Misplaced Pages

Paleontological Society

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Paleontological Society , formerly the Paleontological Society of America, is an international organisation devoted to the promotion of paleontology . The Society was founded in 1908 in Baltimore, Maryland, and was incorporated in April 1968 in the District of Columbia. The Society publishes the bi-monthly Journal of Paleontology and the quarterly Paleobiology , holds an annual meeting in the autumn in conjunction with the Geological Society of America , sponsors conferences and lectures, and provides grants and scholarships.

#855144

100-475: The Society has five geographic sections—Pacific Coast (founded March 1911), North-Central (founded May 1974), Northeastern (founded March 1977), Southeastern (founded November 1979), Rocky Mountain (founded October 1985), and South-Central (founded November 1988). The Society recognizes distinguished accomplishments through three awards, one recognized by a medal, the other two by inscribed plaques normally presented annually: This paleontology article

200-500: A Bridgewater Treatise , translating the works of Goethe , and writing sermons and theological tracts. In mathematics , Whewell introduced what is now called the Whewell equation , defining the shape of a curve without reference to an arbitrarily chosen coordinate system. He also organized thousands of volunteers internationally to study ocean tides , in what is now considered one of the first citizen science projects. He received

300-471: A jigsaw puzzle . Rocks normally form relatively horizontal layers, with each layer younger than the one underneath it. If a fossil is found between two layers whose ages are known, the fossil's age must lie between the two known ages. Because rock sequences are not continuous, but may be broken up by faults or periods of erosion , it is very difficult to match up rock beds that are not directly next to one another. However, fossils of species that survived for

400-457: A "no-tide zone" is now called an amphidromic point . In 1840, the naval surveyor William Hewett confirmed Whewell's prediction. This involved anchoring his ship, HMS Fairy , and taking repeated soundings at the same location with lead and line , precautions being needed to allow for irregularities in the sea bed, and the effects of tidal flow. The data showed a rise of no more than 1 foot (0.30 m). Whewell published about 20 papers over

500-552: A collision that formed the Moon about 40 million years later, may have cooled quickly enough to have oceans and an atmosphere about 4,440  million years ago . There is evidence on the Moon of a Late Heavy Bombardment by asteroids from 4,000 to 3,800 million years ago . If, as seems likely, such a bombardment struck Earth at the same time, the first atmosphere and oceans may have been stripped away. Paleontology traces

600-602: A common ancestor. Ideally the "family tree" has only two branches leading from each node ("junction"), but sometimes there is too little information to achieve this, and paleontologists have to make do with junctions that have several branches. The cladistic technique is sometimes fallible, as some features, such as wings or camera eyes , evolved more than once, convergently  – this must be taken into account in analyses. Evolutionary developmental biology , commonly abbreviated to "Evo Devo", also helps paleontologists to produce "family trees", and understand fossils. For example,

700-456: A constant rate. These " molecular clocks ", however, are fallible, and provide only a very approximate timing: for example, they are not sufficiently precise and reliable for estimating when the groups that feature in the Cambrian explosion first evolved, and estimates produced by different techniques may vary by a factor of two. Earth formed about 4,570  million years ago and, after

800-473: A creator establishing laws: But with regard to the material world, we can at least go so far as this—we can perceive that events are brought about not by insulated interpositions of Divine power, exerted in each particular case, but by the establishment of general laws. Though Darwin used the concepts of Whewell as he made and tested his hypotheses regarding the theory of evolution , Whewell did not support Darwin's theory itself. "Whewell also famously opposed

900-403: A data source that is not limited to animals with easily fossilised hard parts, and they reflect organisms' behaviours. Also many traces date from significantly earlier than the body fossils of animals that are thought to have been capable of making them. Whilst exact assignment of trace fossils to their makers is generally impossible, traces may for example provide the earliest physical evidence of

1000-573: A fortunate accident during other research. For example, the 1980 discovery by Luis and Walter Alvarez of iridium , a mainly extraterrestrial metal, in the Cretaceous – Paleogene boundary layer made asteroid impact the most favored explanation for the Cretaceous–Paleogene extinction event – although debate continues about the contribution of volcanism. A complementary approach to developing scientific knowledge, experimental science ,

1100-821: A minor group until the first jawed fish appeared in the Late Ordovician . The spread of animals and plants from water to land required organisms to solve several problems, including protection against drying out and supporting themselves against gravity . The earliest evidence of land plants and land invertebrates date back to about 476  million years ago and 490  million years ago respectively. Those invertebrates, as indicated by their trace and body fossils, were shown to be arthropods known as euthycarcinoids . The lineage that produced land vertebrates evolved later but very rapidly between 370  million years ago and 360  million years ago ; recent discoveries have overturned earlier ideas about

SECTION 10

#1732780419856

1200-498: A period of 20 years on his tidal researches. This was his major scientific achievement, and was an important source for his understanding of the process of scientific enquiry, the subject of one of his major works Philosophy of the Inductive Sciences . His best-known works are two voluminous books that attempt to systematize the development of the sciences, History of the Inductive Sciences (1837) and The Philosophy of

1300-555: A rapid increase in knowledge about the history of life on Earth and to progress in the definition of the geologic time scale , largely based on fossil evidence. Although she was rarely recognised by the scientific community, Mary Anning was a significant contributor to the field of palaeontology during this period; she uncovered multiple novel Mesozoic reptile fossils and deducted that what were then known as bezoar stones are in fact fossilised faeces . In 1822 Henri Marie Ducrotay de Blainville , editor of Journal de Physique , coined

1400-543: A relatively short time can be used to link up isolated rocks: this technique is called biostratigraphy . For instance, the conodont Eoplacognathus pseudoplanus has a short range in the Middle Ordovician period. If rocks of unknown age are found to have traces of E. pseudoplanus , they must have a mid-Ordovician age. Such index fossils must be distinctive, be globally distributed and have a short time range to be useful. However, misleading results are produced if

1500-457: A result of a fall from his horse. Whewell was born in Lancaster , the son of John Whewell and his wife, Elizabeth Bennison. His father was a master carpenter , and wished him to follow his trade, but William's success in mathematics at Lancaster Royal Grammar School and Heversham grammar school won him an exhibition (a type of scholarship) at Trinity College, Cambridge in 1812. He

1600-608: A steady increase in brain size after about 3  million years ago . There is a long-running debate about whether modern humans are descendants of a single small population in Africa , which then migrated all over the world less than 200,000 years ago and replaced previous hominine species, or arose worldwide at the same time as a result of interbreeding . Life on earth has suffered occasional mass extinctions at least since 542  million years ago . Despite their disastrous effects, mass extinctions have sometimes accelerated

1700-479: Is a stub . You can help Misplaced Pages by expanding it . Paleontology Paleontology ( / ˌ p eɪ l i ɒ n ˈ t ɒ l ə dʒ i , ˌ p æ l i -, - ən -/ PAY -lee-on- TOL -ə-jee, PAL -ee-, -⁠ən- ), also spelled palaeontology or palæontology , is the scientific study of life that existed prior to the start of the Holocene epoch (roughly 11,700 years before present). It includes

1800-447: Is best known for his writings on Gothic architecture , specifically his book, Architectural Notes on German Churches (first published in 1830). In this work, Whewell established a strict nomenclature for German Gothic churches and came up with a theory of stylistic development. His work is associated with the "scientific trend" of architectural writers, along with Thomas Rickman and Robert Willis . He paid from his own resources for

1900-595: Is composed only of eukaryotic cells, and the earliest evidence for it is the Francevillian Group Fossils from 2,100  million years ago , although specialisation of cells for different functions first appears between 1,430  million years ago (a possible fungus) and 1,200  million years ago (a probable red alga ). Sexual reproduction may be a prerequisite for specialisation of cells, as an asexual multicellular organism might be at risk of being taken over by rogue cells that retain

2000-482: Is hard to decide at what level to place a new higher-level grouping, e.g. genus or family or order ; this is important since the Linnaean rules for naming groups are tied to their levels, and hence if a group is moved to a different level it must be renamed. Paleontologists generally use approaches based on cladistics , a technique for working out the evolutionary "family tree" of a set of organisms. It works by

2100-443: Is often said to work by conducting experiments to disprove hypotheses about the workings and causes of natural phenomena. This approach cannot prove a hypothesis, since some later experiment may disprove it, but the accumulation of failures to disprove is often compelling evidence in favor. However, when confronted with totally unexpected phenomena, such as the first evidence for invisible radiation , experimental scientists often use

SECTION 20

#1732780419856

2200-594: Is one that contained an extinct "crocodile-like" marine reptile, which eventually came to be known as the mosasaurid Mosasaurus of the Cretaceous period. The first half of the 19th century saw geological and paleontological activity become increasingly well organised with the growth of geologic societies and museums and an increasing number of professional geologists and fossil specialists. Interest increased for reasons that were not purely scientific, as geology and paleontology helped industrialists to find and exploit natural resources such as coal. This contributed to

2300-401: Is our only means of giving rocks greater than about 50 million years old an absolute age, and can be accurate to within 0.5% or better. Although radiometric dating requires very careful laboratory work, its basic principle is simple: the rates at which various radioactive elements decay are known, and so the ratio of the radioactive element to the element into which it decays shows how long ago

2400-503: Is thought to have been propelled by coevolution with pollinating insects. Social insects appeared around the same time and, although they account for only small parts of the insect "family tree", now form over 50% of the total mass of all insects. Humans evolved from a lineage of upright-walking apes whose earliest fossils date from over 6  million years ago . Although early members of this lineage had chimp -sized brains, about 25% as big as modern humans', there are signs of

2500-582: The Middle Ages the Persian naturalist Ibn Sina , known as Avicenna in Europe, discussed fossils and proposed a theory of petrifying fluids on which Albert of Saxony elaborated in the 14th century. The Chinese naturalist Shen Kuo (1031–1095) proposed a theory of climate change based on the presence of petrified bamboo in regions that in his time were too dry for bamboo. In early modern Europe ,

2600-538: The Neogene - Quaternary . In deeper-level deposits in western Europe are early-aged mammals such as the palaeothere perissodactyl Palaeotherium and the anoplotheriid artiodactyl Anoplotherium , both of which were described earliest after the former two genera, which today are known to date to the Paleogene period. Cuvier figured out that even older than the two levels of deposits with extinct large mammals

2700-620: The Netherlands . Islands, such as the Channel Islands , were particularly interesting, adding important detail of the progress of the tides through the ocean. The Admiralty also provided the resources for data analysis, and J.F. Dessiou, an expert calculator on the Admiralty staff, was in charge of the calculations. Whewell made extensive use of graphical methods, and these became not just ways of displaying results, but tools in

2800-637: The Permian–Triassic extinction event . Amphibians Extinct Synapsids Mammals Extinct reptiles Lizards and snakes Extinct Archosaurs Crocodilians Extinct Dinosaurs Birds Naming groups of organisms in a way that is clear and widely agreed is important, as some disputes in paleontology have been based just on misunderstandings over names. Linnaean taxonomy is commonly used for classifying living organisms, but runs into difficulties when dealing with newly discovered organisms that are significantly different from known ones. For example: it

2900-516: The Permian–Triassic extinction event . A relatively recent discipline, molecular phylogenetics , compares the DNA and RNA of modern organisms to re-construct the "family trees" of their evolutionary ancestors. It has also been used to estimate the dates of important evolutionary developments, although this approach is controversial because of doubts about the reliability of the " molecular clock ". Techniques from engineering have been used to analyse how

3000-622: The Royal Medal for this work in 1837. One of Whewell's greatest gifts to science was his word-smithing. He corresponded with many in his field and helped them come up with neologisms for their discoveries. Whewell coined, among other terms, scientist , physicist , linguistics , consilience , catastrophism , uniformitarianism , and astigmatism ; he suggested to Michael Faraday the terms electrode , ion , dielectric , anode , and cathode . Whewell died in Cambridge in 1866 as

3100-454: The embryological development of some modern brachiopods suggests that brachiopods may be descendants of the halkieriids , which became extinct in the Cambrian period. Paleontology seeks to map out how living things have changed through time. A substantial hurdle to this aim is the difficulty of working out how old fossils are. Beds that preserve fossils typically lack the radioactive elements needed for radiometric dating . This technique

Paleontological Society - Misplaced Pages Continue

3200-486: The subvention of scientific and professorial work. He was elected Master of Trinity College , Cambridge in 1841, and retained that position until his death in 1866. The Whewell Professorship of International Law and the Whewell Scholarships were established through the provisions of his will. Aside from Science, Whewell was also interested in the history of architecture throughout his life. He

3300-526: The " jigsaw puzzles " of biostratigraphy (arrangement of rock layers from youngest to oldest). Classifying ancient organisms is also difficult, as many do not fit well into the Linnaean taxonomy classifying living organisms, and paleontologists more often use cladistics to draw up evolutionary "family trees". The final quarter of the 20th century saw the development of molecular phylogenetics , which investigates how closely organisms are related by measuring

3400-409: The "colligation of facts" endeavored to unite these ideas with the facts and so construct science. This colligation is an "act of thought", a mental operation consisting of bringing together a number of empirical facts by "superinducing" upon them a conception which unites the facts and renders them capable of being expressed in general laws. Whewell refers to as an example Kepler and the discovery of

3500-577: The Admiralty. In the first of these, in June 1834, every Coast Guard station in the United Kingdom recorded the tides every fifteen minutes for two weeks. The second, in June 1835, was an international collaboration, involving Admiralty Surveyors, other Royal Navy and British observers, as well as those from the United States , France , Spain , Portugal , Belgium , Denmark , Norway , and

3600-400: The Cambridge method of mathematical teaching. His work and publications also helped influence the recognition of the moral and natural sciences as an integral part of the Cambridge curriculum. In general, however, especially in later years, he opposed reform: he defended the tutorial system , and in a controversy with Connop Thirlwall (1834), opposed the admission of Dissenters ; he upheld

3700-555: The Early Cambrian , along with several "weird wonders" that bear little obvious resemblance to any modern animals. There is a long-running debate about whether this Cambrian explosion was truly a very rapid period of evolutionary experimentation; alternative views are that modern-looking animals began evolving earlier but fossils of their precursors have not yet been found, or that the "weird wonders" are evolutionary "aunts" and "cousins" of modern groups. Vertebrates remained

3800-463: The Earth's organic and inorganic past". William Whewell (1794–1866) classified paleontology as one of the historical sciences, along with archaeology , geology, astronomy , cosmology , philology and history itself: paleontology aims to describe phenomena of the past and to reconstruct their causes. Hence it has three main elements: description of past phenomena; developing a general theory about

3900-554: The Inductive Sciences, Founded Upon Their History (1840, 1847, 1858–60). While the History traced how each branch of the sciences had evolved since antiquity, Whewell viewed the Philosophy as the "Moral" of the previous work as it sought to extract a universal theory of knowledge through history. In the latter, he attempted to follow Francis Bacon 's plan for discovery. He examined ideas ("explication of conceptions") and by

4000-412: The ability to reproduce. The earliest known animals are cnidarians from about 580  million years ago , but these are so modern-looking that they must be descendants of earlier animals. Early fossils of animals are rare because they had not developed mineralised , easily fossilized hard parts until about 548  million years ago . The earliest modern-looking bilaterian animals appear in

4100-462: The analysis of data. He published a number of maps showing cotidal lines (a term coined by Lubbock) – lines joining points where high tide occurred at the same time. These allowed a graphical representation of the progression of tidal waves through the ocean. From this, Whewell predicted that there should be a place where there was no tidal rise or fall in the southern part of the North Sea. Such

Paleontological Society - Misplaced Pages Continue

4200-515: The appearance of moderately complex animals (comparable to earthworms ). Geochemical observations may help to deduce the global level of biological activity at a certain period, or the affinity of certain fossils. For example, geochemical features of rocks may reveal when life first arose on Earth, and may provide evidence of the presence of eukaryotic cells, the type from which all multicellular organisms are built. Analyses of carbon isotope ratios may help to explain major transitions such as

4300-625: The atmosphere increased their effectiveness as nurseries of evolution. While eukaryotes , cells with complex internal structures, may have been present earlier, their evolution speeded up when they acquired the ability to transform oxygen from a poison to a powerful source of metabolic energy. This innovation may have come from primitive eukaryotes capturing oxygen-powered bacteria as endosymbionts and transforming them into organelles called mitochondria . The earliest evidence of complex eukaryotes with organelles (such as mitochondria) dates from 1,850  million years ago . Multicellular life

4400-415: The bodies of ancient organisms might have worked, for example the running speed and bite strength of Tyrannosaurus , or the flight mechanics of Microraptor . It is relatively commonplace to study the internal details of fossils using X-ray microtomography . Paleontology, biology, archaeology, and paleoneurobiology combine to study endocranial casts (endocasts) of species related to humans to clarify

4500-687: The book's title page. These books are available online in their entirety as part of the Internet Archive. In 1826 and 1828, Whewell was engaged with George Airy in conducting experiments in Dolcoath mine in Cornwall , in order to determine the density of the earth. Their united labours were unsuccessful, and Whewell did little more in the way of experimental science . He was the author, however, of an Essay on Mineralogical Classification , published in 1828, and carried out extensive work on

4600-729: The border between biology and geology , but it differs from archaeology in that it excludes the study of anatomically modern humans . It now uses techniques drawn from a wide range of sciences, including biochemistry , mathematics , and engineering. Use of all these techniques has enabled paleontologists to discover much of the evolutionary history of life , almost back to when Earth became capable of supporting life, nearly 4 billion years ago. As knowledge has increased, paleontology has developed specialised sub-divisions, some of which focus on different types of fossil organisms while others study ecology and environmental history, such as ancient climates . Body fossils and trace fossils are

4700-401: The causes of various types of change; and applying those theories to specific facts. When trying to explain the past, paleontologists and other historical scientists often construct a set of one or more hypotheses about the causes and then look for a " smoking gun ", a piece of evidence that strongly accords with one hypothesis over any others. Sometimes researchers discover a "smoking gun" by

4800-763: The characteristics and evolution of humans as a species. When dealing with evidence about humans, archaeologists and paleontologists may work together – for example paleontologists might identify animal or plant fossils around an archaeological site , to discover the people who lived there, and what they ate; or they might analyze the climate at the time of habitation. In addition, paleontology often borrows techniques from other sciences, including biology, osteology , ecology, chemistry , physics and mathematics. For example, geochemical signatures from rocks may help to discover when life first arose on Earth, and analyses of carbon isotope ratios may help to identify climate changes and even to explain major transitions such as

4900-520: The chronological order in which rocks were formed, is useful to both paleontologists and geologists. Biogeography studies the spatial distribution of organisms, and is also linked to geology, which explains how Earth's geography has changed over time. Although paleontology became established around 1800, earlier thinkers had noticed aspects of the fossil record. The ancient Greek philosopher Xenophanes (570–480 BCE) concluded from fossil sea shells that some areas of land were once under water. During

5000-490: The clerical fellowship system, the privileged class of "fellow-commoners", and the authority of heads of colleges in university affairs. He opposed the appointment of the University Commission (1850) and wrote two pamphlets ( Remarks ) against the reform of the university (1855). He stood against the scheme of entrusting elections to the members of the senate and instead, advocated the use of college funds and

5100-403: The construction of two new courts of rooms at Trinity College, Cambridge , built in a Gothic style . The two courts were completed in 1860 and (posthumously) in 1868, and are now collectively named Whewell's Court (in the singular). Between 1835 and 1861 Whewell produced various works on the philosophy of morals and politics , the chief of which, Elements of Morality , including Polity ,

SECTION 50

#1732780419856

5200-445: The date when lineages first appeared. For instance, if fossils of B or C date to X million years ago and the calculated "family tree" says A was an ancestor of B and C, then A must have evolved more than X million years ago. It is also possible to estimate how long ago two living clades diverged – i.e. approximately how long ago their last common ancestor must have lived – by assuming that DNA mutations accumulate at

5300-594: The development of mammalian traits such as endothermy and hair. After the Cretaceous–Paleogene extinction event 66  million years ago killed off all the dinosaurs except the birds, mammals increased rapidly in size and diversity, and some took to the air and the sea. Fossil evidence indicates that flowering plants appeared and rapidly diversified in the Early Cretaceous between 130  million years ago and 90  million years ago . Their rapid rise to dominance of terrestrial ecosystems

5400-561: The development of the body plans of most animal phyla . The discovery of fossils of the Ediacaran biota and developments in paleobiology extended knowledge about the history of life back far before the Cambrian. Increasing awareness of Gregor Mendel 's pioneering work in genetics led first to the development of population genetics and then in the mid-20th century to the modern evolutionary synthesis , which explains evolution as

5500-412: The different branches of learning. Here, as in his ethical doctrine, Whewell was moved by opposition to contemporary English empiricism . Following Immanuel Kant , he asserted against John Stuart Mill the a priori nature of necessary truth , and by his rules for the construction of conceptions he dispensed with the inductive methods of Mill . Yet, according to Laura J. Snyder , "surprisingly,

5600-482: The different levels of deposits represented different time periods in the early 19th century. The surface-level deposits in the Americas contained later mammals like the megatheriid ground sloth Megatherium and the mammutid proboscidean Mammut (later known informally as a "mastodon"), which were some of the earliest-named fossil mammal genera with official taxonomic authorities. They today are known to date to

5700-477: The elliptical orbit: the orbit's points were colligated by the conception of the ellipse, not by the discovery of new facts. These conceptions are not "innate" (as in Kant), but being the fruits of the "progress of scientific thought (history) are unfolded in clearness and distinctness". Whewell analyzed inductive reasoning into three steps: Upon these follow special methods of induction applicable to quantity:

5800-409: The end of the 20th century have been particularly important as they have provided new information about the earliest evolution of animals, early fish, dinosaurs and the evolution of birds. The last few decades of the 20th century saw a renewed interest in mass extinctions and their role in the evolution of life on Earth. There was also a renewed interest in the Cambrian explosion that apparently saw

5900-498: The evolution of life on earth. When dominance of an ecological niche passes from one group of organisms to another, this is rarely because the new dominant group outcompetes the old, but usually because an extinction event allows a new group, which may possess an advantageous trait, to outlive the old and move into its niche. William Whewell William Whewell FRS FGS FRSE ( / ˈ h juː əl / HEW -əl ; 24 May 1794 – 6 March 1866)

6000-410: The evolution of the human brain. Paleontology even contributes to astrobiology , the investigation of possible life on other planets , by developing models of how life may have arisen and by providing techniques for detecting evidence of life. As knowledge has increased, paleontology has developed specialised subdivisions. Vertebrate paleontology concentrates on fossils from the earliest fish to

6100-466: The evolutionary history of life back to over 3,000  million years ago , possibly as far as 3,800  million years ago . The oldest clear evidence of life on Earth dates to 3,000  million years ago , although there have been reports, often disputed, of fossil bacteria from 3,400  million years ago and of geochemical evidence for the presence of life 3,800  million years ago . Some scientists have proposed that life on Earth

SECTION 60

#1732780419856

6200-555: The exceptional events that cause quick burial make it difficult to study the normal environments of the animals. The sparseness of the fossil record means that organisms are expected to exist long before and after they are found in the fossil record – this is known as the Signor–Lipps effect . Trace fossils consist mainly of tracks and burrows, but also include coprolites (fossil feces ) and marks left by feeding. Trace fossils are particularly significant because they represent

6300-476: The facts' (Philosophy of Inductive Sciences, 1849, 17)". In sum, the scientific discovery is a partly empirical and partly rational process; the "discovery of the conceptions is neither guesswork nor merely a matter of observations", we infer more than we see. One of Whewell's greatest gifts to science was his wordsmithing. He often corresponded with many in his field and helped them come up with new terms for their discoveries. In fact, Whewell came up with

6400-515: The focus of paleontology shifted to understanding evolutionary paths, including human evolution , and evolutionary theory. The last half of the 19th century saw a tremendous expansion in paleontological activity, especially in North America. The trend continued in the 20th century with additional regions of the Earth being opened to systematic fossil collection. Fossils found in China near

6500-449: The following: At the end of the 18th century Georges Cuvier 's work established comparative anatomy as a scientific discipline and, by proving that some fossil animals resembled no living ones, demonstrated that animals could become extinct , leading to the emergence of paleontology. The expanding knowledge of the fossil record also played an increasing role in the development of geology, particularly stratigraphy . Cuvier proved that

6600-580: The fossil record: different environments are more favorable to the preservation of different types of organism or parts of organisms. Further, only the parts of organisms that were already mineralised are usually preserved, such as the shells of molluscs. Since most animal species are soft-bodied, they decay before they can become fossilised. As a result, although there are 30-plus phyla of living animals, two-thirds have never been found as fossils. Occasionally, unusual environments may preserve soft tissues. These lagerstätten allow paleontologists to examine

6700-687: The history and driving forces behind their evolution. Land plants were so successful that their detritus caused an ecological crisis in the Late Devonian , until the evolution of fungi that could digest dead wood. During the Permian period, synapsids , including the ancestors of mammals , may have dominated land environments, but this ended with the Permian–Triassic extinction event 251  million years ago , which came very close to wiping out all complex life. The extinctions were apparently fairly sudden, at least among vertebrates. During

6800-533: The history of Earth's climate and the mechanisms that have changed it  – which have sometimes included evolutionary developments, for example the rapid expansion of land plants in the Devonian period removed more carbon dioxide from the atmosphere, reducing the greenhouse effect and thus helping to cause an ice age in the Carboniferous period. Biostratigraphy , the use of fossils to work out

6900-528: The idea of evolution. First he published a new book, Indications of the Creator , 1845, composed of extracts from his earlier works to counteract the popular anonymous evolutionary work Vestiges of the Natural History of Creation . Later Whewell opposed Darwin's theories of evolution." In the 1857 novel Barchester Towers Charlotte Stanhope uses the topic of the theological arguments, concerning

7000-542: The immediate ancestors of modern mammals . Invertebrate paleontology deals with fossils such as molluscs , arthropods , annelid worms and echinoderms . Paleobotany studies fossil plants , algae , and fungi. Palynology , the study of pollen and spores produced by land plants and protists , straddles paleontology and botany , as it deals with both living and fossil organisms. Micropaleontology deals with microscopic fossil organisms of all kinds. Instead of focusing on individual organisms, paleoecology examines

7100-434: The index fossils turn out to have longer fossil ranges than first thought. Stratigraphy and biostratigraphy can in general provide only relative dating ( A was before B ), which is often sufficient for studying evolution. However, this is difficult for some time periods, because of the problems involved in matching up rocks of the same age across different continents . Family-tree relationships may also help to narrow down

7200-538: The interactions between different ancient organisms, such as their food chains , and the two-way interactions with their environments.   For example, the development of oxygenic photosynthesis by bacteria caused the oxygenation of the atmosphere and hugely increased the productivity and diversity of ecosystems . Together, these led to the evolution of complex eukaryotic cells, from which all multicellular organisms are built. Paleoclimatology , although sometimes treated as part of paleoecology, focuses more on

7300-463: The internal anatomy of animals that in other sediments are represented only by shells, spines, claws, etc. – if they are preserved at all. However, even lagerstätten present an incomplete picture of life at the time. The majority of organisms living at the time are probably not represented because lagerstätten are restricted to a narrow range of environments, e.g. where soft-bodied organisms can be preserved very quickly by events such as mudslides; and

7400-456: The investigation of evolutionary "family trees" by techniques derived from biochemistry , began to make an impact, particularly when it was proposed that the human lineage had diverged from apes much more recently than was generally thought at the time. Although this early study compared proteins from apes and humans, most molecular phylogenetics research is now based on comparisons of RNA and DNA . Fossils of organisms' bodies are usually

7500-409: The logic that, if groups B and C have more similarities to each other than either has to group A, then B and C are more closely related to each other than either is to A. Characters that are compared may be anatomical , such as the presence of a notochord , or molecular , by comparing sequences of DNA or proteins . The result of a successful analysis is a hierarchy of clades – groups that share

7600-507: The method of curves, the method of means, the method of least squares and the method of residues, and special methods depending on resemblance (to which the transition is made through the law of continuity), such as the method of gradation and the method of natural classification. In Philosophy of the Inductive Sciences Whewell was the first to use the term " consilience " to discuss the unification of knowledge between

7700-474: The methods used to create such tables, and in some cases the observations, were closely guarded trade secrets. John Lubbock , a former student of Whewell's, had analysed the available historic data (covering up to 25 years) for several ports to allow tables to be generated on a theoretical basis, publishing the methodology. This work was supported by Francis Beaufort , Hydrographer of the Navy , and contributed to

7800-409: The most informative type of evidence. The most common types are wood, bones, and shells. Fossilisation is a rare event, and most fossils are destroyed by erosion or metamorphism before they can be observed. Hence the fossil record is very incomplete, increasingly so further back in time. Despite this, it is often adequate to illustrate the broader patterns of life's history. There are also biases in

7900-414: The outcome of events such as mutations and horizontal gene transfer , which provide genetic variation , with genetic drift and natural selection driving changes in this variation over time. Within the next few years the role and operation of DNA in genetic inheritance were discovered, leading to what is now known as the "Central Dogma" of molecular biology . In the 1960s molecular phylogenetics ,

8000-452: The principal types of evidence about ancient life, and geochemical evidence has helped to decipher the evolution of life before there were organisms large enough to leave body fossils. Estimating the dates of these remains is essential but difficult: sometimes adjacent rock layers allow radiometric dating , which provides absolute dates that are accurate to within 0.5%, but more often paleontologists have to rely on relative dating by solving

8100-512: The publication of the Admiralty Tide Tables starting in 1833. Whewell built on Lubbock's work to develop an understanding of tidal patterns around the world that could be used to generate predictions for many locations without the need for long series of tidal observations at each port. This required extensive new observations, initially obtained through an informal network, and later through formal projects enabled by Beaufort at

8200-432: The radioactive element was incorporated into the rock. Radioactive elements are common only in rocks with a volcanic origin, and so the only fossil-bearing rocks that can be dated radiometrically are a few volcanic ash layers. Consequently, paleontologists must usually rely on stratigraphy to date fossils. Stratigraphy is the science of deciphering the "layer-cake" that is the sedimentary record, and has been compared to

8300-517: The received view of Whewell's methodology in the 20th century has tended to describe him as an anti-inductivist in the Popperian mold, that is it is claimed that Whewell endorses a 'conjectures and refutations' view of scientific discovery. Whewell explicitly rejects the hypothetico-deductive claim that hypotheses discovered by non-rational guesswork can be confirmed by consequentialist testing. Whewell explained that new hypotheses are 'collected from

8400-701: The same approach as historical scientists: construct a set of hypotheses about the causes and then look for a "smoking gun". Paleontology lies between biology and geology since it focuses on the record of past life, but its main source of evidence is fossils in rocks. For historical reasons, paleontology is part of the geology department at many universities: in the 19th and early 20th centuries, geology departments found fossil evidence important for dating rocks, while biology departments showed little interest. Paleontology also has some overlap with archaeology , which primarily works with objects made by humans and with human remains, while paleontologists are interested in

8500-478: The similarity of the DNA in their genomes . Molecular phylogenetics has also been used to estimate the dates when species diverged, but there is controversy about the reliability of the molecular clock on which such estimates depend. The simplest definition of "paleontology" is "the study of ancient life". The field seeks information about several aspects of past organisms: "their identity and origin, their environment and evolution, and what they can tell us about

8600-470: The slow recovery from this catastrophe a previously obscure group, archosaurs , became the most abundant and diverse terrestrial vertebrates. One archosaur group, the dinosaurs, were the dominant land vertebrates for the rest of the Mesozoic , and birds evolved from one group of dinosaurs. During this time mammals' ancestors survived only as small, mainly nocturnal insectivores , which may have accelerated

8700-625: The study of fossils to classify organisms and study their interactions with each other and their environments (their paleoecology ). Paleontological observations have been documented as far back as the 5th century BC. The science became established in the 18th century as a result of Georges Cuvier 's work on comparative anatomy , and developed rapidly in the 19th century. The term has been used since 1822 formed from Greek παλαιός ( 'palaios' , "old, ancient"), ὄν ( 'on' , ( gen. 'ontos' ), "being, creature"), and λόγος ( 'logos' , "speech, thought, study"). Paleontology lies on

8800-629: The systematic study of fossils emerged as an integral part of the changes in natural philosophy that occurred during the Age of Reason . In the Italian Renaissance, Leonardo da Vinci made various significant contributions to the field as well as depicted numerous fossils. Leonardo's contributions are central to the history of paleontology because he established a line of continuity between the two main branches of paleontology – ichnology and body fossil paleontology. He identified

8900-795: The term scientist itself in 1833, and it was first published in Whewell's anonymous 1834 review of Mary Somerville 's On the Connexion of the Physical Sciences published in the Quarterly Review . (They had previously been known as "natural philosophers" or "men of science"). Whewell was prominent not only in scientific research and philosophy but also in university and college administration. His first work, An Elementary Treatise on Mechanics (1819), cooperated with those of George Peacock and John Herschel in reforming

9000-431: The tides. When Whewell started his work on tides , there was a theory explaining the forces causing the tides, based on the work of Newton , Bernoulli , and Laplace . But this explained the forces, not how tides actually propagated in oceans bounded by continents. There was a series of tidal observations for a few ports, such as London and Liverpool , which allowed tide tables to be produced for these ports. However

9100-406: The word "palaeontology" to refer to the study of ancient living organisms through fossils. As knowledge of life's history continued to improve, it became increasingly obvious that there had been some kind of successive order to the development of life. This encouraged early evolutionary theories on the transmutation of species . After Charles Darwin published Origin of Species in 1859, much of

9200-454: Was "seeded" from elsewhere , but most research concentrates on various explanations of how life could have arisen independently on Earth. For about 2,000 million years microbial mats , multi-layered colonies of different bacteria, were the dominant life on Earth. The evolution of oxygenic photosynthesis enabled them to play the major role in the oxygenation of the atmosphere from about 2,400  million years ago . This change in

9300-580: Was an English polymath , scientist , Anglican priest , philosopher , theologian , and historian of science . He was Master at Trinity College, Cambridge . In his time as a student there, he achieved distinction in both poetry and mathematics . The breadth of Whewell's endeavours is his most remarkable feature. In a time of increasing specialization, Whewell belonged in an earlier era when natural philosophers investigated widely. He published work in mechanics , physics , geology , astronomy , and economics , while also composing poetry , writing

9400-488: Was most appropriate. Whewell died in Cambridge in 1866 as a result of a fall from his horse. He was buried in the chapel of Trinity College, Cambridge, whilst his wives are buried together in the Mill Road Cemetery, Cambridge . A window dedicated to Lady Affleck, his second wife, was installed in her memory in the chancel of All Saints' Church, Cambridge and made by Morris & Co. A list of his writings

9500-588: Was one of the Cambridge dons whom Charles Darwin met during his education there , and when Darwin returned from the Beagle voyage he was directly influenced by Whewell, who persuaded Darwin to become secretary of the Geological Society of London . The title pages of On the Origin of Species open with a quotation from Whewell's Bridgewater Treatise about science founded on a natural theology of

9600-405: Was prepared after his death by Isaac Todhunter in two volumes, the first being an index of the names of persons with whom Whewell corresponded. Another book was published five years later, as a biography of Whewell's life interspersed with his letters to his father, his sisters, and other correspondence, written and compiled by his niece by marriage, Janet Mary Douglas, called Mrs Stair Douglas on

9700-833: Was professor of mineralogy from 1828 to 1832 and Knightbridge Professor of Philosophy (then called "moral theology and casuistical divinity") from 1838 to 1855. During the years as professor of philosophy, in 1841, Whewell succeeded Christopher Wordsworth as master. Whewell influenced the syllabus of the Mathematical Tripos at Cambridge, which undergraduates studied. He was a proponent of 'mixed mathematics': applied mathematics , descriptive geometry and mathematical physics , in contrast with pure mathematics . Under Whewell, analytic topics such as elliptical integrals were replaced by physical studies of electricity, heat and magnetism. He believed an intuitive geometrical understanding of mathematics, based on Euclid and Newton,

9800-487: Was published in 1845. The peculiarity of this work—written from what is known as the intuitional point of view —is its fivefold division of the springs of action and of their objects, of the primary and universal rights of man (personal security, property, contract, family rights, and government), and of the cardinal virtues ( benevolence , justice , truth , purity and order ). Among Whewell's other works—too numerous to mention—were popular writings such as: Whewell

9900-597: Was recommended to be master of Trinity College in Cambridge, following Christopher Wordsworth . Cordelia died in 1855. In 1858 he married again, to Everina Frances (née Ellis), widow of Sir Gilbert Affleck, 5th Baronet who had died in 1854. He had no children. In 1814 he was awarded the Chancellor's Gold Medal for poetry. He was Second Wrangler in 1816, President of the Cambridge Union Society in 1817, became fellow and tutor of his college. He

10000-577: Was the eldest of seven children having three brothers and three sisters born after him. Two brothers died as infants; the third died in 1812. Two of his sisters married; he corresponded with them in his career as a student and then a professor. His mother died in 1807, when Whewell was 13 years old. His father died in 1816, the year Whewell received his bachelor degree at Trinity College, but before his most significant professional accomplishments. Whewell married, firstly, in 1841, Cordelia Marshall, daughter of John Marshall . Within days of his marriage, Whewell

#855144