This is an accepted version of this page
71-443: Coordinates : 61°34′N 7°59′E / 61.56°N 7.99°E / 61.56; 7.99 Sognefjellet [REDACTED] County Road 55 runs through the pass Location Innlandet and Vestland , Norway Coordinates 61°34′N 7°59′E / 61.56°N 7.99°E / 61.56; 7.99 Sognefjellet (English: Sogn Mountains )
142-726: A r sin θ cos φ , y = 1 b r sin θ sin φ , z = 1 c r cos θ , r 2 = a x 2 + b y 2 + c z 2 . {\displaystyle {\begin{aligned}x&={\frac {1}{\sqrt {a}}}r\sin \theta \,\cos \varphi ,\\y&={\frac {1}{\sqrt {b}}}r\sin \theta \,\sin \varphi ,\\z&={\frac {1}{\sqrt {c}}}r\cos \theta ,\\r^{2}&=ax^{2}+by^{2}+cz^{2}.\end{aligned}}} An infinitesimal volume element
213-464: A x 2 + b y 2 + c z 2 = d . {\displaystyle ax^{2}+by^{2}+cz^{2}=d.} The modified spherical coordinates of a point in P in the ISO convention (i.e. for physics: radius r , inclination θ , azimuth φ ) can be obtained from its Cartesian coordinates ( x , y , z ) by the formulae x = 1
284-403: A hyperspherical coordinate system . To define a spherical coordinate system, one must designate an origin point in space, O , and two orthogonal directions: the zenith reference direction and the azimuth reference direction. These choices determine a reference plane that is typically defined as containing the point of origin and the x– and y–axes , either of which may be designated as
355-543: A prime meridian at the westernmost known land, designated the Fortunate Isles , off the coast of western Africa around the Canary or Cape Verde Islands , and measured north or south of the island of Rhodes off Asia Minor . Ptolemy credited him with the full adoption of longitude and latitude, rather than measuring latitude in terms of the length of the midsummer day. Ptolemy's 2nd-century Geography used
426-413: A spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers : the radial distance r along the radial line connecting the point to the fixed point of origin ; the polar angle θ between the radial line and a given polar axis ; and the azimuthal angle φ as the angle of rotation of
497-400: A unit sphere , where the radius is set to unity and then can generally be ignored, see graphic.) This (unit sphere) simplification is also useful when dealing with objects such as rotational matrices . Spherical coordinates are also useful in analyzing systems that have some degree of symmetry about a point, including: volume integrals inside a sphere; the potential energy field surrounding
568-482: A concentrated mass or charge; or global weather simulation in a planet's atmosphere. Three dimensional modeling of loudspeaker output patterns can be used to predict their performance. A number of polar plots are required, taken at a wide selection of frequencies, as the pattern changes greatly with frequency. Polar plots help to show that many loudspeakers tend toward omnidirectionality at lower frequencies. An important application of spherical coordinates provides for
639-679: A little before 1300; the text was translated into Latin at Florence by Jacopo d'Angelo around 1407. In 1884, the United States hosted the International Meridian Conference , attended by representatives from twenty-five nations. Twenty-two of them agreed to adopt the longitude of the Royal Observatory in Greenwich , England as the zero-reference line. The Dominican Republic voted against
710-416: A location often facetiously called Null Island . In order to use the theoretical definitions of latitude, longitude, and height to precisely measure actual locations on the physical earth, a geodetic datum must be used. A horizonal datum is used to precisely measure latitude and longitude, while a vertical datum is used to measure elevation or altitude. Both types of datum bind a mathematical model of
781-538: A longitudinal degree is 111.3 km. At 30° a longitudinal second is 26.76 m, at Greenwich (51°28′38″N) 19.22 m, and at 60° it is 15.42 m. On the WGS 84 spheroid, the length in meters of a degree of latitude at latitude ϕ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude ϕ ), is about The returned measure of meters per degree latitude varies continuously with latitude. Similarly,
SECTION 10
#1732797741538852-700: A national cartographical organization include the North American Datum , the European ED50 , and the British OSGB36 . Given a location, the datum provides the latitude ϕ {\displaystyle \phi } and longitude λ {\displaystyle \lambda } . In the United Kingdom there are three common latitude, longitude, and height systems in use. WGS 84 differs at Greenwich from
923-872: A simple translation may be sufficient. Datums may be global, meaning that they represent the whole Earth, or they may be local, meaning that they represent an ellipsoid best-fit to only a portion of the Earth. Examples of global datums include World Geodetic System (WGS 84, also known as EPSG:4326 ), the default datum used for the Global Positioning System , and the International Terrestrial Reference System and Frame (ITRF), used for estimating continental drift and crustal deformation . The distance to Earth's center can be used both for very deep positions and for positions in space. Local datums chosen by
994-524: A single point of three-dimensional space. On the reverse view, any single point has infinitely many equivalent spherical coordinates. That is, the user can add or subtract any number of full turns to the angular measures without changing the angles themselves, and therefore without changing the point. It is convenient in many contexts to use negative radial distances, the convention being ( − r , θ , φ ) {\displaystyle (-r,\theta ,\varphi )} , which
1065-467: A wide set of applications—on a planar surface, a two-dimensional spherical coordinate system is useful on the surface of a sphere. For example, one sphere that is described in Cartesian coordinates with the equation x + y + z = c can be described in spherical coordinates by the simple equation r = c . (In this system— shown here in the mathematics convention —the sphere is adapted as
1136-503: A year, or 10 m in a century. A weather system high-pressure area can cause a sinking of 5 mm . Scandinavia is rising by 1 cm a year as a result of the melting of the ice sheets of the last ice age , but neighboring Scotland is rising by only 0.2 cm . These changes are insignificant if a local datum is used, but are statistically significant if a global datum is used. On the GRS 80 or WGS 84 spheroid at sea level at
1207-586: Is where Earth's equatorial radius a {\displaystyle a} equals 6,378,137 m and tan β = b a tan ϕ {\displaystyle \textstyle {\tan \beta ={\frac {b}{a}}\tan \phi }\,\!} ; for the GRS 80 and WGS 84 spheroids, b a = 0.99664719 {\textstyle {\tfrac {b}{a}}=0.99664719} . ( β {\displaystyle \textstyle {\beta }\,\!}
1278-461: Is −180° ≤ λ ≤ 180° and a given reading is typically designated "East" or "West". For positions on the Earth or other solid celestial body , the reference plane is usually taken to be the plane perpendicular to the axis of rotation . Instead of the radial distance r geographers commonly use altitude above or below some local reference surface ( vertical datum ), which, for example, may be
1349-418: Is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude . It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system , the geographic coordinate system
1420-1844: Is a mountainous area and mountain pass which connects Lustrafjorden and its surrounding valley with the Ottadalen valley in the Jotunheimen area. Sognefjellet is located in Luster Municipality (in Vestland county) and Lom Municipality (in Innlandet county) in Norway . Sognefjellsvegen , part of County Road 55 , runs through the mountains and over the pass. Climate [ edit ] Climate data for Sognefjellshytta 1991-2020 (1413 m / 4636 ft ASL) Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Mean daily maximum °C (°F) −6.4 (20.5) −7.2 (19.0) −5.3 (22.5) −0.4 (31.3) 3.4 (38.1) 7.9 (46.2) 10.6 (51.1) 10.3 (50.5) 5.4 (41.7) 0.4 (32.7) −3.3 (26.1) −6.5 (20.3) 0.7 (33.3) Daily mean °C (°F) −8.6 (16.5) −9.1 (15.6) −8.1 (17.4) −4.3 (24.3) −0.1 (31.8) 3.9 (39.0) 7.4 (45.3) 6.8 (44.2) 2.9 (37.2) −2.0 (28.4) −5.5 (22.1) −8.3 (17.1) −2.1 (28.2) Mean daily minimum °C (°F) −10.9 (12.4) −11.9 (10.6) −11.1 (12.0) −8.1 (17.4) −3.2 (26.2) 0.3 (32.5) 4.8 (40.6) 3.9 (39.0) 0.7 (33.3) −4.5 (23.9) −7.6 (18.3) −10.5 (13.1) −4.8 (23.3) Source: seklima.met.no References [ edit ] ^ Oxaal, Ivar (2017). On
1491-527: Is also commonly used in 3D game development to rotate the camera around the player's position Instead of inclination, the geographic coordinate system uses elevation angle (or latitude ), in the range (aka domain ) −90° ≤ φ ≤ 90° and rotated north from the equator plane. Latitude (i.e., the angle of latitude) may be either geocentric latitude , measured (rotated) from the Earth's center—and designated variously by ψ , q , φ ′, φ c , φ g —or geodetic latitude , measured (rotated) from
SECTION 20
#17327977415381562-557: Is equivalent to ( r , θ + 180 ∘ , φ ) {\displaystyle (r,\theta {+}180^{\circ },\varphi )} or ( r , 90 ∘ − θ , φ + 180 ∘ ) {\displaystyle (r,90^{\circ }{-}\theta ,\varphi {+}180^{\circ })} for any r , θ , and φ . Moreover, ( r , − θ , φ ) {\displaystyle (r,-\theta ,\varphi )}
1633-399: Is equivalent to ( r , θ , φ + 180 ∘ ) {\displaystyle (r,\theta ,\varphi {+}180^{\circ })} . When necessary to define a unique set of spherical coordinates for each point, the user must restrict the range, aka interval , of each coordinate. A common choice is: But instead of the interval [0°, 360°) ,
1704-726: Is known as the reduced (or parametric) latitude ). Aside from rounding, this is the exact distance along a parallel of latitude; getting the distance along the shortest route will be more work, but those two distances are always within 0.6 m of each other if the two points are one degree of longitude apart. Like any series of multiple-digit numbers, latitude-longitude pairs can be challenging to communicate and remember. Therefore, alternative schemes have been developed for encoding GCS coordinates into alphanumeric strings or words: These are not distinct coordinate systems, only alternative methods for expressing latitude and longitude measurements. Spherical coordinate system In mathematics ,
1775-544: Is not cartesian because the measurements are angles and are not on a planar surface. A full GCS specification, such as those listed in the EPSG and ISO 19111 standards, also includes a choice of geodetic datum (including an Earth ellipsoid ), as different datums will yield different latitude and longitude values for the same location. The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene , who composed his now-lost Geography at
1846-483: Is part of the coordinate system definition. (If the inclination is either zero or 180 degrees (= π radians), the azimuth is arbitrary. If the radius is zero, both azimuth and inclination are arbitrary.) The elevation is the signed angle from the x-y reference plane to the radial line segment OP , where positive angles are designated as upward, towards the zenith reference. Elevation is 90 degrees (= π / 2 radians) minus inclination . Thus, if
1917-753: Is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles ), which converge at the North and South Poles. The meridian of the British Royal Observatory in Greenwich , in southeast London, England, is the international prime meridian , although some organizations—such as the French Institut national de l'information géographique et forestière —continue to use other meridians for internal purposes. The prime meridian determines
1988-405: Is ultimately calculated from latitude and longitude, it is crucial that they clearly state the datum on which they are based. For example, a UTM coordinate based on WGS84 will be different than a UTM coordinate based on NAD27 for the same location. Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation , although in certain situations
2059-431: Is usually determined by the context, as occurs in applications of the 'unit sphere', see applications . When the system is used to designate physical three-space, it is customary to assign positive to azimuth angles measured in the counterclockwise sense from the reference direction on the reference plane—as seen from the "zenith" side of the plane. This convention is used in particular for geographical coordinates, where
2130-420: The reference plane (sometimes fundamental plane ). The radial distance from the fixed point of origin is also called the radius , or radial line , or radial coordinate . The polar angle may be called inclination angle , zenith angle , normal angle , or the colatitude . The user may choose to ignore the inclination angle and use the elevation angle instead, which is measured upward between
2201-494: The Library of Alexandria in the 3rd century BC. A century later, Hipparchus of Nicaea improved on this system by determining latitude from stellar measurements rather than solar altitude and determining longitude by timings of lunar eclipses , rather than dead reckoning . In the 1st or 2nd century, Marinus of Tyre compiled an extensive gazetteer and mathematically plotted world map using coordinates measured east from
Sognefjellet - Misplaced Pages Continue
2272-476: The World Geodetic System (WGS), and take into account the flattening of the Earth at the poles (about 21 km or 13 miles) and many other details. Planetary coordinate systems use formulations analogous to the geographic coordinate system. A series of astronomical coordinate systems are used to measure the elevation angle from several fundamental planes . These reference planes include:
2343-415: The azimuth reference direction. The reference plane is perpendicular (orthogonal) to the zenith direction, and typically is desiginated "horizontal" to the zenith direction's "vertical". The spherical coordinates of a point P then are defined as follows: The sign of the azimuth is determined by designating the rotation that is the positive sense of turning about the zenith. This choice is arbitrary, and
2414-458: The mean sea level . When needed, the radial distance can be computed from the altitude by adding the radius of Earth , which is approximately 6,360 ± 11 km (3,952 ± 7 miles). However, modern geographical coordinate systems are quite complex, and the positions implied by these simple formulae may be inaccurate by several kilometers. The precise standard meanings of latitude, longitude and altitude are currently defined by
2485-551: The separation of variables in two partial differential equations —the Laplace and the Helmholtz equations —that arise in many physical problems. The angular portions of the solutions to such equations take the form of spherical harmonics . Another application is ergonomic design , where r is the arm length of a stationary person and the angles describe the direction of the arm as it reaches out. The spherical coordinate system
2556-469: The "zenith" direction is north and the positive azimuth (longitude) angles are measured eastwards from some prime meridian . Note: Easting ( E ), Northing ( N ) , Upwardness ( U ). In the case of ( U , S , E ) the local azimuth angle would be measured counterclockwise from S to E . Any spherical coordinate triplet (or tuple) ( r , θ , φ ) {\displaystyle (r,\theta ,\varphi )} specifies
2627-512: The Equator, one latitudinal second measures 30.715 m , one latitudinal minute is 1843 m and one latitudinal degree is 110.6 km. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases. On the Equator at sea level, one longitudinal second measures 30.92 m, a longitudinal minute is 1855 m and
2698-717: The ISO convention frequently encountered in physics , where the naming tuple gives the order as: radial distance, polar angle, azimuthal angle, or ( r , θ , φ ) {\displaystyle (r,\theta ,\varphi )} . (See graphic re the "physics convention".) In contrast, the conventions in many mathematics books and texts give the naming order differently as: radial distance, "azimuthal angle", "polar angle", and ( ρ , θ , φ ) {\displaystyle (\rho ,\theta ,\varphi )} or ( r , θ , φ ) {\displaystyle (r,\theta ,\varphi )} —which switches
2769-588: The Trail to Wittgenstein's Hut: The Historical Background of the Tractatus Logico-Philosophicus . Abingdon, UK: Routledge. ^ Jahren, Per; Sui, Tongbo (2016). How Water Influences Our Lives . Singapore: Springer. p. 48. ^ Ibsen, Henrik (1990). Ibsen Plays: 5: Brand; Emperor and Galilean . London: Bloomsbury Publishing Plc. ^ "Sognefjellet" . Norwegian Public Roads Administration. Archived from
2840-423: The azimuth φ is typically restricted to the half-open interval (−180°, +180°] , or (− π , + π ] radians, which is the standard convention for geographic longitude. For the polar angle θ , the range (interval) for inclination is [0°, 180°] , which is equivalent to elevation range (interval) [−90°, +90°] . In geography, the latitude is the elevation. Even with these restrictions, if
2911-518: The correct quadrant of ( x , y ) , as done in the equations above. See the article on atan2 . Alternatively, the conversion can be considered as two sequential rectangular to polar conversions : the first in the Cartesian xy plane from ( x , y ) to ( R , φ ) , where R is the projection of r onto the xy -plane, and the second in the Cartesian zR -plane from ( z , R ) to ( r , θ ) . The correct quadrants for φ and θ are implied by
Sognefjellet - Misplaced Pages Continue
2982-431: The correctness of the planar rectangular to polar conversions. These formulae assume that the two systems have the same origin, that the spherical reference plane is the Cartesian xy plane, that θ is inclination from the z direction, and that the azimuth angles are measured from the Cartesian x axis (so that the y axis has φ = +90° ). If θ measures elevation from the reference plane instead of inclination from
3053-464: The far western Aleutian Islands . The combination of these two components specifies the position of any location on the surface of Earth, without consideration of altitude or depth. The visual grid on a map formed by lines of latitude and longitude is known as a graticule . The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema , Ghana ,
3124-573: The formulas r = ρ 2 + z 2 , θ = arctan ρ z = arccos z ρ 2 + z 2 , φ = φ . {\displaystyle {\begin{aligned}r&={\sqrt {\rho ^{2}+z^{2}}},\\\theta &=\arctan {\frac {\rho }{z}}=\arccos {\frac {z}{\sqrt {\rho ^{2}+z^{2}}}},\\\varphi &=\varphi .\end{aligned}}} Conversely,
3195-556: The inclination is 60 degrees (= π / 3 radians), then the elevation is 30 degrees (= π / 6 radians). In linear algebra , the vector from the origin O to the point P is often called the position vector of P . Several different conventions exist for representing spherical coordinates and prescribing the naming order of their symbols. The 3-tuple number set ( r , θ , φ ) {\displaystyle (r,\theta ,\varphi )} denotes radial distance,
3266-415: The length in meters of a degree of longitude can be calculated as (Those coefficients can be improved, but as they stand the distance they give is correct within a centimeter.) The formulae both return units of meters per degree. An alternative method to estimate the length of a longitudinal degree at latitude ϕ {\displaystyle \phi } is to assume a spherical Earth (to get
3337-481: The motion, while France and Brazil abstained. France adopted Greenwich Mean Time in place of local determinations by the Paris Observatory in 1911. The latitude ϕ of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth. Lines joining points of the same latitude trace circles on
3408-414: The north direction x-axis, or 0°, towards the east direction y-axis, or +90°), as done in the horizontal coordinate system . (See graphic re "mathematics convention".) The spherical coordinate system of the physics convention can be seen as a generalization of the polar coordinate system in three-dimensional space . It can be further extended to higher-dimensional spaces, and is then referred to as
3479-572: The observer's horizon , the galactic equator (defined by the rotation of the Milky Way ), the celestial equator (defined by Earth's rotation), the plane of the ecliptic (defined by Earth's orbit around the Sun ), and the plane of the earth terminator (normal to the instantaneous direction to the Sun ). As the spherical coordinate system is only one of many three-dimensional coordinate systems, there exist equations for converting coordinates between
3550-514: The observer's local vertical , and typically designated φ . The polar angle (inclination), which is 90° minus the latitude and ranges from 0 to 180°, is called colatitude in geography. The azimuth angle (or longitude ) of a given position on Earth, commonly denoted by λ , is measured in degrees east or west from some conventional reference meridian (most commonly the IERS Reference Meridian ); thus its domain (or range)
3621-523: The one used on published maps OSGB36 by approximately 112 m. The military system ED50 , used by NATO , differs from about 120 m to 180 m. Points on the Earth's surface move relative to each other due to continental plate motion, subsidence, and diurnal Earth tidal movement caused by the Moon and the Sun. This daily movement can be as much as a meter. Continental movement can be up to 10 cm
SECTION 50
#17327977415383692-630: The original on 8 October 2011 . Retrieved 5 October 2011 . ^ "seklima.met.no" . Norwegian Meteorological Institute. Retrieved from " https://en.wikipedia.org/w/index.php?title=Sognefjellet&oldid=1254277106 " Categories : Luster, Norway Lom, Norway Landforms of Innlandet Landforms of Vestland Mountain passes of Norway Hidden categories: Pages using gadget WikiMiniAtlas Coordinates on Wikidata Articles containing explicitly cited English-language text Geographic coordinate system A geographic coordinate system ( GCS )
3763-403: The polar angle (inclination) is 0° or 180°—elevation is −90° or +90°—then the azimuth angle is arbitrary; and if r is zero, both azimuth and polar angles are arbitrary. To define the coordinates as unique, the user can assert the convention that (in these cases) the arbitrary coordinates are set to zero. To plot any dot from its spherical coordinates ( r , θ , φ ) , where θ is inclination,
3834-556: The polar angle—"inclination", or as the alternative, "elevation"—and the azimuthal angle. It is the common practice within the physics convention, as specified by ISO standard 80000-2:2019 , and earlier in ISO 31-11 (1992). As stated above, this article describes the ISO "physics convention"—unless otherwise noted. However, some authors (including mathematicians) use the symbol ρ (rho) for radius, or radial distance, φ for inclination (or elevation) and θ for azimuth—while others keep
3905-535: The proper Eastern and Western Hemispheres , although maps often divide these hemispheres further west in order to keep the Old World on a single side. The antipodal meridian of Greenwich is both 180°W and 180°E. This is not to be conflated with the International Date Line , which diverges from it in several places for political and convenience reasons, including between far eastern Russia and
3976-403: The radial line around the polar axis. (See graphic regarding the "physics convention".) Once the radius is fixed, the three coordinates ( r , θ , φ ), known as a 3- tuple , provide a coordinate system on a sphere , typically called the spherical polar coordinates . The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called
4047-407: The reference plane and the radial line—i.e., from the reference plane upward (towards to the positive z-axis) to the radial line. The depression angle is the negative of the elevation angle. (See graphic re the "physics convention"—not "mathematics convention".) Both the use of symbols and the naming order of tuple coordinates differ among the several sources and disciplines. This article will use
4118-430: The same datum will obtain the same location measurement for the same physical location. However, two different datums will usually yield different location measurements for the same physical location, which may appear to differ by as much as several hundred meters; this not because the location has moved, but because the reference system used to measure it has shifted. Because any spatial reference system or map projection
4189-664: The same prime meridian but measured latitude from the Equator instead. After their work was translated into Arabic in the 9th century, Al-Khwārizmī 's Book of the Description of the Earth corrected Marinus' and Ptolemy's errors regarding the length of the Mediterranean Sea , causing medieval Arabic cartography to use a prime meridian around 10° east of Ptolemy's line. Mathematical cartography resumed in Europe following Maximus Planudes ' recovery of Ptolemy's text
4260-486: The shape of the earth (usually a reference ellipsoid for a horizontal datum, and a more precise geoid for a vertical datum) to the earth. Traditionally, this binding was created by a network of control points , surveyed locations at which monuments are installed, and were only accurate for a region of the surface of the Earth. Some newer datums are bound to the center of mass of the Earth. This combination of mathematical model and physical binding mean that anyone using
4331-3131: The spherical coordinate system and others. The spherical coordinates of a point in the ISO convention (i.e. for physics: radius r , inclination θ , azimuth φ ) can be obtained from its Cartesian coordinates ( x , y , z ) by the formulae r = x 2 + y 2 + z 2 θ = arccos z x 2 + y 2 + z 2 = arccos z r = { arctan x 2 + y 2 z if z > 0 π + arctan x 2 + y 2 z if z < 0 + π 2 if z = 0 and x 2 + y 2 ≠ 0 undefined if x = y = z = 0 φ = sgn ( y ) arccos x x 2 + y 2 = { arctan ( y x ) if x > 0 , arctan ( y x ) + π if x < 0 and y ≥ 0 , arctan ( y x ) − π if x < 0 and y < 0 , + π 2 if x = 0 and y > 0 , − π 2 if x = 0 and y < 0 , undefined if x = 0 and y = 0. {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}+z^{2}}}\\\theta &=\arccos {\frac {z}{\sqrt {x^{2}+y^{2}+z^{2}}}}=\arccos {\frac {z}{r}}={\begin{cases}\arctan {\frac {\sqrt {x^{2}+y^{2}}}{z}}&{\text{if }}z>0\\\pi +\arctan {\frac {\sqrt {x^{2}+y^{2}}}{z}}&{\text{if }}z<0\\+{\frac {\pi }{2}}&{\text{if }}z=0{\text{ and }}{\sqrt {x^{2}+y^{2}}}\neq 0\\{\text{undefined}}&{\text{if }}x=y=z=0\\\end{cases}}\\\varphi &=\operatorname {sgn}(y)\arccos {\frac {x}{\sqrt {x^{2}+y^{2}}}}={\begin{cases}\arctan({\frac {y}{x}})&{\text{if }}x>0,\\\arctan({\frac {y}{x}})+\pi &{\text{if }}x<0{\text{ and }}y\geq 0,\\\arctan({\frac {y}{x}})-\pi &{\text{if }}x<0{\text{ and }}y<0,\\+{\frac {\pi }{2}}&{\text{if }}x=0{\text{ and }}y>0,\\-{\frac {\pi }{2}}&{\text{if }}x=0{\text{ and }}y<0,\\{\text{undefined}}&{\text{if }}x=0{\text{ and }}y=0.\end{cases}}\end{aligned}}} The inverse tangent denoted in φ = arctan y / x must be suitably defined, taking into account
SECTION 60
#17327977415384402-467: The spherical coordinates may be converted into cylindrical coordinates by the formulae ρ = r sin θ , φ = φ , z = r cos θ . {\displaystyle {\begin{aligned}\rho &=r\sin \theta ,\\\varphi &=\varphi ,\\z&=r\cos \theta .\end{aligned}}} These formulae assume that
4473-464: The surface of Earth called parallels , as they are parallel to the Equator and to each other. The North Pole is 90° N; the South Pole is 90° S. The 0° parallel of latitude is designated the Equator , the fundamental plane of all geographic coordinate systems. The Equator divides the globe into Northern and Southern Hemispheres . The longitude λ of a point on Earth's surface
4544-391: The two systems have the same origin and same reference plane, measure the azimuth angle φ in the same senses from the same axis, and that the spherical angle θ is inclination from the cylindrical z axis. It is also possible to deal with ellipsoids in Cartesian coordinates by using a modified version of the spherical coordinates. Let P be an ellipsoid specified by the level set
4615-459: The use of r for the radius; all which "provides a logical extension of the usual polar coordinates notation". As to order, some authors list the azimuth before the inclination (or the elevation) angle. Some combinations of these choices result in a left-handed coordinate system. The standard "physics convention" 3-tuple set ( r , θ , φ ) {\displaystyle (r,\theta ,\varphi )} conflicts with
4686-412: The user would: move r units from the origin in the zenith reference direction (z-axis); then rotate by the amount of the azimuth angle ( φ ) about the origin from the designated azimuth reference direction, (i.e., either the x– or y–axis, see Definition , above); and then rotate from the z-axis by the amount of the θ angle. Just as the two-dimensional Cartesian coordinate system is useful—has
4757-490: The uses and meanings of symbols θ and φ . Other conventions may also be used, such as r for a radius from the z- axis that is not from the point of origin. Particular care must be taken to check the meaning of the symbols . According to the conventions of geographical coordinate systems , positions are measured by latitude, longitude, and height (altitude). There are a number of celestial coordinate systems based on different fundamental planes and with different terms for
4828-431: The usual notation for two-dimensional polar coordinates and three-dimensional cylindrical coordinates , where θ is often used for the azimuth. Angles are typically measured in degrees (°) or in radians (rad), where 360° = 2 π rad. The use of degrees is most common in geography, astronomy, and engineering, where radians are commonly used in mathematics and theoretical physics. The unit for radial distance
4899-408: The various coordinates. The spherical coordinate systems used in mathematics normally use radians rather than degrees ; (note 90 degrees equals π /2 radians). And these systems of the mathematics convention may measure the azimuthal angle counterclockwise (i.e., from the south direction x -axis, or 180°, towards the east direction y -axis, or +90°)—rather than measure clockwise (i.e., from
4970-445: The width per minute and second, divide by 60 and 3600, respectively): where Earth's average meridional radius M r {\displaystyle \textstyle {M_{r}}\,\!} is 6,367,449 m . Since the Earth is an oblate spheroid , not spherical, that result can be off by several tenths of a percent; a better approximation of a longitudinal degree at latitude ϕ {\displaystyle \phi }
5041-963: The zenith the arccos above becomes an arcsin, and the cos θ and sin θ below become switched. Conversely, the Cartesian coordinates may be retrieved from the spherical coordinates ( radius r , inclination θ , azimuth φ ), where r ∈ [0, ∞) , θ ∈ [0, π ] , φ ∈ [0, 2 π ) , by x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ . {\displaystyle {\begin{aligned}x&=r\sin \theta \,\cos \varphi ,\\y&=r\sin \theta \,\sin \varphi ,\\z&=r\cos \theta .\end{aligned}}} Cylindrical coordinates ( axial radius ρ , azimuth φ , elevation z ) may be converted into spherical coordinates ( central radius r , inclination θ , azimuth φ ), by
#537462