Misplaced Pages

Siemens-Schuckert

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Siemens-Schuckert (or Siemens-Schuckertwerke ) was a German electrical engineering company headquartered in Berlin , Erlangen and Nuremberg that was incorporated into the Siemens AG in 1966.

#28971

70-409: Siemens Schuckert was founded in 1903 when Siemens & Halske acquired Schuckertwerke. Subsequently, Siemens & Halske specialized in communications engineering and Siemens-Schuckert in power engineering and pneumatic instrumentation. During World War I Siemens-Schuckert also produced aircraft. It took over manufacturing of the renowned Protos vehicles in 1908. In World War II , the company had

140-569: A boxcar . Similarly, their pilots were given less training in combat maneuvers, and more in radio-directed pursuit. The Soviets' main interceptor was initially the Su-9 , which was followed by the Su-15 and the MiG-25 "Foxbat". The auxiliary Tu-128 , an area range interceptor, was notably the heaviest fighter aircraft ever to see service in the world. The latest and most advanced interceptor aircraft in

210-468: A 1,500 hp-class engine Bramo started development of a two-row version of the engine as the Bramo 329 , mirroring similar developments at BMW who were trying to scale up their Pratt & Whitney Hornet into the two-row BMW 139 . Design of both engines was well advanced in 1939 when BMW bought Bramo, and cancelled work on the 329 to concentrate on what would become the excellent BMW 801 . Realizing

280-485: A brief period of time they fared rapid development in both speed, range, and altitude. At the end of the 1960s, a nuclear attack became unstoppable with the introduction of ballistic missiles capable of approaching from outside the atmosphere at speeds as high as 3 to 4 miles per second (5 to 7 km/s). The doctrine of mutually assured destruction replaced the trend of defense strengthening, making interceptors less strategically logical. The utility of interceptors waned as

350-462: A chosen aspect of performance. A "point defense interceptor" is of a lightweight design, intended to spend most of its time on the ground located at the defended target, and able to launch on demand, climb to altitude, manoeuvre and then attack the bomber in a very short time, before the bomber can deploy its weapons. At the end of Second World War, the Luftwaffe ' s most critical requirement

420-459: A command centre in the Horse Guards building. The Pup proved to have too low performance to easily intercept Gotha G.IV bombers, and the superior Sopwith Camels supplanted them. The term "interceptor" was in use by 1929. Through the 1930s, bomber aircraft speeds increased so much that conventional interceptor tactics appeared impossible. Visual and acoustic detection from the ground had

490-483: A factory producing aircraft and other parts at Monowitz near Auschwitz . There was a workers camp near the factory known as Bobrek concentration camp . The Siemens Schuckert logo consisted of an S with a smaller S superimposed on the middle with the smaller S rotated left by 45 degrees. The logo was used into the late 1960s, when both companies merged with the Siemens-Reiniger-Werke AG to form

560-472: A much larger area from attack, depending on greater detection capabilities, both in the aircraft themselves and operating with AWACS, rather than high speed to reach targets. The exemplar of this concept was the Tupolev Tu-28 . The later Panavia Tornado ADV was able to achieve long range in a smaller airframe through the use of more efficient engines. Rather than focusing on acceleration and climb rate,

630-589: A number of heavy bombers early in World War I, building a run of seven Riesenflugzeug . Intended to be used in the strategic role in long duration flights, the SSW R-series had three 150 h.p Benz Bz.III engines in the cabin driving two propellers connected to a common gear-box through a combination leather-cone and centrifugal-key clutch in SSW R.I to the SSW R.VII models (the SSW R.VIII utilized four engines). In

700-694: A pair of proposals for interceptor aircraft, the first such designation in the US. One proposal was for a single-engine fighter, the other for a twin-engine. Both were required to reach an altitude of 20,000 feet (6,100 m) in six minutes as a defense against bomber attack. Kelsey said later that he used the interceptor designation to sidestep a hard USAAC policy restricting fighters to 500 pounds (230 kg) of armament. He wished for at least 1,000 pounds (450 kg) of armament so that American fighters could dominate their battles against all opponents, fighters included. The two aircraft resulting from these proposals were

770-510: A range of only a few miles, which meant that an interceptor would have insufficient time to climb to altitude before the bombers reached their targets. Standing combat air patrols were possible but only at great cost. The conclusion at the time was that " the bomber will always get through ". The invention of radar made possible early, long-range detection of aircraft on the order of 100 miles (160 km), both day and night and in all weather. A typical bomber might take twenty minutes to cross

SECTION 10

#1732776592029

840-619: A step and roughly doubled operational altitudes. Although radars also improved in performance, the gap between offense and defense was dramatically reduced. Large attacks could so confuse the defense's ability to communicate with pilots that the classic method of manual ground controlled interception was increasingly seen as inadequate. In the United States, this led to the introduction of the Semi-Automatic Ground Environment to computerize this task, while in

910-453: A very high fuel consumption. This led fighter prototypes emphasizing acceleration and operational ceiling, with a sacrifice on the loiter time, essentially limiting them to point defense role. Such were the mixed jet/rocket power Republic XF-91 or Saunders Roe SR.53 . The Soviet and Western trials with zero-length launch were also related. None of these found practical use. Designs that depended solely on jet engines achieved more success with

980-446: Is that interceptors often look very impressive on paper, typically outrunning, outclimbing and outgunning slower fighter designs. However, pure interceptors fare poorly in fighter-to-fighter combat against the same "less capable" designs due to limited maneuverability especially at low altitudes and speeds. In the spectrum of various interceptors, one design approach especially shows sacrifices necessary to achieve decisive benefit in

1050-645: The Convair F-106 Delta Dart , Sukhoi Su-15 , and English Electric Lightning . Through the 1960s and 1970s, the rapid improvements in design led to most air-superiority and multirole fighters , such as the Grumman F-14 Tomcat and McDonnell Douglas F-15 Eagle , having the performance to take on the point defense interception role, and the strategic threat moved from bombers to intercontinental ballistic missiles (ICBMs). Dedicated interceptor designs became increasingly rare, with

1120-601: The F-104 Starfighter (initial A version) and the English Electric Lightning . The role of crewed point defense designs was reassigned to uncrewed interceptors— surface-to-air missiles (SAMs)—which first reached an adequate level in 1954–1957. SAM advancements ended the concept of massed high-altitude bomber operations, in favor of penetrators (and later cruise missiles ) flying a combination of techniques colloquially known as "flying below

1190-627: The F-86D and F-89 Scorpion . In the late 1940s ADC started a project to build a much more advanced interceptor under the 1954 interceptor effort, which eventually delivered the F-106 Delta Dart after a lengthy development process. Further replacements were studied, notably the NR-349 proposal during the 1960s, but came to nothing as the USSR strengthened their strategic force with ICBMs. Hence,

1260-554: The Messerschmitt Me 163 Komet , which was the only rocket-powered, crewed military aircraft to see combat. To a lesser degree, the Mikoyan-Gurevich MiG-15 , which had heavy armament specifically intended for anti-bomber missions, was also a specialized day interceptor. Night fighters and bomber destroyers are interceptors of the heavy type, although initially they were rarely referred to as such. In

1330-647: The Mödling and Hinterbrühl Tram near Vienna , the first electrical interurban tram in Austria-Hungary . 1882 saw the opening of the experimental " Elektromote " track, an early trolleybus concept in the Berlin suburb of Halensee . The rising popularity of telegraphs and electrical tramways, as well as in generators and electric motors, ensured steady growth for Siemens & Halske. Werner von Siemens retired in 1890, while Johann Georg Halske had already left

1400-509: The Obshchestvo Elektricheskogo Osveshcheniia (Company for Electric Lighting), also known as the 1886 Company . When Siemens & Halske merged parts of its activities with Schuckert & Co. , Nuremberg in 1903 to become Siemens-Schuckert , Siemens & Halske AG specialized in communications engineering. During World War I , rotary engines of advanced and unusual design were produced under

1470-625: The Siemens-Schuckert D.IV . Several offshoots of the design included triplanes and a parasol monoplane , but none saw production. With the end of the war production of the D.IV continued, mainly for sales to Switzerland who flew them into the late 1920s. With the signing of the Treaty of Versailles the next year all aircraft production in Germany was shut down. Siemens-Schuckert immediately disappeared, but Siemens-Halske continued sales of

SECTION 20

#1732776592029

1540-521: The -003 used a simpler compressor/stator system that remains in use in modern designs today. The -002 proved to be too complex and work on it soon ended, but the -003 showed definite promise and eventually became the BMW 003 . The company had a work camp near Monowitz producing parts for the aircraft, and known as Bobrek concentration camp . It employed ostarbeiter slave workers as well as Auschwitz prisoners in its factory. The main factory to which Brobrek

1610-476: The F-106 ended up serving as the primary USAF interceptor into the 1980s. As the F-106 was retired, intercept missions were assigned to the contemporary F-15 and F-16 fighters, among their other roles. The F-16, however, was originally designed for air superiority while evolving into a versatile multirole fighter. The F-15, with its Mach 2.5 maximum speed enabling it to intercept the fastest enemy aircraft (namely

1680-750: The McDonnell Douglas F-4 Phantom as its primary interceptor from the mid-1970s, with the air defence variant (ADV) of the Panavia Tornado being introduced in the 1980s. The Tornado was eventually replaced with a multirole design, the Eurofighter Typhoon . The Shenyang J-8 is a high-speed, high-altitude Chinese-built single-seat interceptor. Initially designed in the early 1960s to counter US-built B-58 Hustler bombers, F-105 Thunderchief fighter-bombers and Lockheed U-2 reconnaissance planes, it still retains

1750-669: The MiG-25 Foxbat), is also not a pure interceptor as it has exceptional agility for dogfighting based upon the lessons learned from Vietnam; the F-15E Strike Eagle variant adds air interdiction while retaining the interception and air-to-air combat of other F-15s. Presently, the F-22 is the USA's latest combat aircraft that serves in part as an interceptor due to its Mach 2+ speed as well as supercruise capabilities, however it

1820-518: The SSW R.VII designs were noted for their distinctive forked fuselage. Several of these aircraft (SSW R.V through the SSW R.VII) fought on the Eastern Front. Although interesting in concept, the cost of these and the R-types from other companies was so great that the air force eventually abandoned the concept until more practical designs arrived later in the war. The first fighter designed at

1890-496: The Sh.322, when Siemens was given the 300-block of numbers. The Sh.322 design had reliability problems and never became popular. The company reorganized as Bramo in 1936, and continued development of what was now their own large engine. Modifying the Sh.322 with the addition of fuel injection and a new supercharger led to the Bramo 323 Fafnir , which entered production in 1937. Although rather outdated in terms of design, by this time

1960-488: The Sh.III and started development of smaller engines for the civilian market. By the mid-1920s their rotary engines were no longer in vogue, but "non-turning" versions of the same basic mechanicals led to a series of 7-cylinder radial engines , the Sh.10 through Sh.14A, delivering up to 150 hp in the 14A. The Sh.14A became a best-seller in the trainer market, and over 15,000 of all the versions were eventually built. Siemens-Halske no longer had any competitive engines for

2030-871: The Siemens-Halske brand, like the Siemens-Halske Sh.I and Sh.III . Siemens & Halske also produced large numbers of MG08/15 machineguns deployed for service of the Kaiser Imperial forces in World War I . Later, Siemens established several company subsidiaries for which the Siemens & Halske AG functioned as a holding company. During the Second World War , Siemens & Halske employed slave labour from concentration camps. Among other things, they produced field telephones of

2100-673: The Soviet (now Russian) inventory is the MiG-31 "Foxhound". Improving on some of the flaws on the proceeding MiG-25, the MiG-31 has better low altitude and low speed performance, in addition to carrying an internal cannon. Russia, despite merging the PVO into the VVS, continues to maintain its dedicated MiG-31 interceptor fleet. In 1937, USAAC lieutenants Gordon P. Saville and Benjamin S. Kelsey devised

2170-462: The UK it led to enormously powerful radars to improve detection time. The introduction of the first useful surface to air missiles in the 1950s obviated the need for fast reaction time interceptors as the missile could launch almost instantly. Air forces increasingly turned to much larger interceptor designs, with enough fuel for longer endurance, leaving the point-defense role to the missiles. This led to

Siemens-Schuckert - Misplaced Pages Continue

2240-599: The abandonment of a number of short-range designs like the Avro Arrow and Convair F-102 in favor of much larger and longer-ranged designs like the North American F-108 and MiG-25 . In the 1950s and 1960’s during the Cold War , a strong interceptor force was crucial for the opposing superpowers as it was the best means to defend against an unexpected nuclear attack by strategic bombers . Hence, for

2310-470: The ability to 'sprint' at Mach 2+ speeds, and later versions can carry medium-range PL-12/SD-10 MRAAM missiles for interception purposes. The PLAAF/PLANAF currently still operates approximately 300 or so J-8s of various configurations. Several other countries also introduced interceptor designs, although in the 1950s–1960s several planned interceptors never came to fruition, with the expectation that missiles would replace bombers. The Argentine FMA I.Ae. 37

2380-458: The aircraft themselves. They were first to introduce all-weather avionics , assuring successful operations during night, rain, snow, or fog. Countries that were strategically dependent on surface fleet, most notably US and UK, maintained also fleet defense fighters , such as the F-14 Tomcat . During the Cold War , an entire military service, not just an arm of the pre-existing air force,

2450-697: The bombing raids. Rocket-boosted variants of both of Germany's jet fighters; the Me 262 in its "C" subtype series, all nicknamed "home protector" ( Heimatschützer , in four differing formats) and the planned He 162 E subtype, using one of the same BMW 003R turbojet/rocket "mixed-power" engine as the Me 262C-2b Heimatschützer II , but were never produced in quantity. In the initial stage of Cold War , bombers were expected to attack flying higher and faster, even at transonic speeds. Initial transonic and supersonic fighters had modest internal fuel tanks in their slim fuselages, but

2520-426: The case of engine failure, which was extremely common at the time, the bomber could continue flying on two engines while the third was repaired by the in-flight mechanic. Two transmission shafts transferred the power from the gear-box to propeller gear-boxes mounted on the wing struts. Although there were some problems with the clutch system, the gear-box proved to be reliable when properly maintained. The SSW R.1 through

2590-630: The company in 1867. Werner von Siemens' brother Karl Heinrich, together with Werner's sons Arnold and Georg Wilhelm , grew the firm and erected new Siemens & Halske premises along the banks of the western Spree river, in the Berlin suburb of Charlottenburg, in 1897. The firm's vast new site continued to grow, and from 1899 onwards it was known as Siemensstadt . Siemens & Halske quickly expanded with representatives in Great Britain and Russia as well as its own cable-manufacturing plants at Woolwich and Saint Petersburg . The company's rise

2660-631: The defending fighters. The Me 163 required an airbase, however, which were soon under constant attack. Following the Emergency Fighter Program , the Germans developed even odder designs, such as the Bachem Ba 349 Natter , which launched vertically and thus eliminated the need for an airbase. In general all these initial German designs proved difficult to operate, often becoming death traps for their pilots, and had little effect on

2730-458: The design emphasis is on range and missile carrying capacity, which together translate into combat endurance, look-down/shoot-down radars good enough to detect and track fast moving interdictors against ground clutter , and the capability to provide guidance to air-to-air missiles (AAM) against these targets. High speed and acceleration was put into long-range and medium-range AAMs, and agility into short range dog fighting AAMs, rather than into

2800-464: The detection zone of early radar systems, time enough for interceptor fighters to start up, climb to altitude and engage the bombers. Ground controlled interception required constant contact between the interceptor and the ground until the bombers became visible to the pilots and nationwide networks like the Dowding system were built in the late 1930s to coordinate these efforts. During World War II

2870-540: The early Cold War era the combination of jet -powered bombers and nuclear weapons created air force demand for highly capable interceptors; it is in regards to this period that the term is perhaps most recognized and used. Cold War-era interceptors became increasingly distinct from their air superiority counterparts, with the former often sacrificing range, endurance, and maneuverability for speed, rate of climb , and armament dedicated to attacking large strategic bombers . Examples of classic interceptors of this era include

Siemens-Schuckert - Misplaced Pages Continue

2940-405: The effectiveness of interceptor aircraft meant that bombers often needed to be escorted by long range fighter aircraft. Many aircraft were able to be fitted with Aircraft interception radar , further facilitating the interception of enemy aircraft. The introduction of jet power increased flight speeds from around 300 miles per hour (500 km/h) to around 600 miles per hour (1,000 km/h) in

3010-401: The engine had matured into a highly reliable powerplant despite its comparatively poor fuel economy, and 5,500 were produced until the lines shut down in 1944. In design terms the 323 was basically a dead-end with little growth potential. By the start of the war its 1,000 hp was already at the low end of the performance scale, and use was limited to transports and bombers. In order to build

3080-407: The external fuel lines were detached. However, keeping QRA aircraft at this state of readiness was physically and mentally draining to the pilots and was expensive in terms of fuel. As an alternative, longer-range designs with extended loiter times were considered. These area defense interceptors or area defense fighters were in general larger designs intended to stay on lengthy patrol and protect

3150-529: The first European telegraph lines from Berlin to Frankfurt am Main . Siemens & Halske was not alone in the realm of electrical engineering. In 1887, Emil Rathenau had established Allgemeine Elektrizitäts-Gesellschaft (AEG), which became a long-time rival. In 1881, Siemens & Halske built the Gross-Lichterfelde Tramway , the world's first electric streetcar line, in the southwestern Lichterfelde suburb of Berlin, followed by

3220-653: The interceptor role until it received upgrades in the 1990s for ground attack. Both the fighter and the Phoenix missile were retired in 2006. The British Royal Air Force operated a supersonic day fighter, the English Electric Lightning , alongside the Gloster Javelin in the subsonic night/all-weather role . Efforts to replace the Javelin with a supersonic design under Operational Requirement F.155 came to naught. The UK operated its own, highly adapted version of

3290-598: The interceptor role. Day interceptors have been used in a defensive role since World War I , and are perhaps best known from major actions like the Battle of Britain , when the Supermarine Spitfire and Hawker Hurricane were part of a successful defensive strategy. However, dramatic improvements in both ground-based and airborne radar gave greater flexibility to existing fighters and few later designs were conceived as dedicated day interceptors. Exceptions include

3360-500: The larger end of the market, and to address this they negotiated a license in 1929 to produce the 9-cylinder Bristol Jupiter IV . Minor changes for the German market led to the Sh.20 and Sh.21. Following the evolution of their smaller Sh.14's, the engine was then bored out to produce the 900 hp design, the Sh.22. In 1933 new engine naming was introduced by the RLM , and this design became

3430-417: The most advanced rotary engine designs of the war. The D.I fighter also formed the basis for a series of original designs, which by the end of 1917 had reached a peak in the Siemens-Schuckert D.III , which went into limited production in early 1918, and found use in home defense units as an interceptor , due to its outstanding rate of climb. Further modifications improved its handling and performance to produce

3500-668: The only widely used examples designed after the 1960s being the Panavia Tornado ADV , Mikoyan MiG-25 , Mikoyan MiG-31 , and the Shenyang J-8 . The first interceptor squadrons were formed during World War I to defend London against attacks by Zeppelins and later against fixed-wing long-range bombers . Early units generally used aircraft withdrawn from front-line service, notably the Sopwith Pup . They were told about their target's location before take-off from

3570-436: The overall mission time, there were few ways to reduce this. During the Cold War in times of heightened tensions, quick reaction alert (QRA) aircraft were kept piloted, fully fueled and armed, with the engines running at idle on the runway ready to take off. The aircraft being kept topped up with fuel via hoses from underground fuel tanks. If a possible intruder was identified, the aircraft would be ready to take off as soon as

SECTION 50

#1732776592029

3640-560: The present-day Siemens AG . Siemens-Schuckert produced various railways: Siemens-Schuckert built a number of designs in World War I and inter-war era. They also produced aircraft engines under the Siemens-Halske brand, which evolved into their major product line after the end of World War I . The company reorganized as Brandenburgische Motorenwerke , or simply Bramo , in 1936, and were later purchased in 1939 by BMW to become BMW Flugmotorenbau . Siemens-Schuckert designed

3710-567: The radar". By flying terrain masking low-altitude nap-of-the-earth flight profiles the effective range, and therefore reaction time, of ground-based radar was limited to at best the radar horizon . In the case of ground radar systems this can be countered by placing radar systems on mountain tops to extend the radar horizon, or through placing high performance radars in interceptors or in AWACS aircraft used to direct point defense interceptors. As capabilities continued to improve – especially through

3780-404: The role merged with that of the heavy air superiority fighter . The interceptor mission is, by its nature, a difficult one. Consider the desire to protect a single target from attack by long-range bombers. The bombers have the advantage of being able to select the parameters of the mission – attack vector, speed and altitude. This results in an enormous area from which the attack can originate. In

3850-450: The second type was exemplified historically by specialized night fighter and all-weather interceptor designs, the integration of mid-air refueling, satellite navigation, on-board radar, and beyond visual range (BVR) missile systems since the 1960s has allowed most frontline fighter designs to fill the roles once reserved for specialized night/all-weather fighters. For daytime operations, conventional light fighters have normally filled

3920-436: The single-engine Bell P-39 Airacobra and the twin-engine Lockheed P-38 Lightning . Both aircraft were successful during World War II in standard fighter roles, not specifically assigned to point defense against bombers. From 1946 to 1980 the United States maintained a dedicated Aerospace Defense Command , consisting primarily of dedicated interceptors. Many post-war designs were of limited performance, including designs like

3990-486: The time it takes for the bombers to cross the distance from first detection to being on their targets, the interceptor must be able to start, take off, climb to altitude, maneuver for attack and then attack the bomber. A dedicated interceptor aircraft sacrifices the capabilities of the air superiority fighter and multirole fighter (i.e., countering enemy fighter aircraft in air combat manoeuvring ), by tuning its performance for either fast climbs or high speeds. The result

4060-536: The time mainly for escort work. The prototype SSW E.II, powered by the inline Argus AsII, crashed in June 1916, killing Franz Steffen, one of the designers of the SSW R types. By early 1916 the first generation of German monoplane fighters were outclassed by the Nieuport 11 and the Nieuport 17 which very quickly followed it; and Siemens-Schuckert were supplied with a captured Nieuport 17 to "study". The resulting SSW D.I

4130-450: The two-row radial development was a risky proposition; Bramo engineers had also started developing axial-flow jet engines in 1938. They were awarded a development contract to continue work on two designs, which would later become the 109-002 and 109-003 when the RLM officially started supporting jet development. The -002 used an advanced contra-rotating compressor for added efficiency, while

4200-721: The type "Feldfernsprecher 33". Interceptor aircraft An interceptor aircraft , or simply interceptor , is a type of fighter aircraft designed specifically for the defensive interception role against an attacking enemy aircraft, particularly bombers and reconnaissance aircraft . Aircraft that are capable of being or are employed as both "standard" air superiority fighters and as interceptors are sometimes known as fighter-interceptors . There are two general classes of interceptor: light fighters , designed for high performance over short range; and heavy fighters , which are intended to operate over longer ranges , in contested airspace and adverse meteorological conditions . While

4270-420: The widespread introduction of the jet engine and the adoption of high speed, low level flight profiles, the time available between detection and interception dropped. Most advanced point defence interceptors combined with long-range radars were struggling to keep the reaction time down enough to be effective. Fixed times, like the time needed for the pilot to climb into the cockpit, became an increasing portion of

SECTION 60

#1732776592029

4340-551: The works was the Siemens-Schuckert E.I which appeared in mid 1915, and which was the first aircraft to be powered by the Siemens-Halske Sh.I, a new rotary , developed by Siemens-Schuckert, in which the cylinders and the crankshaft rotated in opposite directions. A small number of production machines were supplied to various Feldflieger Abteilung to supplement supplies of the Fokker and Pfalz monoplane fighters used at

4410-463: Was a German electrical engineering company that later became part of Siemens . It was founded on 12 October 1847 as Telegraphen-Bauanstalt von Siemens & Halske by Werner von Siemens and Johann Georg Halske . The company, located in Berlin - Kreuzberg , specialised in manufacturing electrical telegraphs according to Charles Wheatstone 's patent of 1837. In 1848, the company constructed one of

4480-472: Was a prototype jet fighter developed during the 1950s. It never flew and was cancelled in 1960. The Canadian subsonic Avro Canada CF-100 Canuck served in numbers through 1950s. Its supersonic replacement, the CF-105 Arrow ("Avro Arrow"), was controversially cancelled in 1959. The Swedish Saab 35 Draken was specifically designed for intercepting aircraft passing Swedish airspace at high altitudes in

4550-606: Was attached was a site designed to make synthetic rubber and gasoline , and it was owned by IG Farben , one of the largest chemical combines in Germany during the war. It was one of numerous Auschwitz sub-camps established by large German companies to supply armaments to the armed forces, and other companies included Krupp , Rheinmetal and AEG . They were all making not just small side arms such as pistols and machine guns but also large weapons like artillery as well as U-boat and aircraft parts. Siemens %26 Halske Siemens & Halske AG (or Siemens-Halske )

4620-544: Was designated for deployment of interceptors. The aircraft of the Soviet Air Defence Forces (PVO-S) differed from those of the Soviet Air Forces (VVS) in that they were by no means small or crudely simple, but huge and refined with large, sophisticated radars; they could not take off from grass, only concrete runways; they could not be disassembled and shipped back to a maintenance center in

4690-652: Was designed primarily as a stealth air superiority fighter. In the 1950s, the United States Navy led an unsuccessful F6D Missileer project. Later it launched the development of a large F-111B fleet air defense fighter, but this project was cancelled too. Finally, the role was assigned to the F-14 Tomcat , carrying AIM-54 Phoenix missiles. Like the USAF's F-15, the USN's F-14 was also designed primarily as an air superiority (fighter-to-fighter combat) and F-14s served

4760-522: Was for interceptors as the Commonwealth and American air forces pounded German targets night and day. As the bombing effort grew, notably in early 1944, the Luftwaffe introduced a rocket-powered design, the Messerschmitt Me 163 Komet , in the very-short-range interceptor role. The engine allowed about 7 minutes of powered flight, but offered such tremendous performance that they could fly right by

4830-458: Was powered by the Siemens-Halske Sh.I, but was otherwise a fairly literal copy of the Nieuport 17. This aircraft was the first Siemens-Schuckert fighter to be ordered in quantity, but by the time it became available in numbers (well into 1917) it was outclassed by contemporary Albatros fighters. Development of the Sh.I engine resulted in the eleven-cylinder, 160 hp Sh.III , perhaps one of

4900-663: Was supported by Werner von Siemens' patent of the electric generator ( dynamo ) in 1867. Carl Wilhelm Siemens represented the company in Great Britain . They developed a cable-manufacturing plant in Woolwich . Carl Heinrich von Siemens represented the company in Russia. He established the Russian branch of the company in 1853, gaining a contract to build the telegraph system. In 1886 they obtained permission to establish

#28971