The Sioux Quartzite is a Proterozoic quartzite that is found in the region around the intersection of Minnesota, South Dakota, and Iowa, and correlates with other rock units throughout the upper midwestern and southwestern United States . It was formed by braided river deposits, and its correlative units are thought to possibly define a large sedimentary wedge that once covered the passive margin on the then-southern side of the North American craton . In human history, it provided the catlinite , or pipestone, that was used by the Plains Indians to carve ceremonial pipes. With the arrival of Europeans, it was heavily quarried for building stone, and was used in many prominent structures in Sioux Falls , South Dakota and shipped to construction sites around the Midwest. Sioux Quartzite has been and continues to be quarried in Jasper, Minnesota at the Jasper Stone Company and Quarry, which itself was posted to the National Register of Historic Places on January 5, 1978. Jasper, Minnesota contains many turn-of-the-century quartzite buildings, including the school, churches and several other public and private structures, mostly abandoned.
84-573: The Sioux Quartzite is a red to pink Proterozoic quartzite . It is a thick stratigraphic unit (~3000 m) that crops out in southwestern Minnesota , southeastern and south-central South Dakota , northwestern Iowa , and a small part of northeastern Nebraska . It is correlated with other sandstone and quartzite units across Wisconsin (at Rib Mountain , Baraboo , Barron , Waterloo , and Flambeau ), southeastern Iowa , southern Nebraska , and north-central New Mexico and southeast-central Arizona (Ortega, Mazatzal, and Deadman Quartzite). Its age
168-644: A constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC) that are used to define divisions of geologic time. The chronostratigraphic divisions are in turn used to define geochronologic units. The geologic time scale is a way of representing deep time based on events that have occurred throughout Earth's history ,
252-589: A few billion years in age. It is believed that 43% of modern continental crust was formed in the Proterozoic, 39% formed in the Archean, and only 18% in the Phanerozoic . Studies by Condie (2000) and Rino et al. (2004) harvp error: no target: CITEREFRinoKomiyaWindleyet_al2004 ( help ) suggest that crust production happened episodically. By isotopically calculating the ages of Proterozoic granitoids it
336-481: A few plausible models that explain tectonics of the early Earth prior to the formation of Columbia, but the current most plausible hypothesis is that prior to Columbia, there were only a few independent cratons scattered around the Earth (not necessarily a supercontinent, like Rodinia or Columbia). The Proterozoic can be roughly divided into seven biostratigraphic zones which correspond to informal time periods. The first
420-597: A formal proposal to the ICS for the establishment of the Anthropocene Series/Epoch. Nevertheless, the definition of the Anthropocene as a geologic time period rather than a geologic event remains controversial and difficult. An international working group of the ICS on pre-Cryogenian chronostratigraphic subdivision have outlined a template to improve the pre-Cryogenian geologic time scale based on
504-635: A machine-readable Resource Description Framework / Web Ontology Language representation of the time scale, which is available through the Commission for the Management and Application of Geoscience Information GeoSciML project as a service and at a SPARQL end-point. Some other planets and satellites in the Solar System have sufficiently rigid structures to have preserved records of their own histories, for example, Venus , Mars and
588-526: A period of increasing crustal recycling, suggesting subduction . Evidence for this increased subduction activity comes from the abundance of old granites originating mostly after 2.6 Ga . The occurrence of eclogite (a type of metamorphic rock created by high pressure, > 1 GPa), is explained using a model that incorporates subduction. The lack of eclogites that date to the Archean Eon suggests that conditions at that time did not favor
672-529: A rock that cuts across another rock must be younger than the rock it cuts across. The law of included fragments that states small fragments of one type of rock that are embedded in a second type of rock must have formed first, and were included when the second rock was forming. The relationships of unconformities which are geologic features representing a gap in the geologic record. Unconformities are formed during periods of erosion or non-deposition, indicating non-continuous sediment deposition. Observing
756-419: A specific interval of geologic time, and only this time span. Eonothem, erathem, system, series, subseries, stage, and substage are the hierarchical chronostratigraphic units. A geochronologic unit is a subdivision of geologic time. It is a numeric representation of an intangible property (time). These units are arranged in a hierarchy: eon, era, period, epoch, subepoch, age, and subage. Geochronology
840-547: A system/series (early/middle/late); however, the International Commission on Stratigraphy advocates for all new series and subseries to be named for a geographic feature in the vicinity of its stratotype or type locality . The name of stages should also be derived from a geographic feature in the locality of its stratotype or type locality. Informally, the time before the Cambrian is often referred to as
924-659: A time span of about 4.54 ± 0.05 Ga (4.54 billion years). It chronologically organises strata, and subsequently time, by observing fundamental changes in stratigraphy that correspond to major geological or paleontological events. For example, the Cretaceous–Paleogene extinction event , marks the lower boundary of the Paleogene System/Period and thus the boundary between the Cretaceous and Paleogene systems/periods. For divisions prior to
SECTION 10
#17327795255871008-458: A wider sense, correlating strata across national and continental boundaries based on their similarity to each other. Many of the names below erathem/era rank in use on the modern ICC/GTS were determined during the early to mid-19th century. During the 19th century, the debate regarding Earth's age was renewed, with geologists estimating ages based on denudation rates and sedimentary thicknesses or ocean chemistry, and physicists determining ages for
1092-437: Is a representation of time based on the rock record of Earth . It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (a scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists , paleontologists , geophysicists , geochemists , and paleoclimatologists ) to describe
1176-549: Is an internationally agreed-upon reference point on a stratigraphic section that defines the lower boundaries of stages on the geologic time scale. (Recently this has been used to define the base of a system) A Global Standard Stratigraphic Age (GSSA) is a numeric-only, chronologic reference point used to define the base of geochronologic units prior to the Cryogenian. These points are arbitrarily defined. They are used where GSSPs have not yet been established. Research
1260-552: Is constrained to be between 2280 ± 110 Ma from the uranium-lead dating of a rhyolite that underlies it in northwestern Iowa, and 1120 Ma from a potassium-argon date of deformation of the Sioux Quartzite in Pipestone, Minnesota . Its age can be better-constrained by extrapolation correlative units to between 1760 ± 10 Ma. and 1640 ± 40 Ma This period in which the Sioux Quartzite and its correlative units were deposited
1344-439: Is divided into chronostratigraphic units and their corresponding geochronologic units. The subdivisions Early and Late are used as the geochronologic equivalents of the chronostratigraphic Lower and Upper , e.g., Early Triassic Period (geochronologic unit) is used in place of Lower Triassic System (chronostratigraphic unit). Rocks representing a given chronostratigraphic unit are that chronostratigraphic unit, and
1428-483: Is known as the Baraboo interval, in which high relative sea levels covered a large amount of North America. The Sioux quartzite was primarily formed by braided river deposits, of quartz arenite composition, with 95% of the rock being composed of rounded, fine to medium (0.125–0.5 mm) sand -size quartz grains . The rivers are believed to flow southeast, at a relatively shallow gradient. Its basal conglomerate
1512-566: Is less frequent) remains unchanged. For example, in early 2022, the boundary between the Ediacaran and Cambrian periods (geochronologic units) was revised from 541 Ma to 538.8 Ma but the rock definition of the boundary (GSSP) at the base of the Cambrian, and thus the boundary between the Ediacaran and Cambrian systems (chronostratigraphic units) has not been changed; rather, the absolute age has merely been refined. Chronostratigraphy
1596-499: Is ongoing to define GSSPs for the base of all units that are currently defined by GSSAs. The standard international units of the geologic time scale are published by the International Commission on Stratigraphy on the International Chronostratigraphic Chart; however, regional terms are still in use in some areas. The numeric values on the International Chronostratigrahpic Chart are represented by
1680-457: Is still a useful concept. The principle of lateral continuity that states layers of sediments extend laterally in all directions until either thinning out or being cut off by a different rock layer, i.e. they are laterally continuous. Layers do not extend indefinitely; their limits are controlled by the amount and type of sediment in a sedimentary basin , and the geometry of that basin. The principle of cross-cutting relationships that states
1764-502: Is the element of stratigraphy that deals with the relation between rock bodies and the relative measurement of geological time. It is the process where distinct strata between defined stratigraphic horizons are assigned to represent a relative interval of geologic time. A chronostratigraphic unit is a body of rock, layered or unlayered, that is defined between specified stratigraphic horizons which represent specified intervals of geologic time. They include all rocks representative of
SECTION 20
#17327795255871848-405: Is the scientific branch of geology that aims to determine the age of rocks, fossils, and sediments either through absolute (e.g., radiometric dating ) or relative means (e.g., stratigraphic position , paleomagnetism , stable isotope ratios ). Geochronometry is the field of geochronology that numerically quantifies geologic time. A Global Boundary Stratotype Section and Point (GSSP)
1932-645: Is the third of the four geologic eons of Earth's history , spanning the time interval from 2500 to 538.8 Mya , the longest eon of the Earth's geologic time scale . It is preceded by the Archean and followed by the Phanerozoic , and is the most recent part of the Precambrian "supereon". The Proterozoic is subdivided into three geologic eras (from oldest to youngest): the Paleoproterozoic , Mesoproterozoic and Neoproterozoic . It covers
2016-441: Is thought to be braided stream deposits that are more proximal to the source, and there is possible marine influence on the upper part of the unit – this interpretation is supported by evidence of marine sediments ( shales and banded iron formations ) atop its correlative unit in Baraboo, Wisconsin. In addition, the unit contains ~1 meter beds of claystone , which are known as catlinite or pipestone, because these beds were used by
2100-618: The Anthropocene is a proposed epoch/series for the most recent time in Earth's history. While still informal, it is a widely used term to denote the present geologic time interval, in which many conditions and processes on Earth are profoundly altered by human impact. As of April 2022 the Anthropocene has not been ratified by the ICS; however, in May 2019 the Anthropocene Working Group voted in favour of submitting
2184-539: The Brothers of Purity , who wrote on the processes of stratification over the passage of time in their treatises . Their work likely inspired that of the 11th-century Persian polymath Avicenna (Ibn Sînâ, 980–1037) who wrote in The Book of Healing (1027) on the concept of stratification and superposition, pre-dating Nicolas Steno by more than six centuries. Avicenna also recognised fossils as "petrifications of
2268-598: The Cryogenian , arbitrary numeric boundary definitions ( Global Standard Stratigraphic Ages , GSSAs) are used to divide geologic time. Proposals have been made to better reconcile these divisions with the rock record. Historically, regional geologic time scales were used due to the litho- and biostratigraphic differences around the world in time equivalent rocks. The ICS has long worked to reconcile conflicting terminology by standardising globally significant and identifiable stratigraphic horizons that can be used to define
2352-477: The Precambrian or pre-Cambrian (Supereon). While a modern geological time scale was not formulated until 1911 by Arthur Holmes , the broader concept that rocks and time are related can be traced back to (at least) the philosophers of Ancient Greece . Xenophanes of Colophon (c. 570–487 BCE ) observed rock beds with fossils of shells located above the sea-level, viewed them as once living organisms, and used this to imply an unstable relationship in which
2436-822: The cosmogenic radionuclides beryllium-10 and aluminium-26 to determine how long ago the Laurentide Ice Sheet retreated from the Upper Midwest . These dates show that southwestern Minnesota was last covered in glacial ice at least 500,000 years ago. Several mansions and other notable buildings have been built using Sioux Quartzite. These include: Perhaps the most unusual construction involved Sioux quartzite and petrified wood : Proterozoic The Proterozoic ( IPA : / ˌ p r oʊ t ər ə ˈ z oʊ ɪ k , ˌ p r ɒ t -, - ər oʊ -, - t r ə -, - t r oʊ -/ PROH -tər-ə- ZOH -ik, PROT-, -ər-oh-, -trə-, -troh- )
2520-691: The Commission on Stratigraphy (applied in 1965) to become a member commission of IUGS led to the founding of the ICS. One of the primary objectives of the ICS is "the establishment, publication and revision of the ICS International Chronostratigraphic Chart which is the standard, reference global Geological Time Scale to include the ratified Commission decisions". Following on from Holmes, several A Geological Time Scale books were published in 1982, 1989, 2004, 2008, 2012, 2016, and 2020. However, since 2013,
2604-474: The Earth's Moon . Dominantly fluid planets, such as the giant planets , do not comparably preserve their history. Apart from the Late Heavy Bombardment , events on other planets probably had little direct influence on the Earth, and events on Earth had correspondingly little effect on those planets. Construction of a time scale that links the planets is, therefore, of only limited relevance to
Sioux Quartzite - Misplaced Pages Continue
2688-529: The Earth's time scale, except in a Solar System context. The existence, timing, and terrestrial effects of the Late Heavy Bombardment are still a matter of debate. The geologic history of Earth's Moon has been divided into a time scale based on geomorphological markers, namely impact cratering , volcanism , and erosion . This process of dividing the Moon's history in this manner means that
2772-602: The Ediacaran, proving that multicellular life had already become widespread tens of millions of years before the Cambrian Explosion in what is known as the Avalon Explosion . Nonetheless, the upper boundary of the Proterozoic has remained fixed at the base of the Cambrian , which is currently placed at 538.8 Ma. Eon (geology) The geologic time scale or geological time scale ( GTS )
2856-450: The ICS has taken responsibility for producing and distributing the ICC citing the commercial nature, independent creation, and lack of oversight by the ICS on the prior published GTS versions (GTS books prior to 2013) although these versions were published in close association with the ICS. Subsequent Geologic Time Scale books (2016 and 2020 ) are commercial publications with no oversight from
2940-404: The ICS, and do not entirely conform to the chart produced by the ICS. The ICS produced GTS charts are versioned (year/month) beginning at v2013/01. At least one new version is published each year incorporating any changes ratified by the ICS since the prior version. The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to
3024-415: The ICS. While some regional terms are still in use, the table of geologic time conforms to the nomenclature , ages, and colour codes set forth by the International Commission on Stratigraphy in the official International Chronostratigraphic Chart. The International Commission on Stratigraphy also provide an online interactive version of this chart. The interactive version is based on a service delivering
3108-737: The Neoproterozoic Era at the end of the Proterozoic Eon, possibly climaxing with the hypothesized Snowball Earth of the Sturtian and Marinoan glaciations. One of the most important events of the Proterozoic was the accumulation of oxygen in the Earth's atmosphere. Though oxygen is believed to have been released by photosynthesis as far back as the Archean Eon, it could not build up to any significant degree until mineral sinks of unoxidized sulfur and iron had been exhausted. Until roughly 2.3 billion years ago, oxygen
3192-592: The Palaeoproterozoic or Mesoproterozoic, according to molecular data. Classically, the boundary between the Proterozoic and the Phanerozoic eons was set at the base of the Cambrian Period when the first fossils of animals, including trilobites and archeocyathids , as well as the animal-like Caveasphaera , appeared. In the second half of the 20th century, a number of fossil forms have been found in Proterozoic rocks, particularly in ones from
3276-529: The bodies of plants and animals", with the 13th-century Dominican bishop Albertus Magnus (c. 1200–1280) extending this into a theory of a petrifying fluid. These works appeared to have little influence on scholars in Medieval Europe who looked to the Bible to explain the origins of fossils and sea-level changes, often attributing these to the ' Deluge ', including Ristoro d'Arezzo in 1282. It
3360-486: The breakup of the supercontinent Columbia and prior to the assemblage of the supercontinent Gondwana (~500 Ma). The defining orogenic event associated with the formation of Gondwana was the collision of Africa, South America, Antarctica and Australia forming the Pan-African orogeny . Columbia was dominant in the early-mid Proterozoic and not much is known about continental assemblages before then. There are
3444-569: The cooling of the Earth or the Sun using basic thermodynamics or orbital physics. These estimations varied from 15,000 million years to 0.075 million years depending on method and author, but the estimations of Lord Kelvin and Clarence King were held in high regard at the time due to their pre-eminence in physics and geology. All of these early geochronometric determinations would later prove to be incorrect. The discovery of radioactive decay by Henri Becquerel , Marie Curie , and Pierre Curie laid
Sioux Quartzite - Misplaced Pages Continue
3528-775: The corresponding geochronologic unit sharing the same name with a change to the suffix (e.g. Phanerozoic Eonothem becomes the Phanerozoic Eon). Names of erathems in the Phanerozoic were chosen to reflect major changes in the history of life on Earth: Paleozoic (old life), Mesozoic (middle life), and Cenozoic (new life). Names of systems are diverse in origin, with some indicating chronologic position (e.g., Paleogene), while others are named for lithology (e.g., Cretaceous), geography (e.g., Permian ), or are tribal (e.g., Ordovician ) in origin. Most currently recognised series and subseries are named for their position within
3612-522: The deciphering of Precambrian Supereon tectonics. It is known that tectonic processes of the Proterozoic Eon resemble greatly the evidence of tectonic activity, such as orogenic belts or ophiolite complexes, we see today. Hence, most geologists would conclude that the Earth was active at that time. It is also commonly accepted that during the Precambrian, the Earth went through several supercontinent breakup and rebuilding cycles ( Wilson cycle ). In
3696-457: The developments in mass spectrometry pioneered by Francis William Aston , Arthur Jeffrey Dempster , and Alfred O. C. Nier during the early to mid- 20th century would finally allow for the accurate determination of radiometric ages, with Holmes publishing several revisions to his geological time-scale with his final version in 1960. The establishment of the IUGS in 1961 and acceptance of
3780-404: The different layers of stone unless they had been upon the shore and had been covered over by earth newly thrown up by the sea which then became petrified? And if the above-mentioned Deluge had carried them to these places from the sea, you would find the shells at the edge of one layer of rock only, not at the edge of many where may be counted the winters of the years during which the sea multiplied
3864-426: The eon continued the massive continental accretion that had begun late in the Archean Eon. The Proterozoic Eon also featured the first definitive supercontinent cycles and wholly modern mountain building activity ( orogeny ). There is evidence that the first known glaciations occurred during the Proterozoic. The first began shortly after the beginning of the Proterozoic Eon, and evidence of at least four during
3948-643: The evolution of eukaryotes via symbiogenesis ; several global glaciations , which produced the 300 million years-long Huronian glaciation (during the Siderian and Rhyacian periods of the Paleoproterozoic) and the hypothesized Snowball Earth (during the Cryogenian period in the late Neoproterozoic); and the Ediacaran period (635–538.8 Ma ), which is characterized by the evolution of abundant soft-bodied multicellular organisms such as sponges , algae , cnidarians , bilaterians and
4032-678: The first half of the Ediacaran from 0.63–0.55 Ga, and the Belomorian, spanning from 0.55–0.542 Ga. The emergence of advanced single-celled eukaryotes began after the Oxygen Catastrophe . This may have been due to an increase in the oxidized nitrates that eukaryotes use, as opposed to cyanobacteria . It was also during the Proterozoic that the first symbiotic relationships between mitochondria (found in nearly all eukaryotes) and chloroplasts (found in plants and some protists only) and their hosts evolved. By
4116-419: The formation of high grade metamorphism and therefore did not achieve the same levels of subduction as was occurring in the Proterozoic Eon. As a result of remelting of basaltic oceanic crust due to subduction, the cores of the first continents grew large enough to withstand the crustal recycling processes. The long-term tectonic stability of those cratons is why we find continental crust ranging up to
4200-414: The foundational principles of determining the correlation of strata relative to geologic time. Over the course of the 18th-century geologists realised that: The apparent, earliest formal division of the geologic record with respect to time was introduced during the era of Biblical models by Thomas Burnet who applied a two-fold terminology to mountains by identifying " montes primarii " for rock formed at
4284-465: The geologic time scale of Earth. This table is arranged with the most recent geologic periods at the top, and the oldest at the bottom. The height of each table entry does not correspond to the duration of each subdivision of time. As such, this table is not to scale and does not accurately represent the relative time-spans of each geochronologic unit. While the Phanerozoic Eon looks longer than
SECTION 50
#17327795255874368-492: The ground work for radiometric dating, but the knowledge and tools required for accurate determination of radiometric ages would not be in place until the mid-1950s. Early attempts at determining ages of uranium minerals and rocks by Ernest Rutherford , Bertram Boltwood , Robert Strutt , and Arthur Holmes, would culminate in what are considered the first international geological time scales by Holmes in 1911 and 1913. The discovery of isotopes in 1913 by Frederick Soddy , and
4452-665: The late Palaeoproterozoic, eukaryotic organisms had become moderately biodiverse. The blossoming of eukaryotes such as acritarchs did not preclude the expansion of cyanobacteria – in fact, stromatolites reached their greatest abundance and diversity during the Proterozoic, peaking roughly 1.2 billion years ago. The earliest fossils possessing features typical of fungi date to the Paleoproterozoic Era, some 2.4 billion years ago; these multicellular benthic organisms had filamentous structures capable of anastomosis . The Viridiplantae evolved sometime in
4536-625: The late Proterozoic (most recent), the dominant supercontinent was Rodinia (~1000–750 Ma). It consisted of a series of continents attached to a central craton that forms the core of the North American Continent called Laurentia . An example of an orogeny (mountain building processes) associated with the construction of Rodinia is the Grenville orogeny located in Eastern North America. Rodinia formed after
4620-561: The layers of sand and mud brought down by the neighboring rivers and spread them over its shores. And if you wish to say that there must have been many deluges in order to produce these layers and the shells among them it would then become necessary for you to affirm that such a deluge took place every year. These views of da Vinci remained unpublished, and thus lacked influence at the time; however, questions of fossils and their significance were pursued and, while views against Genesis were not readily accepted and dissent from religious doctrine
4704-453: The lower boundaries of chronostratigraphic units. Defining chronostratigraphic units in such a manner allows for the use of global, standardised nomenclature. The International Chronostratigraphic Chart represents this ongoing effort. Several key principles are used to determine the relative relationships of rocks and thus their chronostratigraphic position. The law of superposition that states that in undeformed stratigraphic sequences
4788-478: The natives of the area to carve pipe bowls. It is thought that the Sioux Quartzite and its correlative units are parts of a once-laterally-extensive sedimentary wedge that covered the then-southern passive margin of the North American craton. The Sioux Quartzite is extremely resistant to erosion, and has formed a topographic high through most of Phanerozoic time. It was inundated by Phanerozoic seas during
4872-489: The oldest strata will lie at the bottom of the sequence, while newer material stacks upon the surface. In practice, this means a younger rock will lie on top of an older rock unless there is evidence to suggest otherwise. The principle of original horizontality that states layers of sediments will originally be deposited horizontally under the action of gravity. However, it is now known that not all sedimentary layers are deposited purely horizontally, but this principle
4956-564: The periods of maximum sea level, and subsequent erosion removed these sedimentary units. For this reason, the only geologic units to sit atop the Sioux Quartzite are of Cretaceous age, deposited when a large portion of North America was covered by the Cretaceous Interior Seaway . Many present-day outcrops of Sioux Quartzite were exposed by glacial erosion during the Quaternary . Some of these have been dated with
5040-408: The pertinent time span. As of April 2022 these proposed changes have not been accepted by the ICS. The proposed changes (changes from the current scale [v2023/09]) are italicised: Proposed pre-Cambrian timeline (GTS2012), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The following table summarises the major events and characteristics of the divisions making up
5124-452: The present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in the third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) First suggested in 2000,
SECTION 60
#17327795255875208-489: The principles of superposition, original horizontality, lateral continuity, and cross-cutting relationships. From this Steno reasoned that strata were laid down in succession and inferred relative time (in Steno's belief, time from Creation ). While Steno's principles were simple and attracted much attention, applying them proved challenging. These basic principles, albeit with improved and more nuanced interpretations, still form
5292-473: The rest, it merely spans ~539 million years (~12% of Earth's history), whilst the previous three eons collectively span ~3,461 million years (~76% of Earth's history). This bias toward the most recent eon is in part due to the relative lack of information about events that occurred during the first three eons compared to the current eon (the Phanerozoic). The use of subseries/subepochs has been ratified by
5376-630: The rock record to bring it in line with the post-Tonian geologic time scale. This work assessed the geologic history of the currently defined eons and eras of the pre-Cambrian, and the proposals in the "Geological Time Scale" books 2004, 2012, and 2020. Their recommend revisions of the pre-Cryogenian geologic time scale were (changes from the current scale [v2023/09] are italicised): Proposed pre-Cambrian timeline (Shield et al. 2021, ICS working group on pre-Cryogenian chronostratigraphy), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The book, Geologic Time Scale 2012,
5460-474: The sea had at times transgressed over the land and at other times had regressed . This view was shared by a few of Xenophanes's contemporaries and those that followed, including Aristotle (384–322 BCE) who (with additional observations) reasoned that the positions of land and sea had changed over long periods of time. The concept of deep time was also recognised by Chinese naturalist Shen Kuo (1031–1095) and Islamic scientist -philosophers, notably
5544-554: The sessile Ediacaran biota (some of which had evolved sexual reproduction ) and provides the first obvious fossil evidence of life on Earth . The geologic record of the Proterozoic Eon is more complete than that for the preceding Archean Eon. In contrast to the deep-water deposits of the Archean, the Proterozoic features many strata that were laid down in extensive shallow epicontinental seas ; furthermore, many of those rocks are less metamorphosed than Archean rocks, and many are unaltered. Studies of these rocks have shown that
5628-548: The time during which the rocks were laid down, and the collection of rocks themselves (i.e., it was correct to say Tertiary rocks, and Tertiary Period). Only the Quaternary division is retained in the modern geologic time scale, while the Tertiary division was in use until the early 21st century. The Neptunism and Plutonism theories would compete into the early 19th century with a key driver for resolution of this debate being
5712-538: The time from the appearance of free oxygen in Earth's atmosphere to just before the proliferation of complex life on the Earth during the Cambrian Explosion . The name Proterozoic combines two words of Greek origin: protero- meaning "former, earlier", and -zoic , meaning "of life". Well-identified events of this eon were the transition to an oxygenated atmosphere during the Paleoproterozoic;
5796-735: The time of the 'Deluge', and younger " monticulos secundarios" formed later from the debris of the " primarii" . Anton Moro (1687–1784) also used primary and secondary divisions for rock units but his mechanism was volcanic. In this early version of the Plutonism theory, the interior of Earth was seen as hot, and this drove the creation of primary igneous and metamorphic rocks and secondary rocks formed contorted and fossiliferous sediments. These primary and secondary divisions were expanded on by Giovanni Targioni Tozzetti (1712–1783) and Giovanni Arduino (1713–1795) to include tertiary and quaternary divisions. These divisions were used to describe both
5880-573: The time scale boundaries do not imply fundamental changes in geological processes, unlike Earth's geologic time scale. Five geologic systems/periods ( Pre-Nectarian , Nectarian , Imbrian , Eratosthenian , Copernican ), with the Imbrian divided into two series/epochs (Early and Late) were defined in the latest Lunar geologic time scale. The Moon is unique in the Solar System in that it is the only other body from which humans have rock samples with
5964-606: The time they were laid down in is the geochronologic unit, e.g., the rocks that represent the Silurian System are the Silurian System and they were deposited during the Silurian Period. This definition means the numeric age of a geochronologic unit can be changed (and is more often subject to change) when refined by geochronometry while the equivalent chronostratigraphic unit (the revision of which
6048-567: The time was virtually all obligate anaerobic . A second, later surge in oxygen concentrations is called the Neoproterozoic Oxygenation Event , occurred during the Middle and Late Neoproterozoic and drove the rapid evolution of multicellular life towards the end of the era. The Proterozoic Eon was a very tectonically active period in the Earth's history. The late Archean Eon to Early Proterozoic Eon corresponds to
6132-483: The timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies , paleomagnetic properties, and fossils . The definition of standardised international units of geologic time is the responsibility of the International Commission on Stratigraphy (ICS),
6216-426: The type and relationships of unconformities in strata allows geologist to understand the relative timing the strata. The principle of faunal succession (where applicable) that states rock strata contain distinctive sets of fossils that succeed each other vertically in a specific and reliable order. This allows for a correlation of strata even when the horizon between them is not continuous. The geologic time scale
6300-555: The unit Ma (megaannum, for 'million years '). For example, 201.4 ± 0.2 Ma, the lower boundary of the Jurassic Period, is defined as 201,400,000 years old with an uncertainty of 200,000 years. Other SI prefix units commonly used by geologists are Ga (gigaannum, billion years), and ka (kiloannum, thousand years), with the latter often represented in calibrated units ( before present ). The names of geologic time units are defined for chronostratigraphic units with
6384-533: The work of James Hutton (1726–1797), in particular his Theory of the Earth , first presented before the Royal Society of Edinburgh in 1785. Hutton's theory would later become known as uniformitarianism , popularised by John Playfair (1748–1819) and later Charles Lyell (1797–1875) in his Principles of Geology . Their theories strongly contested the 6,000 year age of the Earth as suggested determined by James Ussher via Biblical chronology that
6468-429: Was accepted at the time by western religion. Instead, using geological evidence, they contested Earth to be much older, cementing the concept of deep time. During the early 19th century William Smith , Georges Cuvier , Jean d'Omalius d'Halloy , and Alexandre Brongniart pioneered the systematic division of rocks by stratigraphy and fossil assemblages. These geologists began to use the local names given to rock units in
6552-444: Was determined that there were several episodes of rapid increase in continental crust production. The reason for these pulses is unknown, but they seemed to have decreased in magnitude after every period. Evidence of collision and rifting between continents raises the question as to what exactly were the movements of the Archean cratons composing Proterozoic continents. Paleomagnetic and geochronological dating mechanisms have allowed
6636-415: Was in some places unwise, scholars such as Girolamo Fracastoro shared da Vinci's views, and found the attribution of fossils to the 'Deluge' absurd. Niels Stensen, more commonly known as Nicolas Steno (1638–1686), is credited with establishing four of the guiding principles of stratigraphy. In De solido intra solidum naturaliter contento dissertationis prodromus Steno states: Respectively, these are
6720-548: Was not until the Italian Renaissance when Leonardo da Vinci (1452–1519) would reinvigorate the relationships between stratification, relative sea-level change, and time, denouncing attribution of fossils to the 'Deluge': Of the stupidity and ignorance of those who imagine that these creatures were carried to such places distant from the sea by the Deluge...Why do we find so many fragments and whole shells between
6804-511: Was probably due to two factors: Exhaustion of the chemical sinks, and an increase in carbon sequestration , which sequestered organic compounds that would have otherwise been oxidized by the atmosphere. The first surge in atmospheric oxygen at the beginning of the Proterozoic is called the Great Oxygenation Event , or alternately the Oxygen Catastrophe – to reflect the mass extinction of almost all life on Earth, which at
6888-487: Was probably only 1% to 2% of its current level. The banded iron formations , which provide most of the world's iron ore , are one mark of that mineral sink process. Their accumulation ceased after 1.9 billion years ago, after the iron in the oceans had all been oxidized . Red beds , which are colored by hematite , indicate an increase in atmospheric oxygen 2 billion years ago. Such massive iron oxide formations are not found in older rocks. The oxygen buildup
6972-761: Was the Labradorian, lasting from 2.0–1.65 Ga . It was followed by the Anabarian, which lasted from 1.65–1.2 Ga and was itself followed by the Turukhanian from 1.2–1.03 Ga. The Turukhanian was succeeded by the Uchuromayan, lasting from 1.03–0.85 Ga, which was in turn succeeded by the Yuzhnouralian, lasting from 0.85–0.63 Ga. The final two zones were the Amadeusian, spanning
7056-485: Was the last commercial publication of an international chronostratigraphic chart that was closely associated with the ICS. It included a proposal to substantially revise the pre-Cryogenian time scale to reflect important events such as the formation of the Solar System and the Great Oxidation Event , among others, while at the same time maintaining most of the previous chronostratigraphic nomenclature for
#586413