Misplaced Pages

STS-48

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#788211

120-495: STS-48 was a Space Shuttle mission that launched on September 12, 1991, from Kennedy Space Center , Florida . The orbiter was Space Shuttle Discovery on her 13th flight. The primary payload was the Upper Atmosphere Research Satellite (UARS). The mission landed on September 18 at 12:38 a.m. EDT at Edwards Air Force Base on runway 22. The mission was completed in 81 revolutions of

240-665: A Fox Network special accusing NASA of faking the Apollo missions. Astronomer Michelle Thaller has described Badastronomy.com, as well as Plait's book and essays called Bad Astronomy , as "a monumental service to the space-science community". In 2005, Plait started the Bad Astronomy blog. In July 2008, it moved to a new host, Discover Magazine . While it is primarily an astronomy blog, Plait also posts about skepticism , pseudoscience , and antiscience topics, with occasional personal and political posts. On November 12, 2012,

360-1031: A spaceplane to a runway landing, usually to the Shuttle Landing Facility at KSC, Florida, or to Rogers Dry Lake in Edwards Air Force Base , California. If the landing occurred at Edwards, the orbiter was flown back to the KSC atop the Shuttle Carrier Aircraft (SCA), a specially modified Boeing 747 designed to carry the shuttle above it. The first orbiter, Enterprise , was built in 1976 and used in Approach and Landing Tests (ALT), but had no orbital capability. Four fully operational orbiters were initially built: Columbia , Challenger , Discovery , and Atlantis . Of these, two were lost in mission accidents: Challenger in 1986 and Columbia in 2003 , with

480-453: A 2009 interview, Plait stated that his daughter is interested in astronomy and science, as well as anime and manga. Between 2011 and 2018, Setter and Plait ran Science Getaways, a vacation company that provides science-based adventures. As of January, 2024, he lives in rural Virginia outside of Charlottesville. Plait began publishing explanatory Internet postings on science in 1993. Five years later, Plait established Badastronomy.com with

600-492: A NASA engineer who had worked to design the Mercury capsule, patented a design for a two-stage fully recoverable system with a straight-winged orbiter mounted on a larger straight-winged booster. The Air Force Flight Dynamics Laboratory argued that a straight-wing design would not be able to withstand the high thermal and aerodynamic stresses during reentry, and would not provide the required cross-range capability. Additionally,

720-497: A crewed spaceflight engineer on both STS-51-C and STS-51-J to serve as a military representative for a National Reconnaissance Office payload. A Space Shuttle crew typically had seven astronauts, with STS-61-A flying with eight. The crew compartment comprised three decks and was the pressurized, habitable area on all Space Shuttle missions. The flight deck consisted of two seats for the commander and pilot, as well as an additional two to four seats for crew members. The mid-deck

840-503: A flash of light and several objects that appear to be flying in an artificial or controlled fashion. NASA explained the objects as ice particles reacting to engine jets. Philip C. Plait discussed the issue in his book Bad Astronomy , agreeing with NASA. This topic was also discussed in an episode of UFO Hunters . NASA began a tradition of playing music to astronauts during the Project Gemini , and first used music to wake up

960-439: A flight crew during Apollo 15 . Each track is specially chosen, often by the astronauts' families, and usually has a special meaning to an individual member of the crew, or is applicable to their daily activities. Space Shuttle The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of

1080-467: A future reusable shuttle: Class I would have a reusable orbiter mounted on expendable boosters, Class II would use multiple expendable rocket engines and a single propellant tank (stage-and-a-half), and Class III would have both a reusable orbiter and a reusable booster. In September 1969, the Space Task Group, under the leadership of U.S. Vice President Spiro Agnew , issued a report calling for

1200-598: A glider. Its three-part fuselage provided support for the crew compartment, cargo bay, flight surfaces, and engines. The rear of the orbiter contained the Space Shuttle Main Engines (SSME), which provided thrust during launch, as well as the Orbital Maneuvering System (OMS), which allowed the orbiter to achieve, alter, and exit its orbit once in space. Its double- delta wings were 18 m (60 ft) long, and were swept 81° at

1320-482: A mobile platform for astronauts conducting an EVA. The RMS was built by the Canadian company Spar Aerospace and was controlled by an astronaut inside the orbiter's flight deck using their windows and closed-circuit television. The RMS allowed for six degrees of freedom and had six joints located at three points along the arm. The original RMS could deploy or retrieve payloads up to 29,000 kg (65,000 lb), which

SECTION 10

#1732776838789

1440-534: A partial-pressure version of the high-altitude pressure suits with a helmet. In 1994, the LES was replaced by the full-pressure Advanced Crew Escape Suit (ACES), which improved the safety of the astronauts in an emergency situation. Columbia originally had modified SR-71 zero-zero ejection seats installed for the ALT and first four missions, but these were disabled after STS-4 and removed after STS-9 . The flight deck

1560-530: A partially reusable system would be the most cost-effective solution. The head of the NASA Office of Manned Space Flight, George Mueller , announced the plan for a reusable shuttle on August 10, 1968. NASA issued a request for proposal (RFP) for designs of the Integral Launch and Reentry Vehicle (ILRV) on October 30, 1968. Rather than award a contract based upon initial proposals, NASA announced

1680-558: A phased approach for the Space Shuttle contracting and development; Phase A was a request for studies completed by competing aerospace companies, Phase B was a competition between two contractors for a specific contract, Phase C involved designing the details of the spacecraft components, and Phase D was the production of the spacecraft. In December 1968, NASA created the Space Shuttle Task Group to determine

1800-481: A port-side hatch that the crew used for entry and exit while on Earth. The airlock is a structure installed to allow movement between two spaces with different gas components, conditions, or pressures. Continuing on the mid-deck structure, each orbiter was originally installed with an internal airlock in the mid-deck. The internal airlock was installed as an external airlock in the payload bay on Discovery , Atlantis , and Endeavour to improve docking with Mir and

1920-675: A result of an O-ring failing at low temperature, the SRBs were redesigned to provide a constant seal regardless of the ambient temperature. The Space Shuttle's operations were supported by vehicles and infrastructure that facilitated its transportation, construction, and crew access. The crawler-transporters carried the MLP and the Space Shuttle from the VAB to the launch site. The Shuttle Carrier Aircraft (SCA) were two modified Boeing 747s that could carry an orbiter on its back. The original SCA (N905NA)

2040-671: A second orbiter. Later that month, Rockwell began converting STA-099 to OV-099, later named Challenger . On January 29, 1979, NASA ordered two additional orbiters, OV-103 and OV-104, which were named Discovery and Atlantis . Construction of OV-105, later named Endeavour , began in February 1982, but NASA decided to limit the Space Shuttle fleet to four orbiters in 1983. After the loss of Challenger , NASA resumed production of Endeavour in September 1987. After it arrived at Edwards AFB, Enterprise underwent flight testing with

2160-670: A separate central processing unit (CPU) and input/output processor (IOP), and non-volatile solid-state memory . From 1991 to 1993, the orbiter vehicles were upgraded to the AP-101S, which improved the memory and processing capabilities, and reduced the volume and weight of the computers by combining the CPU and IOP into a single unit. Four of the GPCs were loaded with the Primary Avionics Software System (PASS), which

2280-410: A speech. After STS-4, NASA declared its Space Transportation System (STS) operational. The Space Shuttle was the first operational orbital spacecraft designed for reuse . Each Space Shuttle orbiter was designed for a projected lifespan of 100 launches or ten years of operational life, although this was later extended. At launch, it consisted of the orbiter , which contained the crew and payload,

2400-802: A total of 135 missions from 1981 to 2011. They launched from the Kennedy Space Center (KSC) in Florida . Operational missions launched numerous satellites , interplanetary probes , and the Hubble Space Telescope (HST), conducted science experiments in orbit, participated in the Shuttle- Mir program with Russia, and participated in the construction and servicing of the International Space Station (ISS). The Space Shuttle fleet's total mission time

2520-515: A total of 14 astronauts killed. A fifth operational (and sixth in total) orbiter, Endeavour , was built in 1991 to replace Challenger . The three surviving operational vehicles were retired from service following Atlantis ' s final flight on July 21, 2011. The U.S. relied on the Russian Soyuz spacecraft to transport astronauts to the ISS from the last Shuttle flight until the launch of

SECTION 20

#1732776838789

2640-428: A two-part drag parachute system to slow the orbiter after landing. The orbiter used retractable landing gear with a nose landing gear and two main landing gear, each containing two tires. The main landing gear contained two brake assemblies each, and the nose landing gear contained an electro-hydraulic steering mechanism. The Space Shuttle crew varied per mission. They underwent rigorous testing and training to meet

2760-540: Is an American astronomer , skeptic , and popular science blogger. Plait has worked as part of the Hubble Space Telescope team, images and spectra of astronomical objects, as well as engaging in public outreach advocacy for NASA missions. He has written three books, Bad Astronomy , Death from the Skies , and Under Alien Skies . He has also appeared in several science documentaries, including How

2880-452: Is cooled by 1,080 interior lines carrying liquid hydrogen and is thermally protected by insulative and ablative material. The RS-25 engines had several improvements to enhance reliability and power. During the development program, Rocketdyne determined that the engine was capable of safe reliable operation at 104% of the originally specified thrust. To keep the engine thrust values consistent with previous documentation and software, NASA kept

3000-466: Is no longer actively maintained, while the blog has continued, through several changes of platform, to the present day. His first book, Bad Astronomy: Misconceptions and Misuses Revealed, from Astrology to the Moon Landing "Hoax" deals with much the same subject matter as his website. His second book, Death from the Skies , describes ways astronomical events could wipe out life on Earth and

3120-513: The Columbia disaster . Beginning with STS-114 , the orbiter vehicles were equipped with the wing leading edge impact detection system to alert the crew to any potential damage. The entire underside of the orbiter vehicle, as well as the other hottest surfaces, were protected with tiles of high-temperature reusable surface insulation, made of borosilicate glass -coated silica fibers that trapped heat in air pockets and redirected it out. Areas on

3240-497: The Air Force Maui Optical Site (AMOS) experiment. The flight was the first to test an electronic still camera in space, a modified Nikon NASA F4 . Images obtained during the flight were monochrome with 8 bits of digital information per pixel (256 gray levels) and stored on a removable hard disk. The images could be viewed and enhanced on board using a modified lap-top computer before being transmitted to

3360-780: The Crew Dragon Demo-2 mission in May 2020. In the late 1930s, the German government launched the " Amerikabomber " project, and Eugen Sanger 's idea, together with mathematician Irene Bredt , was a winged rocket called the Silbervogel (German for "silver bird"). During the 1950s, the United States Air Force proposed using a reusable piloted glider to perform military operations such as reconnaissance, satellite attack, and air-to-ground weapons employment. In

3480-570: The Earth and traveled 3,530,369 km (2,193,670 mi). The 5 astronauts carried out a number of experiments and deployed several satellites. The total launch mass was 108,890 kg (240,060 lb) and the landing mass was 87,440 kg (192,770 lb). Space Shuttle Discovery was launched into a 57.00° inclination orbit from the Kennedy Space Center (KSC) Launch Complex 39A at 7:11 p.m. EDT on September 12, 1991. Launch

3600-495: The Fermi Gamma-ray Space Telescope and other NASA -funded missions while at Sonoma State University from 2000 to 2007. In 2001, he coauthored a paper on increasing accessibility of astronomy education resources and programs. A large proportion of his public outreach occurs online. He established the badastronomy website in 1998 and the corresponding blog in 2005. The website remains archived but

3720-403: The Hubble Space Telescope , among the first of those recorded. These results have been used in further studies into the properties and structure of dim, young, moderate-size stars, called Herbig Ae/Be stars , which also confirmed results observed by Grady, et al. After his research contributions, Plait concentrated on educational outreach. He went on to perform web-based public outreach for

STS-48 - Misplaced Pages Continue

3840-571: The ISS , along with the Orbiter Docking System . The airlock module can be fitted in the mid-bay, or connected to it but in the payload bay. With an internal cylindrical volume of 1.60 metres (5 feet 3 inches) diameter and 2.11 metres (6 feet 11 inches) in length, it can hold two suited astronauts. It has two D-shaped hatchways 1.02 m (40 in) long (diameter), and 0.91 m (36 in) wide. The orbiter

3960-557: The Martin Marietta X-24B . The program tested aerodynamic characteristics that would later be incorporated in design of the Space Shuttle, including unpowered landing from a high altitude and speed. On September 24, 1966, as the Apollo space program neared its design completion, NASA and the Air Force released a joint study concluding that a new vehicle was required to satisfy their respective future demands and that

4080-553: The Shuttle Carrier Aircraft , a Boeing 747 that had been modified to carry the orbiter. In February 1977, Enterprise began the Approach and Landing Tests (ALT) and underwent captive flights, where it remained attached to the Shuttle Carrier Aircraft for the duration of the flight. On August 12, 1977, Enterprise conducted its first glide test, where it detached from the Shuttle Carrier Aircraft and landed at Edwards AFB. After four additional flights, Enterprise

4200-512: The Space Shuttle program . Its official program name was Space Transportation System (STS), taken from the 1969 plan led by U.S. Vice President Spiro Agnew for a system of reusable spacecraft where it was the only item funded for development. The first ( STS-1 ) of four orbital test flights occurred in 1981, leading to operational flights ( STS-5 ) beginning in 1982. Five complete Space Shuttle orbiter vehicles were built and flown on

4320-633: The Tracking and Data Relay Satellite System and the Spacecraft Tracking and Data Acquisition Network ground stations to communicate with the orbiter throughout its orbit. Additionally, the orbiter deployed a high-bandwidth K u  band radio out of the cargo bay, which could also be utilized as a rendezvous radar. The orbiter was also equipped with two UHF radios for communications with air traffic control and astronauts conducting EVA. The Space Shuttle's fly-by-wire control system

4440-540: The external tank (ET), and the two solid rocket boosters (SRBs). Responsibility for the Space Shuttle components was spread among multiple NASA field centers. The KSC was responsible for launch, landing, and turnaround operations for equatorial orbits (the only orbit profile actually used in the program). The U.S. Air Force at the Vandenberg Air Force Base was responsible for launch, landing, and turnaround operations for polar orbits (though this

4560-484: The qualification requirements for their roles. The crew was divided into three categories: Pilots, Mission Specialists, and Payload Specialists. Pilots were further divided into two roles: Space Shuttle Commanders and Space Shuttle Pilots. The test flights only had two members each, the commander and pilot, who were both qualified pilots that could fly and land the orbiter. The on-orbit operations, such as experiments, payload deployment, and EVAs, were conducted primarily by

4680-929: The 2017 show Bill Nye Saves the World on Netflix . From 2008 to 2009, Plait served as the president of the James Randi Educational Foundation , which promotes scientific skepticism , a position he eventually stepped down from in order to focus on the " Bad Universe " television project. He has also been a regular speaker at widely attended science and skepticism events and conferences, such as The Amazing Meeting (TAM), Northeast Conference on Science and Skepticism (NECSS), and DragonCon . Plait writes and speaks on topics related to scientific skepticism, such as advocating in favor of widespread immunization . Plait used to live in Boulder, Colorado with his wife, Marcella Setter, and daughter. In

4800-448: The 2195 aluminum-lithium alloy, which was 40% stronger and 10% less dense than its predecessor, 2219 aluminum-lithium alloy. The SLWT weighed 3,400 kg (7,500 lb) less than the LWT, which allowed the Space Shuttle to deliver heavy elements to ISS's high inclination orbit. The Solid Rocket Boosters (SRB) provided 71.4% of the Space Shuttle's thrust during liftoff and ascent, and were

4920-452: The Air Force required a larger payload capacity than Faget's design allowed. In January 1971, NASA and Air Force leadership decided that a reusable delta-wing orbiter mounted on an expendable propellant tank would be the optimal design for the Space Shuttle. After they established the need for a reusable, heavy-lift spacecraft, NASA and the Air Force determined the design requirements of their respective services. The Air Force expected to use

STS-48 - Misplaced Pages Continue

5040-401: The Bad Astronomy blog moved to Slate magazine . Plait told Richard Saunders in an interview that "they [Slate] are very supportive... a new community." Revisiting old posts, Plait stated, "I've written about everything, when you've written 7,000 blog posts you've pretty much written about every topic in astronomy." On February 1, 2017 the Bad Astronomy blog moved to SyfyWire , where it

5160-521: The ET. The SRBs were jettisoned before the vehicle reached orbit, while the main engines continued to operate, and the ET was jettisoned after main engine cutoff and just before orbit insertion , which used the orbiter's two Orbital Maneuvering System (OMS) engines. At the conclusion of the mission, the orbiter fired its OMS to deorbit and reenter the atmosphere . The orbiter was protected during reentry by its thermal protection system tiles, and it glided as

5280-842: The Earth. The UARS was the first major flight element of NASA's Mission to Planet Earth, a multi-year global research program that would use ground-based, airborne, and space-based instruments to study the Earth as a complete environmental system. UARS had ten sensing and measuring devices: Cryogenic Limb Array Etalon Spectrometer (CLAES); Improved Stratospheric and Mesospheric Sounder (ISAMS); Microwave Limb Sounder (MLS); Halogen Occultation Experiment (HALOE); High Resolution Doppler Imager (HRDI); Wind Imaging Interferometer (WlNDII); Solar Ultraviolet Spectral Irradiance Monitor (SUSIM); Solar/Stellar Irradiance Comparison Experiment (SOLSTICE); Particle Environment Monitor (PEM) and Active Cavity Radiometer Irradiance Monitor (ACRIM II). UARS's initial 18-month mission

5400-680: The IMU, INS, and TACAN systems, which first flew on STS-118 in August 2007. While in orbit, the crew primarily communicated using one of four S band radios, which provided both voice and data communications. Two of the ;band radios were phase modulation transceivers , and could transmit and receive information. The other two S band radios were frequency modulation transmitters and were used to transmit data to NASA. As S band radios can operate only within their line of sight , NASA used

5520-470: The IMUs while in orbit. The star trackers are deployed while in orbit, and can automatically or manually align on a star. In 1991, NASA began upgrading the inertial measurement units with an inertial navigation system (INS), which provided more accurate location information. In 1993, NASA flew a GPS receiver for the first time aboard STS-51 . In 1997, Honeywell began developing an integrated GPS/INS to replace

5640-485: The KSC. The Space Shuttle was prepared for launch primarily in the VAB at the KSC. The SRBs were assembled and attached to the external tank on the MLP. The orbiter vehicle was prepared at the Orbiter Processing Facility (OPF) and transferred to the VAB, where a crane was used to rotate it to the vertical orientation and mate it to the external tank. Once the entire stack was assembled, the MLP

5760-528: The RS-25 experienced multiple nozzle failures, as well as broken turbine blades. Despite the problems during testing, NASA ordered the nine RS-25 engines needed for its three orbiters under construction in May 1978. NASA experienced significant delays in the development of the Space Shuttle's thermal protection system . Previous NASA spacecraft had used ablative heat shields, but those could not be reused. NASA chose to use ceramic tiles for thermal protection, as

5880-505: The SRBs provided structural support for the orbiter vehicle and ET, as they were the only system that was connected to the mobile launcher platform (MLP). At the time of launch, the SRBs were armed at T−5 minutes, and could only be electrically ignited once the RS-25 engines had ignited and were without issue. They each provided 12,500 kN (2,800,000 lbf) of thrust, which was later improved to 13,300 kN (3,000,000 lbf) beginning on STS-8 . After expending their fuel,

6000-558: The SRBs were jettisoned approximately two minutes after launch at an altitude of approximately 46 km (150,000 ft). Following separation, they deployed drogue and main parachutes, landed in the ocean, and were recovered by the crews aboard the ships MV Freedom Star and MV Liberty Star . Once they were returned to Cape Canaveral, they were cleaned and disassembled. The rocket motor, igniter, and nozzle were then shipped to Thiokol to be refurbished and reused on subsequent flights. The SRBs underwent several redesigns throughout

6120-399: The Space Shuttle through ascent, orbit, and reentry, but could not support an entire mission. The five GPCs were separated in three separate bays within the mid-deck to provide redundancy in the event of a cooling fan failure. After achieving orbit, the crew would switch some of the GPCs functions from guidance, navigation, and control (GNC) to systems management (SM) and payload (PL) to support

SECTION 50

#1732776838789

6240-526: The Space Shuttle to launch large satellites, and required it to be capable of lifting 29,000 kg (65,000 lb) to an eastward LEO or 18,000 kg (40,000 lb) into a polar orbit . The satellite designs also required that the Space Shuttle have a 4.6 by 18 m (15 by 60 ft) payload bay. NASA evaluated the F-1 and J-2 engines from the Saturn rockets , and determined that they were insufficient for

6360-583: The Spacelab module through a 2.7 or 5.8 m (8.72 or 18.88 ft) tunnel that connected to the airlock. The Spacelab equipment was primarily stored in pallets, which provided storage for both experiments as well as computer and power equipment. Spacelab hardware was flown on 28 missions through 1999 and studied subjects including astronomy, microgravity, radar, and life sciences. Spacelab hardware also supported missions such as Hubble Space Telescope (HST) servicing and space station resupply. The Spacelab module

6480-596: The Universe Works on the Discovery Channel . From August 2008 through 2009, he served as president of the James Randi Educational Foundation . Additionally, he wrote and hosted episodes of Crash Course Astronomy, which aired its last episode in 2016. Plait grew up in the Washington, D.C. area. He has said he became interested in astronomy when his father brought home a telescope when Plait

6600-585: The aft seating location, and also controlled the data on the HUD. In 1998, Atlantis was upgraded with the Multifunction Electronic Display System (MEDS), which was a glass cockpit upgrade to the flight instruments that replaced the eight MCDS display units with 11 multifunction colored digital screens. MEDS was flown for the first time in May 2000 on STS-101 , and the other orbiter vehicles were upgraded to it. The aft section of

6720-401: The associated propellant tanks. The AJ10 engines used monomethylhydrazine (MMH) oxidized by dinitrogen tetroxide (N 2 O 4 ). The pods carried a maximum of 2,140 kg (4,718 lb) of MMH and 3,526 kg (7,773 lb) of N 2 O 4 . The OMS engines were used after main engine cut-off (MECO) for orbital insertion. Throughout the flight, they were used for orbit changes, as well as

6840-562: The built-in hold at T−9 minutes, the countdown was automatically controlled by the Ground Launch Sequencer (GLS) at the LCC, which stopped the countdown if it sensed a critical problem with any of the Space Shuttle's onboard systems. At T−3 minutes 45 seconds, the engines began conducting gimbal tests, which were concluded at T−2 minutes 15 seconds. The ground Launch Processing System handed off

6960-461: The bulk of the ET, and was 29 m (96.7 ft) tall. The orbiter vehicle was attached to the ET at two umbilical plates, which contained five propellant and two electrical umbilicals, and forward and aft structural attachments. The exterior of the ET was covered in orange spray-on foam to allow it to survive the heat of ascent. The ET provided propellant to the Space Shuttle Main Engines from liftoff until main engine cutoff. The ET separated from

7080-550: The contract to build the orbiter to North American Rockwell. In August 1973, the external tank contract to Martin Marietta , and in November the solid-rocket booster contract to Morton Thiokol . On June 4, 1974, Rockwell began construction on the first orbiter, OV-101, dubbed Constitution, later to be renamed Enterprise . Enterprise was designed as a test vehicle, and did not include engines or heat shielding. Construction

7200-477: The control to the orbiter vehicle's GPCs at T−31 seconds. At T−16 seconds, the GPCs armed the SRBs, the sound suppression system (SPS) began to drench the MLP and SRB trenches with 1,100,000 L (300,000 U.S. gal) of water to protect the orbiter vehicle from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during lift-off. At T−10 seconds, hydrogen igniters were activated under each engine bell to quell

7320-421: The deorbit burn prior to reentry. Each OMS engine produced 27,080 N (6,087 lbf) of thrust, and the entire system could provide 305 m/s (1,000 ft/s) of velocity change . The orbiter was protected from heat during reentry by the thermal protection system (TPS), a thermal soaking protective layer around the orbiter. In contrast with previous US spacecraft, which had used ablative heat shields,

SECTION 60

#1732776838789

7440-516: The development of a space shuttle to bring people and cargo to low Earth orbit (LEO), as well as a space tug for transfers between orbits and the Moon, and a reusable nuclear upper stage for deep space travel. After the release of the Space Shuttle Task Group report, many aerospace engineers favored the Class III, fully reusable design because of perceived savings in hardware costs. Max Faget ,

7560-674: The ease of refurbishing them for reuse after they landed in the ocean. In January 1972, President Richard Nixon approved the Shuttle, and NASA decided on its final design in March. The development of the Space Shuttle Main Engine (SSME) remained the responsibility of Rocketdyne, and the contract was issued in July 1971, and updated SSME specifications were submitted to Rocketdyne in that April. That August, NASA awarded

7680-492: The effects of aerodynamic and thermal stresses during launch and reentry. The beginning of the development of the RS-25 Space Shuttle Main Engine was delayed for nine months while Pratt & Whitney challenged the contract that had been issued to Rocketdyne. The first engine was completed in March 1975, after issues with developing the first throttleable, reusable engine. During engine testing,

7800-449: The energy input into the upper atmosphere , global photochemistry of the upper atmosphere, dynamics of the upper atmosphere, the coupling among these processes, and the coupling between the upper and lower atmosphere. This provided data for a coordinated study of the structure, chemistry, energy balance, and physical action of the Earth's middle atmosphere – that slice of air between 16 km (9.9 mi) and 97 km (60 mi) above

7920-512: The engines during powered flight and fly the orbiter during unpowered flight. Both seats also had rudder controls, to allow rudder movement in flight and nose-wheel steering on the ground. The orbiter vehicles were originally installed with the Multifunction CRT Display System (MCDS) to display and control flight information. The MCDS displayed the flight information at the commander and pilot seats, as well as at

8040-605: The feasibility of reusable boosters. This became the basis for the aerospaceplane , a fully reusable spacecraft that was never developed beyond the initial design phase in 1962–1963. Beginning in the early 1950s, NASA and the Air Force collaborated on developing lifting bodies to test aircraft that primarily generated lift from their fuselages instead of wings, and tested the NASA M2-F1 , Northrop M2-F2 , Northrop M2-F3 , Northrop HL-10 , Martin Marietta X-24A , and

8160-672: The final decision to scrub a launch was announced. In addition to the weather at the launch site, conditions had to be acceptable at one of the Transatlantic Abort Landing sites and the SRB recovery area. The mission crew and the Launch Control Center (LCC) personnel completed systems checks throughout the countdown. Two built-in holds at T−20 minutes and T−9 minutes provided scheduled breaks to address any issues and additional preparation. After

8280-532: The first four Shuttle missions, astronauts wore modified U.S. Air Force high-altitude full-pressure suits, which included a full-pressure helmet during ascent and descent. From the fifth flight, STS-5 , until the loss of Challenger , the crew wore one-piece light blue nomex flight suits and partial-pressure helmets. After the Challenger disaster, the crew members wore the Launch Entry Suit (LES),

8400-481: The first time NASA performed a crewed first-flight of a spacecraft. On April 12, 1981, the Space Shuttle launched for the first time, and was piloted by John Young and Robert Crippen . During the two-day mission, Young and Crippen tested equipment on board the shuttle, and found several of the ceramic tiles had fallen off the top side of the Columbia . NASA coordinated with the Air Force to use satellites to image

8520-635: The flight deck contained windows looking into the payload bay, as well as an RHC to control the Remote Manipulator System during cargo operations. Additionally, the aft flight deck had monitors for a closed-circuit television to view the cargo bay. The mid-deck contained the crew equipment storage, sleeping area, galley, medical equipment, and hygiene stations for the crew. The crew used modular lockers to store equipment that could be scaled depending on their needs, as well as permanently installed floor compartments. The mid-deck contained

8640-502: The forward separation motors and the parachute systems that were used during recovery. The rocket nozzles could gimbal up to 8° to allow for in-flight adjustments. The rocket motors were each filled with a total 500,000 kg (1,106,640 lb) of solid rocket propellant ( APCP + PBAN ), and joined in the Vehicle Assembly Building (VAB) at KSC. In addition to providing thrust during the first stage of launch,

8760-490: The goal of clearing up what he perceived to be widespread public misconceptions about astronomy and space science in movies, the news, print, and on the Internet, also providing critical analysis of several pseudoscientific theories related to space and astronomy, such as the "Planet X" cataclysm , Richard Hoagland's theories , and the Moon landing "hoax" . It received a considerable amount of traffic after Plait criticized

8880-568: The ground via the orbiter digital downlinks. STS-48 was the second post- Challenger mission to have Kennedy Space Center as the planned End-Of-Mission landing site, and the first mission to have a planned night landing at KSC. However, due to weather conditions at KSC in Florida, Discovery flew one extra orbit and landed at Edwards Air Force Base, California , at 3:38 a.m. EDT on September 18, 1991. The orbiter returned to KSC on September 26, 1991. Video while in orbit on September 15, 1991, shows

9000-402: The inner leading edge and 45° at the outer leading edge. Each wing had an inboard and outboard elevon to provide flight control during reentry, along with a flap located between the wings, below the engines to control pitch . The orbiter's vertical stabilizer was swept backwards at 45° and contained a rudder that could split to act as a speed brake . The vertical stabilizer also contained

9120-504: The largest solid-propellant motors ever flown. Each SRB was 45 m (149.2 ft) tall and 3.7 m (12.2 ft) wide, weighed 68,000 kg (150,000 lb), and had a steel exterior approximately 13 mm (.5 in) thick. The SRB's subcomponents were the solid-propellant motor, nose cone, and rocket nozzle. The solid-propellant motor comprised the majority of the SRB's structure. Its casing consisted of 11 steel sections which made up its four main segments. The nose cone housed

9240-575: The late 1950s, the Air Force began developing the partially reusable X-20 Dyna-Soar . The Air Force collaborated with NASA on the Dyna-Soar and began training six pilots in June 1961. The rising costs of development and the prioritization of Project Gemini led to the cancellation of the Dyna-Soar program in December 1963. In addition to the Dyna-Soar, the Air Force had conducted a study in 1957 to test

9360-490: The launch pad, the Space Shuttle was used to verify the proper positioning of the launch complex hardware. Enterprise was taken back to California in August 1979, and later served in the development of the SLC-6 at Vandenberg AFB in 1984. On November 24, 1980, Columbia was mated with its external tank and solid-rocket boosters, and was moved to LC-39 on December 29. The first Space Shuttle mission, STS-1 , would be

9480-437: The mission specialists who were specifically trained for their intended missions and systems. Early in the Space Shuttle program, NASA flew with payload specialists, who were typically systems specialists who worked for the company paying for the payload's deployment or operations. The final payload specialist, Gregory B. Jarvis , flew on STS-51-L , and future non-pilots were designated as mission specialists. An astronaut flew as

9600-434: The operational mission. The Space Shuttle was not launched if its flight would run from December to January, as its flight software would have required the orbiter vehicle's computers to be reset at the year change. In 2007, NASA engineers devised a solution so Space Shuttle flights could cross the year-end boundary. Space Shuttle missions typically brought a portable general support computer (PGSC) that could integrate with

9720-424: The optimal design for a reusable spacecraft, and issued study contracts to General Dynamics , Lockheed , McDonnell Douglas , and North American Rockwell . In July 1969, the Space Shuttle Task Group issued a report that determined the Shuttle would support short-duration crewed missions and space station, as well as the capabilities to launch, service, and retrieve satellites. The report also created three classes of

9840-436: The orange foam itself was sufficiently protected, and the ET was no longer covered in latex paint beginning on STS-3. A light-weight tank (LWT) was first flown on STS-6, which reduced tank weight by 4,700 kg (10,300 lb). The LWT's weight was reduced by removing components from the hydrogen tank and reducing the thickness of some skin panels. In 1998, a super light-weight ET (SLWT) first flew on STS-91 . The SLWT used

9960-437: The orbiter vehicle 18 seconds after engine cutoff and could be triggered automatically or manually. At the time of separation, the orbiter vehicle retracted its umbilical plates, and the umbilical cords were sealed to prevent excess propellant from venting into the orbiter vehicle. After the bolts attached at the structural attachments were sheared, the ET separated from the orbiter vehicle. At the time of separation, gaseous oxygen

10080-467: The orbiter vehicle and would be removed and replaced in between flights. The RS-25 is a staged-combustion cycle cryogenic engine that used liquid oxygen and hydrogen and had a higher chamber pressure than any previous liquid-fueled rocket. The original main combustion chamber operated at a maximum pressure of 226.5 bar (3,285 psi). The engine nozzle is 287 cm (113 in) tall and has an interior diameter of 229 cm (90.3 in). The nozzle

10200-510: The orbiter vehicle's computers and communication suite, as well as monitor scientific and payload data. Early missions brought the Grid Compass , one of the first laptop computers, as the PGSC, but later missions brought Apple and Intel laptops. The payload bay comprised most of the orbiter vehicle's fuselage , and provided the cargo-carrying space for the Space Shuttle's payloads. It

10320-549: The orbiter vehicle's heat, and were opened upon reaching orbit for heat rejection. The orbiter could be used in conjunction with a variety of add-on components depending on the mission. This included orbital laboratories, boosters for launching payloads farther into space, the Remote Manipulator System (RMS), and optionally the EDO pallet to extend the mission duration. To limit the fuel consumption while

10440-528: The orbiter was docked at the ISS, the Station-to-Shuttle Power Transfer System (SSPTS) was developed to convert and transfer station power to the orbiter. The SSPTS was first used on STS-118, and was installed on Discovery and Endeavour . The Remote Manipulator System (RMS), also known as Canadarm, was a mechanical arm attached to the cargo bay. It could be used to grasp and manipulate payloads, as well as serve as

10560-549: The originally specified thrust at 100%, but had the RS-25 operate at higher thrust. RS-25 upgrade versions were denoted as Block I and Block II. 109% thrust level was achieved with the Block II engines in 2001, which reduced the chamber pressure to 207.5 bars (3,010 psi), as it had a larger throat area. The normal maximum throttle was 104 percent, with 106% or 109% used for mission aborts. The Orbital Maneuvering System (OMS) consisted of two aft-mounted AJ10-190 engines and

10680-405: The program's lifetime. STS-6 and STS-7 used SRBs 2,300 kg (5,000 lb) lighter due to walls that were 0.10 mm (.004 in) thinner, but were determined to be too thin to fly safely. Subsequent flights until STS-26 used cases that were 0.076 mm (.003 in) thinner than the standard-weight cases, which reduced 1,800 kg (4,000 lb). After the Challenger disaster as

10800-400: The propellant for the Space Shuttle Main Engines, and connected the orbiter vehicle with the solid rocket boosters. The ET was 47 m (153.8 ft) tall and 8.4 m (27.6 ft) in diameter, and contained separate tanks for liquid oxygen and liquid hydrogen. The liquid oxygen tank was housed in the nose of the ET, and was 15 m (49.3 ft) tall. The liquid hydrogen tank comprised

10920-465: The requirements of the Space Shuttle; in July 1971, it issued a contract to Rocketdyne to begin development on the RS-25 engine. NASA reviewed 29 potential designs for the Space Shuttle and determined that a design with two side boosters should be used, and the boosters should be reusable to reduce costs. NASA and the Air Force elected to use solid-propellant boosters because of the lower costs and

11040-685: The reusability of the orbiter required a multi-use heat shield. During reentry, the TPS experienced temperatures up to 1,600 °C (3,000 °F), but had to keep the orbiter vehicle's aluminum skin temperature below 180 °C (350 °F). The TPS primarily consisted of four types of tiles. The nose cone and leading edges of the wings experienced temperatures above 1,300 °C (2,300 °F), and were protected by reinforced carbon-carbon tiles (RCC). Thicker RCC tiles were developed and installed in 1998 to prevent damage from micrometeoroid and orbital debris , and were further improved after RCC damage caused in

11160-529: The shuttle could then be constructed of lightweight aluminum , and the tiles could be individually replaced as needed. Construction began on Columbia on March 27, 1975, and it was delivered to the KSC on March 25, 1979. At the time of its arrival at the KSC, Columbia still had 6,000 of its 30,000 tiles remaining to be installed. However, many of the tiles that had been originally installed had to be replaced, requiring two years of installation before Columbia could fly. On January 5, 1979, NASA commissioned

11280-414: The stagnant gas inside the cones before ignition. Failure to burn these gases could trip the onboard sensors and create the possibility of an overpressure and explosion of the vehicle during the firing phase. The hydrogen tank's prevalves were opened at T−9.5 seconds in preparation for engine start. Phil Plait Philip Cary Plait (born September 30, 1964), also known as The Bad Astronomer ,

11400-485: The three-part documentary series Phil Plait's "Bad Universe" on the Discovery Channel , which first aired in the United States on August 29, 2010 but was not picked up as a series. He has appeared in numerous science documentaries and programs including How the Universe Works . Plait was a science advisor for the 2016 film Arrival and the 2017 CBS TV series Salvation . He was the head science writer of

11520-418: The underside of Columbia , and determined there was no damage. Columbia reentered the atmosphere and landed at Edwards AFB on April 14. NASA conducted three additional test flights with Columbia in 1981 and 1982. On July 4, 1982, STS-4 , flown by Ken Mattingly and Henry Hartsfield , landed on a concrete runway at Edwards AFB. President Ronald Reagan and his wife Nancy met the crew, and delivered

11640-467: The upper parts of the orbiter vehicle were coated in tiles of white low-temperature reusable surface insulation with similar composition, which provided protection for temperatures below 650 °C (1,200 °F). The payload bay doors and parts of the upper wing surfaces were coated in reusable Nomex felt surface insulation or in beta cloth , as the temperature there remained below 370 °C (700 °F). The Space Shuttle external tank (ET) carried

11760-519: Was 1,323 days. Space Shuttle components include the Orbiter Vehicle (OV) with three clustered Rocketdyne RS-25 main engines, a pair of recoverable solid rocket boosters (SRBs), and the expendable external tank (ET) containing liquid hydrogen and liquid oxygen . The Space Shuttle was launched vertically , like a conventional rocket, with the two SRBs operating in parallel with the orbiter's three main engines , which were fueled from

11880-462: Was 18 m (60 ft) long and 4.6 m (15 ft) wide, and could accommodate cylindrical payloads up to 4.6 m (15 ft) in diameter. Two payload bay doors hinged on either side of the bay, and provided a relatively airtight seal to protect payloads from heating during launch and reentry. Payloads were secured in the payload bay to the attachment points on the longerons . The payload bay doors served an additional function as radiators for

12000-598: Was 5 years old or so. According to Plait, he "aimed it at Saturn that night. One look, and that was it. I was hooked." Plait attended the University of Michigan and received his PhD in astronomy at the University of Virginia in 1995 with a thesis on supernova SN 1987A , which he studied with the Supernova Intensive Study (SINS). During the 1990s, Plait worked with the COBE satellite and later

12120-499: Was Space Shuttle-specific software that provided control through all phases of flight. During ascent, maneuvering, reentry, and landing, the four PASS GPCs functioned identically to produce quadruple redundancy and would error check their results. In case of a software error that would cause erroneous reports from the four PASS GPCs, a fifth GPC ran the Backup Flight System, which used a different program and could control

12240-641: Was a modified airport jet bridge that was used to assist astronauts to egress from the orbiter after landing, where they would undergo their post-mission medical checkups. The Astrovan transported astronauts from the crew quarters in the Operations and Checkout Building to the launch pad on launch day. The NASA Railroad comprised three locomotives that transported SRB segments from the Florida East Coast Railway in Titusville to

12360-466: Was carried for 5.6 km (3.5 mi) to Launch Complex 39 by one of the crawler-transporters . After the Space Shuttle arrived at one of the two launchpads, it would connect to the Fixed and Rotation Service Structures, which provided servicing capabilities, payload insertion, and crew transportation. The crew was transported to the launch pad at T−3 hours and entered the orbiter vehicle, which

12480-565: Was closed at T−2 hours. Liquid oxygen and hydrogen were loaded into the external tank via umbilicals that attached to the orbiter vehicle, which began at T−5 hours 35 minutes. At T−3 hours 45 minutes, the hydrogen fast-fill was complete, followed 15 minutes later by the oxygen tank fill. Both tanks were slowly filled up until the launch as the oxygen and hydrogen evaporated. The launch commit criteria considered precipitation, temperatures, cloud cover, lightning forecast, wind, and humidity. The Space Shuttle

12600-686: Was completed on September 17, 1976, and Enterprise was moved to the Edwards Air Force Base to begin testing. Rockwell constructed the Main Propulsion Test Article (MPTA)-098 , which was a structural truss mounted to the ET with three RS-25 engines attached. It was tested at the National Space Technology Laboratory (NSTL) to ensure that the engines could safely run through the launch profile. Rockwell conducted mechanical and thermal stress tests on Structural Test Article (STA)-099 to determine

12720-630: Was delayed for 14 minutes at the T−5 minute mark due to a noise problem in the air-to-ground link. The noise cleared itself, and the countdown proceeded normally to launch. On the third day of the mission, the Upper Atmosphere Research Satellite (UARS) was deployed from Discovery's payload bay 650 km (400 mi) above Earth to study human effects on the planet's atmosphere and its shielding ozone layer . The UARS mission objectives were to provide an increased understanding of

12840-551: Was entirely reliant on its main computer, the Data Processing System (DPS). The DPS controlled the flight controls and thrusters on the orbiter, as well as the ET and SRBs during launch. The DPS consisted of five general-purpose computers (GPC), two magnetic tape mass memory units (MMUs), and the associated sensors to monitor the Space Shuttle components. The original GPC used was the IBM AP-101B , which used

12960-657: Was equipped with an avionics system to provide information and control during atmospheric flight. Its avionics suite contained three microwave scanning beam landing systems , three gyroscopes , three TACANs , three accelerometers , two radar altimeters , two barometric altimeters , three attitude indicators , two Mach indicators , and two Mode C transponders . During reentry, the crew deployed two air data probes once they were traveling slower than Mach 5. The orbiter had three inertial measuring units (IMU) that it used for guidance and navigation during all phases of flight. The orbiter contains two star trackers to align

13080-481: Was extended several times – it was finally retired after 14 years of service. Secondary payloads were: Ascent Particle Monitor (APM); Middeck 0-Gravity Dynamics Experiment (MODE); Shuttle Activation Monitor (SAM); Cosmic Ray Effects and Activation Monitor (CREAM); Physiological and Anatomical Rodent Experiment (PARE); Protein Crystal Growth (PCG II-2); Investigations into Polymer Membrane Processing (IPMP); and

13200-653: Was first flown in 1975, and was used for the ALT and ferrying the orbiter from Edwards AFB to the KSC on all missions prior to 1991. A second SCA (N911NA) was acquired in 1988, and was first used to transport Endeavour from the factory to the KSC. Following the retirement of the Space Shuttle, N905NA was put on display at the JSC, and N911NA was put on display at the Joe Davies Heritage Airpark in Palmdale, California . The Crew Transport Vehicle (CTV)

13320-403: Was later improved to 270,000 kg (586,000 lb). The Spacelab module was a European-funded pressurized laboratory that was carried within the payload bay and allowed for scientific research while in orbit. The Spacelab module contained two 2.7 m (9 ft) segments that were mounted in the aft end of the payload bay to maintain the center of gravity during flight. Astronauts entered

13440-406: Was located below the flight deck and was where the galley and crew bunks were set up, as well as three or four crew member seats. The mid-deck contained the airlock, which could support two astronauts on an extravehicular activity (EVA), as well as access to pressurized research modules. An equipment bay was below the mid-deck, which stored environmental control and waste management systems. On

13560-617: Was moved to the Marshall Space Flight Center (MSFC) on March 13, 1978. Enterprise underwent shake tests in the Mated Vertical Ground Vibration Test, where it was attached to an external tank and solid rocket boosters, and underwent vibrations to simulate the stresses of launch. In April 1979, Enterprise was taken to the KSC, where it was attached to an external tank and solid rocket boosters, and moved to LC-39 . Once installed at

13680-602: Was never used). The Johnson Space Center (JSC) served as the central point for all Shuttle operations and the MSFC was responsible for the main engines, external tank, and solid rocket boosters. The John C. Stennis Space Center handled main engine testing, and the Goddard Space Flight Center managed the global tracking network. The orbiter had design elements and capabilities of both a rocket and an aircraft to allow it to launch vertically and then land as

13800-422: Was not launched under conditions where it could have been struck by lightning , as its exhaust plume could have triggered lightning by providing a current path to ground after launch, which occurred on Apollo 12 . The NASA Anvil Rule for a Shuttle launch stated that an anvil cloud could not appear within a distance of 19  km (10 nmi). The Shuttle Launch Weather Officer monitored conditions until

13920-572: Was part of the Hubble Space Telescope team at NASA Goddard Space Flight Center , working largely on the Space Telescope Imaging Spectrograph . In 1995, he published observations of a ring of circumstellar material around SN 1987A, which led to further study of explosion mechanisms in core-collapse supernovae. Plait's work with Grady, et al. resulted in the presentation of high-resolution images of isolated stellar objects (including AB Aurigae and HD 163296 ) from

14040-675: Was released in October 2008. Plait's work has also appeared in the Encyclopædia Britannica Yearbook of Science and the Future and Astronomy magazine. He is also a frequent guest on the SETI Institute 's weekly science radio show Big Picture Science . Plait has contributed to a number of television and cinema productions, either onscreen as host or guest or in an advisory role offscreen. He hosted

14160-418: Was tested on STS-2 and STS-3, and the first full mission was on STS-9. Three RS-25 engines, also known as the Space Shuttle Main Engines (SSME), were mounted on the orbiter's aft fuselage in a triangular pattern. The engine nozzles could gimbal ±10.5° in pitch, and ±8.5° in yaw during ascent to change the direction of their thrust to steer the Shuttle. The titanium alloy reusable engines were independent of

14280-444: Was the top level of the crew compartment and contained the flight controls for the orbiter. The commander sat in the front left seat, and the pilot sat in the front right seat, with two to four additional seats set up for additional crew members. The instrument panels contained over 2,100 displays and controls, and the commander and pilot were both equipped with a heads-up display (HUD) and a Rotational Hand Controller (RHC) to gimbal

14400-551: Was vented from the nose to cause the ET to tumble, ensuring that it would break up upon reentry. The ET was the only major component of the Space Shuttle system that was not reused, and it would travel along a ballistic trajectory into the Indian or Pacific Ocean. For the first two missions, STS-1 and STS-2 , the ET was covered in 270 kg (595 lb) of white fire-retardant latex paint to provide protection against damage from ultraviolet radiation. Further research determined that

#788211