The ten two-hole letters are AOINSHRDLZ, very similar to the " Etaoin shrdlu " order used in Linotype machines . Ten more letters, BCGFJMPUWY, have three holes each, and the four-hole letters are VXKQ. The Murray code also introduced what became known as "format affectors" or " control characters " – the CR (Carriage Return) and LF (Line Feed) codes. A few of Baudot's codes moved to
2835-507: The paper tape. Note further that the "control" characters were chosen so that they were either symmetric or in useful pairs so that inserting a tape "upside down" did not result in problems for the equipment and the resulting printout could be deciphered. Thus FIGS (11011), LTRS (11111) and space (00100) are invariant, while CR (00010) and LF (01000), generally used as a pair, are treated the same regardless of order by page printers. LTRS could also be used to overpunch characters to be deleted on
2898-546: The positions where they have stayed ever since: the NULL or BLANK and the DEL code. NULL/BLANK was used as an idle code for when no messages were being sent, but the same code was used to encode the space separation between words. Sequences of DEL codes (fully punched columns) were used at start or end of messages or between them which made it easier to separate distinct messages. (BELL codes could be inserted in those sequences to signal to
2961-412: The punched card code then in use only allowed digits, upper-case English letters and a few special characters, six bits were sufficient. These BCD encodings extended existing simple four-bit numeric encoding to include alphabetic and special characters, mapping them easily to punch-card encoding which was already in widespread use. IBM's codes were used primarily with IBM equipment; other computer vendors of
3024-527: The remote operator that a new message was coming or that transmission of a message was terminated). Early British Creed machines also used the Murray system. Murray's code was adopted by Western Union which used it until the 1950s, with a few changes that consisted of omitting some characters and adding more control codes. An explicit SPC (space) character was introduced, in place of the BLANK/NULL, and
3087-460: The repertoire over time. A coded character set (CCS) is a function that maps characters to code points (each code point represents one character). For example, in a given repertoire, the capital letter "A" in the Latin alphabet might be represented by the code point 65, the character "B" by 66, and so on. Multiple coded character sets may share the same character repertoire; for example ISO/IEC 8859-1 and IBM code pages 037 and 500 all cover
3150-497: The same character. An example is the XML attribute xml:lang. The Unicode model uses the term "character map" for other systems which directly assign a sequence of characters to a sequence of bytes, covering all of the CCS, CEF and CES layers. In Unicode, a character can be referred to as 'U+' followed by its codepoint value in hexadecimal. The range of valid code points (the codespace) for
3213-537: The same repertoire but map them to different code points. A character encoding form (CEF) is the mapping of code points to code units to facilitate storage in a system that represents numbers as bit sequences of fixed length (i.e. practically any computer system). For example, a system that stores numeric information in 16-bit units can only directly represent code points 0 to 65,535 in each unit, but larger code points (say, 65,536 to 1.4 million) could be represented by using multiple 16-bit units. This correspondence
SECTION 50
#17327756074353276-527: The same semantic character. Unicode and its parallel standard, the ISO/IEC 10646 Universal Character Set , together constitute a unified standard for character encoding. Rather than mapping characters directly to bytes , Unicode separately defines a coded character set that maps characters to unique natural numbers ( code points ), how those code points are mapped to a series of fixed-size natural numbers (code units), and finally how those units are encoded as
3339-433: The solution was to implement variable-length encodings where an escape sequence would signal that subsequent bits should be parsed as a higher code point. Informally, the terms "character encoding", "character map", "character set" and "code page" are often used interchangeably. Historically, the same standard would specify a repertoire of characters and how they were to be encoded into a stream of code units — usually with
3402-464: The tables of codes correctly identifies it as ITA2. The values shown in each cell are the Unicode codepoints, given for comparison. Meteorologists used a variant of ITA2 with the figures-case symbols, except for the ten digits, BEL and a few other characters, replaced by weather symbols: Note: This table presumes the space called "1" by Baudot and Murray is rightmost, and least significant. The way
3465-480: The teleprinter field with their Model 1P, which was soon superseded by the improved Model 2P. In 1925 Creed acquired the patents for Donald Murray's Murray code , a rationalised Baudot code, and it was used for their new Model 3 Tape Teleprinter of 1927. This machine printed received messages directly onto gummed paper tape at a rate of 65 words per minute and was the first combined start-stop transmitter-receiver teleprinter from Creed to enter mass production. Some of
3528-422: The transmitted bits were packed into larger codes varied by manufacturer. The most common solution allocates the bits from the least significant bit towards the most significant bit (leaving the three most significant bits of a byte unused). In ITA2, characters are expressed using five bits. ITA2 uses two code sub-sets, the "letter shift" (LTRS), and the "figure shift" (FIGS). The FIGS character (11011) signals that
3591-697: The written characters of human language, allowing them to be stored, transmitted, and transformed using computers. The numerical values that make up a character encoding are known as code points and collectively comprise a code space, a code page , or character map . Early character codes associated with the optical or electrical telegraph could only represent a subset of the characters used in written languages , sometimes restricted to upper case letters , numerals and some punctuation only. The advent of digital computer systems allows more elaborate encodings codes (such as Unicode ) to support hundreds of written languages. The most popular character encoding on
3654-511: Was adopted fairly widely. ASCII67's American-centric nature was somewhat addressed in the European ECMA-6 standard. Herman Hollerith invented punch card data encoding in the late 19th century to analyze census data. Initially, each hole position represented a different data element, but later, numeric information was encoded by numbering the lower rows 0 to 9, with a punch in a column representing its row number. Later alphabetic data
3717-670: Was encoded by allowing more than one punch per column. Electromechanical tabulating machines represented date internally by the timing of pulses relative to the motion of the cards through the machine. When IBM went to electronic processing, starting with the IBM 603 Electronic Multiplier, it used a variety of binary encoding schemes that were tied to the punch card code. IBM used several Binary Coded Decimal ( BCD ) six-bit character encoding schemes, starting as early as 1953 in its 702 and 704 computers, and in its later 7000 Series and 1400 series , as well as in associated peripherals. Since
3780-620: Was first incorporated in 1912 as "Creed, Bille & Company Limited". After Bille's death in a railway accident in 1916, his name was dropped from the company's title and it became simply Creed & Company. The Company spent most of World War I producing high-quality instruments, manufacturing facilities for which were very limited at that time in the UK. Among the items produced were amplifiers, spark-gap transmitters , aircraft compasses, high-voltage generators, bomb release apparatus, and fuses for artillery shells and bombs . In 1924 Creed entered
3843-409: Was often improved by many equipment manufacturers, sometimes creating compatibility issues. In 1959 the U.S. military defined its Fieldata code, a six-or seven-bit code, introduced by the U.S. Army Signal Corps. While Fieldata addressed many of the then-modern issues (e.g. letter and digit codes arranged for machine collation), it fell short of its goals and was short-lived. In 1963 the first ASCII code
SECTION 60
#17327756074353906-539: Was released (X3.4-1963) by the ASCII committee (which contained at least one member of the Fieldata committee, W. F. Leubbert), which addressed most of the shortcomings of Fieldata, using a simpler code. Many of the changes were subtle, such as collatable character sets within certain numeric ranges. ASCII63 was a success, widely adopted by industry, and with the follow-up issue of the 1967 ASCII code (which added lower-case letters and fixed some "control code" issues) ASCII67
3969-590: Was via machinery, it was often used as a manual code, generated by hand on a telegraph key and decipherable by ear, and persists in amateur radio and aeronautical use. Most codes are of fixed per-character length or variable-length sequences of fixed-length codes (e.g. Unicode ). Common examples of character encoding systems include Morse code, the Baudot code , the American Standard Code for Information Interchange (ASCII) and Unicode. Unicode,
#434565