The Petermann Orogeny was an Australian intra continental event that affected basement rocks of the northern Musgrave Province and Ediacaran ( Proterozoic ) sediments of the (now) southern Amadeus Basin between ~550-535 Ma . The remains are seen today in the Petermann Ranges .
79-964: Prior to the Petermann Orogeny, which resulted in exhumation of the Musgrave Block , the Amadeus Basin was contiguous with the Officer Basin in South Australia . The extent and effect of the Petermann Orogen appears to be relatively confined, occurring most pervasively within the central northern-Musgrave Block. Here, older Musgravian (~1200-1150 Ma) fabrics are partially to completely overprinted by sub- eclogite - facies mineral assemblages (11-12 kbar at 650 °C). The Woodroofe Thrust , Davenport Shear Zone and Mann Fault accommodated much of
158-600: A dense rock equivalent volume of as much as 1,140 cubic kilometres (270 cu mi). Remarkably, this appears to have had little impact on life. There was vigorous tectonic activity along northwest margin of Gondwana during the Floian, 478 Ma, recorded in the Central Iberian Zone of Spain. The activity reached as far as Turkey by the end of Ordovician. The opposite margin of Gondwana, in Australia, faced
237-603: A biogeographic affinity with Gondwana, and the Alborz margin of Gondwana was linked biogeographically to South China. Southeast Asia's fauna also maintained strong affinities to Gondwana's. North China was biogeographically connected to Laurentia and the Argentinian margin of Gondwana. A Celtic biogeographic province also existed, separate from the Laurentian and Baltican ones. However, tropical articulate brachiopods had
316-468: A burst of volcanic activity that deposited new silicate rocks, which draw CO 2 out of the air as they erode. Another possibility is that bryophytes and lichens, which colonized land in the middle to late Ordovician, may have increased weathering enough to draw down CO 2 levels. The drop in CO 2 selectively affected the shallow seas where most organisms lived. It has also been suggested that shielding of
395-440: A critically low viscosity enabling them to flow. Subsequently these rocks can decoupled from their base and begin to flow to higher crustal levels along lithostatic pressure gradients that can be caused by melt-induced buoyancy or differences in topography and lateral density contrasts. both of which are affected by erosion. Characteristics of this mode of exhumation include simultaneous normal shearing and reverse shearing along
474-590: A deep embayment between Siberia and the Central Mongolian terranes . Most of the terranes of central Asia were part of an equatorial archipelago whose geometry is poorly constrained by the available evidence. The period was one of extensive, widespread tectonism and volcanism. However, orogenesis (mountain-building) was not primarily due to continent-continent collisions. Instead, mountains arose along active continental margins during accretion of arc terranes or ribbon microcontinents. Accretion of new crust
553-639: A dispute between followers of Adam Sedgwick and Roderick Murchison , who were placing the same rock beds in North Wales in the Cambrian and Silurian systems, respectively. Lapworth recognized that the fossil fauna in the disputed strata were different from those of either the Cambrian or the Silurian systems, and placed them in a system of their own. The Ordovician received international approval in 1960 (forty years after Lapworth's death), when it
632-607: A distinct band around the Earth, and that the breakup of the parent body may have formed a ring system for a period of about 40 million years, with frequent falling debris causing these craters. The Ordovician was a time of calcite sea geochemistry in which low-magnesium calcite was the primary inorganic marine precipitate of calcium carbonate . Carbonate hardgrounds were thus very common, along with calcitic ooids , calcitic cements, and invertebrate faunas with dominantly calcitic skeletons. Biogenic aragonite , like that composing
711-464: A given landmass were severely affected. Tropical lifeforms were hit particularly hard in the first wave of extinction, while cool-water species were hit worst in the second pulse. Those species able to adapt to the changing conditions survived to fill the ecological niches left by the extinctions. For example, there is evidence the oceans became more deeply oxygenated during the glaciation, allowing unusual benthic organisms (Hirnantian fauna) to colonize
790-693: A more cosmopolitan distribution , with less diversity on different continents. During the Middle Ordovician, beta diversity began a significant decline as marine taxa began to disperse widely across space. Faunas become less provincial later in the Ordovician, partly due to the narrowing of the Iapetus Ocean, though they were still distinguishable into the late Ordovician. Trilobites in particular were rich and diverse, and experienced rapid diversification in many regions. Trilobites in
869-728: A period known as the Ordovician meteor event . It has been theorized that this increase in impacts may originate from a ring system that formed around Earth at the time. In 2008, the ICS erected a formal international system of subdivisions for the Ordovician Period and System. Pre-existing Baltoscandic, British, Siberian, North American, Australian, Chinese, Mediterranean and North- Gondwanan regional stratigraphic schemes are also used locally. The Ordovician Period in Britain
SECTION 10
#1732779904508948-541: A set of island arcs. The accretion of these arcs to the eastern margin of Gondwana was responsible for the Benambran Orogeny of eastern Australia. Subduction also took place along what is now Argentina (Famatinian Orogeny) at 450 Ma. This involved significant back arc rifting. The interior of Gondwana was tectonically quiet until the Triassic . Towards the end of the period, Gondwana began to drift across
1027-789: Is a geologic period and system , the second of six periods of the Paleozoic Era , and the second of twelve periods of the Phanerozoic Eon . The Ordovician spans 41.6 million years from the end of the Cambrian Period 485.4 Ma (million years ago) to the start of the Silurian Period 443.8 Ma. The Ordovician, named after the Welsh tribe of the Ordovices , was defined by Charles Lapworth in 1879 to resolve
1106-459: Is coeval to burial of the structural levels. Tectonics of this kind result in fold and thrust belts or if they are built up over long periods, can form thick-stacked long-hot-orogens, such as the Himalayas . Channel flow typically occurs in long-hot orogens when the orogen is sufficiently thick to promote partial melting in the middle-lower part of the orogen to a point where the rocks reach
1185-502: Is fundamental in eventually exposing these deeper rocks at the Earth's surface, the geological phenomenon that drive the rocks to shallower crust are still considered exhumation processes. Geological exhumation occurs on a range of scales, from smaller-scale thrusts typically occurring within the shallow crust (less than ca. 10 km deep) which results in exhumation in the order of centimeters to meters scales, to larger-scale features originating at deeper crustal levels along which, exhumation
1264-474: Is here considered as a process that removes parts of the Earth's upper crust by physical processes that occur naturally (e.g. glaciers , wind, water, landslides ). Through this form of exhumation, something previously buried in sediments , for example a landform , is uncovered and can be exposed. Exhumation by tectonic processes refers to any geological mechanism that brings rocks from deeper crustal levels to shallower crustal levels. While erosion or denudation
1343-401: Is in the order of hundreds of meters to kilometers. The geological mechanisms that drive deep crustal exhumation can occur in a variety of tectonic settings but are ultimately driven by the convergence of tectonic plates through subduction . Depending on the type of convergent boundary , exhumation occurs by thrusting in the accretionary wedge , by obduction and/or as a process during
1422-489: Is marked by a sudden abundance of hard substrate trace fossils such as Trypanites , Palaeosabella , Petroxestes and Osprioneides . Bioerosion became an important process, particularly in the thick calcitic skeletons of corals, bryozoans and brachiopods, and on the extensive carbonate hardgrounds that appear in abundance at this time. Green algae were common in the Late Cambrian (perhaps earlier) and in
1501-580: Is the Woodroffe Thrust, which is a laminated pseudotachlyte - schist zone up to 300 metres thick. This has accommodated up to 42 kilometres of vertical movement at an angle of about 15 to 20 degrees. The structure of the Petermann Orogen within the Musgrave Block is considered to be a flower-structure , which is a set of vertically arcuate thrust faults which dip toward each other and accommodate vertical movement by essentially squeezing
1580-498: Is the process by which a parcel of buried rock approaches Earth's surface. It differs from the related ideas of rock uplift and surface uplift in that it is explicitly measured relative to the surface of the Earth, rather than with reference to some absolute reference frame, such as the Earth's geoid . Exhumation of buried rocks should be considered as two different categories namely, exhumation by denudation / erosion or exhumation by tectonic processes followed by erosion . In
1659-518: The Cambrian , reef -forming corals appeared in the early Ordovician, including the earliest known octocorals , corresponding to an increase in the stability of carbonate and thus a new abundance of calcifying animals. Brachiopods surged in diversity, adapting to almost every type of marine environment. Even after GOBE, there is evidence suggesting that Ordovician brachiopods maintained elevated rates of speciation. Molluscs , which appeared during
SECTION 20
#17327799045081738-455: The Devonian . The first land plants are known from this period. The Great Ordovician Biodiversification Event considerably increased the diversity of life. Fish , the world's first true vertebrates , continued to evolve, and those with jaws may have first appeared late in the period. About 100 times as many meteorites struck the Earth per year during the Ordovician compared with today in
1817-766: The Rheic Ocean between Gondwana and Avalonia. Avalonia collided with Baltica towards the end of Ordovician. Other geographic features of the Ordovician world included the Tornquist Sea , which separated Avalonia from Baltica; the Aegir Ocean, which separated Baltica from Siberia; and an oceanic area between Siberia, Baltica, and Gondwana which expanded to become the Paleoasian Ocean in Carboniferous time. The Mongol-Okhotsk Ocean formed
1896-471: The endocerid cephalopods died out completely, except for possible rare Silurian forms. The Ordovician–Silurian extinction events may have been caused by an ice age that occurred at the end of the Ordovician Period, due to the expansion of the first terrestrial plants , as the end of the Late Ordovician was one of the coldest times in the last 600 million years of Earth's history. On the whole,
1975-790: The hunter-gatherer inhabitants. In order to provide work, subsidised exploration was undertaken by the Western Mining Corporation , resulting in the discovery of podiform copper at Warburton Range, and eventually the Wingelinna nickel laterite resource. The advent of the Mabo Decision and land rights movements has seen aboriginal land rights improved, with the result that they now control access to land and exploration tenements. This has created uncertainty about tenure and land access for mineral exploration. There are three main known forms of mineralisation in
2054-490: The orogenic cycle (i.e. mountain building and collapse cycle). During the subduction of an oceanic plate underneath the continental crust, some fragments of the oceanic crust can be trapped above the continental crust through obduction . The resulting rocks obducted on the continental crust are called ophiolites . While the exact mechanism behind the formation of ophiolites is still up for debate, those rocks still show an example of rocks being exhumed and exposed at
2133-451: The 30–40 km exhumation. Exhumation of the Musgrave Block (and overlying sediments) resulted in successive unroofing and deposition of rock types such as arkose and conglomerate in localised sedimentary basins that now outcrop as Uluru and Kata Tjuta respectively. Beyond this region of intense Petermann-aged activity, deformation related to the Petermann Orogen is less pervasive and ductile . Sedimentation associated with
2212-460: The Cambrian or even the Ediacaran , became common and varied, especially bivalves , gastropods , and nautiloid cephalopods. Cephalopods diversified from shallow marine tropical environments to dominate almost all marine environments. Graptolites, which evolved in the preceding Cambrian period, thrived in the oceans. This includes the distinctive Nemagraptus gracilis graptolite fauna, which
2291-472: The Cambrian were succeeded by those that dominated the rest of the Paleozoic, such as articulate brachiopods, cephalopods , and crinoids . Articulate brachiopods, in particular, largely replaced trilobites in shelf communities. Their success epitomizes the greatly increased diversity of carbonate shell-secreting organisms in the Ordovician compared to the Cambrian. Ordovician geography had its effect on
2370-550: The Cambrian- Ordovician . The theory states that the degree of extreme uplift experienced in the Petermann Orogeny, specifically the ~42 km of uplift along the Woodroffe Thrust, occurred as a consequence of a crustal scale detachment surface forming a 'basement pop-up' as rock was thrust laterally along the detachment. Problems with this model include lack of geochronology , and general lack of kinematics directly linked to transpression. Another theory for
2449-967: The Dapingian and the early Darriwilian. The Llanvirn corresponds to the late Darriwilian. The Caradoc covers the Sandbian and the first half of the Katian. The Ashgill represents the second half of the Katian, plus the Hirnantian . The Ashgill Epoch, the last epoch of the British Ordovician, is made of four ages: the Hirnantian Age, the Rawtheyan Age, the Cautleyan Age, and the Pusgillian Age. These ages make up
Petermann Orogeny - Misplaced Pages Continue
2528-848: The Early Eocene Climatic Optimum. Carbon dioxide levels were very high at the Ordovician period's beginning. By the late Early Ordovician, the Earth cooled, giving way to a more temperate climate in the Middle Ordovician, with the Earth likely entering the Early Palaeozoic Ice Age during the Sandbian, and possibly as early as the Darriwilian or even the Floian. The Dapingian and Sandbian saw major humidification events evidenced by trace metal concentrations in Baltoscandia from this time. Evidence suggests that global temperatures rose briefly in
2607-532: The Early Ordovician, leveling off somewhat during the middle of the period. Locally, some regressions occurred, but the sea level rise continued in the beginning of the Late Ordovician. Sea levels fell steadily due to the cooling temperatures for about 3 million years leading up to the Hirnantian glaciation. During this icy stage, sea level seems to have risen and dropped somewhat. Despite much study,
2686-559: The Great Ordovician Biodiversification Event) was no less remarkable; marine faunal genera increased fourfold, resulting in 12% of all known Phanerozoic marine fauna. Several animals also went through a miniaturization process, becoming much smaller than their Cambrian counterparts. Another change in the fauna was the strong increase in filter-feeding organisms. The trilobite, inarticulate brachiopod, archaeocyathid , and eocrinoid faunas of
2765-507: The Hirnantian glaciation. As with North America and Europe , Gondwana was largely covered with shallow seas during the Ordovician. Shallow clear waters over continental shelves encouraged the growth of organisms that deposit calcium carbonates in their shells and hard parts. The Panthalassic Ocean covered much of the Northern Hemisphere , and other minor oceans included Proto-Tethys , Paleo-Tethys , Khanty Ocean , which
2844-469: The Ordovician of Wisconsin have been found with an age of about 460 million years ago, a time when the land flora most likely only consisted of plants similar to non-vascular bryophytes . Though stromatolites had declined from their peak in the Proterozoic, they continued to exist in localised settings. The Ordovician came to a close in a series of extinction events that, taken together, comprise
2923-421: The Ordovician were very different from their predecessors in the Cambrian. Many trilobites developed bizarre spines and nodules to defend against predators such as primitive eurypterids and nautiloids while other trilobites such as Aeglina prisca evolved to become swimming forms. Some trilobites even developed shovel-like snouts for ploughing through muddy sea bottoms. Another unusual clade of trilobites known as
3002-582: The Ordovician, when at least two volcanic island arcs collided with Laurentia to form the Appalachian Mountains . Laurentia was otherwise tectonically stable. An island arc accreted to South China during the period, while subduction along north China (Sulinheer) resulted in the emplacement of ophiolites. The ash fall of the Millburg/Big Bentonite bed, at about 454 Ma, was the largest in the last 590 million years. This had
3081-428: The Ordovician. The ice age was possibly not long-lasting. Oxygen isotopes in fossil brachiopods show its duration may have been only 0.5 to 1.5 million years. Other researchers (Page et al.) estimate more temperate conditions did not return until the late Silurian. The late Ordovician glaciation event was preceded by a fall in atmospheric carbon dioxide (from 7000 ppm to 4400 ppm). The dip may have been caused by
3160-557: The Ordovician. Terrestrial plants probably evolved from green algae, first appearing as tiny non- vascular forms resembling liverworts , in the middle to late Ordovician. Fossil spores found in Ordovician sedimentary rock are typical of bryophytes. Among the first land fungi may have been arbuscular mycorrhiza fungi ( Glomerales ), playing a crucial role in facilitating the colonization of land by plants through mycorrhizal symbiosis , which makes mineral nutrients available to plant cells; such fossilized fungal hyphae and spores from
3239-552: The Petermann Orogen; Exploration for Olympic Dam mine lookalikes and for magmatic nickel copper mineralisation is continuing. There are only one or two geology oriented documentaries that trace Uluru and Kata Tjuta 's origins with the Australian Petermann Ranges . The Time Traveller's Guide To Australia in 2012 is possibly the first documentary to make the connection with reasonable clarity. Exhumation (geology) In geology , exhumation
Petermann Orogeny - Misplaced Pages Continue
3318-635: The Petermann Orogeny is responsible for the deposition of the Georgina Basin , Officer Basin, Ngalia Basin and Amadeus Basin sediments in the Cambrian . Sediments are a mixture of fluvial conglomerates, sandstones , and siltstones . Several pull-apart structural grabens formed at flexures in the orogenic belt, forming the Levenger and Moorilyanna Grabens. The Petermann Orogeny is dominated by south-over-north movement on several large, anastomosing curved thrust faults . The prime thrust fault
3397-613: The South Pole. This contributed to the Hibernian glaciation and the associated extinction event. The Ordovician meteor event is a proposed shower of meteors that occurred during the Middle Ordovician Epoch, about 467.5 ± 0.28 million years ago, due to the break-up of the L chondrite parent body. It is not associated with any major extinction event. A 2024 study found that craters from this event cluster in
3476-564: The Wuliuan, exploded in diversity during the Tremadocian, quickly becoming globally widespread. Several groups of endobiotic symbionts appeared in the Ordovician. In the Early Ordovician, trilobites were joined by many new types of organisms, including tabulate corals, strophomenid , rhynchonellid , and many new orthid brachiopods, bryozoans, planktonic graptolites and conodonts, and many types of molluscs and echinoderms, including
3555-425: The area. Most famously was Lewis Lasseter , who allegedly found Lasseter's Reef , a near-mythical gold lode of such richness and scale that it has fired imaginations for over a century, but remains undiscovered. In the mid and late 20th century, government missionaries brought to the indigenous Aboriginal people of the area European law , European culture and the concept of salaried work, previously unknown to
3634-509: The causes of the deep and extremely rapid exhumation of the Petermann Orogen is that it is due to isostatic instabilities caused by thermal events in the deep crust, causing accumulated stress to be released by violent thermal rebound (Sandiford, et al. 2001). This is envisaged as a kind of feedback loop between sedimentation and isostatic orogenic events. However, some authors (Camacho et al.) have called this into question with isotopic models. The Petermann Orogeny exposes deep crustal roots of
3713-535: The central block up and out. Several northeast trending discontinuities including the Mundrabilla lineament divide the Petermann orogeny, with extensive vertical offsets across them, usually west-side-up, though the timing of this event is unknown. Six deformations are known (to be completed) Foliations associated with the Petermann Orogeny are typically steeply to gently south-dipping and subparallel to
3792-486: The centre of the Australian continental block. Several theories about the causes and dynamics of the orogen are currently under investigation, including; The Transpression model (by SRK Ltd ) considers the Petermann Orogen to be caused by transpressional strike-slip along a series of anastomosing crustal-scale strike-slip thrusts which included movements during the pan-African orogenies and tectonic events of
3871-456: The depths. These organisms were cosmopolitan in distribution and present at most latitudes. At the end of the second event, melting glaciers caused the sea level to rise and stabilise once more. The rebound of life's diversity with the permanent re-flooding of continental shelves at the onset of the Silurian saw increased biodiversity within the surviving Orders. Recovery was characterized by an unusual number of "Lazarus taxa", disappearing during
3950-473: The details remain unresolved. In particular, some researches interpret the fluctuations in sea level as pre-Hibernian glaciation, but sedimentary evidence of glaciation is lacking until the end of the period. There is evidence of glaciers during the Hirnantian on the land we now know as Africa and South America, which were near the South Pole at the time, facilitating the formation of the ice caps of
4029-485: The different modes of burial and exhumation and distinction and between them relies on a series of parameters such as: Detailed and integrated geologic modelling , structural geology , geochronology and metamorphic geological disciplines are key to understanding these processes. Exhumation through denudation could be considered as the process of exposing rock packages solely through the removal of their overlying unconsolidated sediments or solid rock layers. Denudation
SECTION 50
#17327799045084108-422: The diversity of fauna; Ordovician invertebrates displayed a very high degree of provincialism. The widely separated continents of Laurentia and Baltica, then positioned close to the tropics and boasting many shallow seas rich in life, developed distinct trilobite faunas from the trilobite fauna of Gondwana, and Gondwana developed distinct fauna in its tropical and temperature zones. The Tien Shan terrane maintained
4187-559: The early Katian (Boda Event), depositing bioherms and radiating fauna across Europe. The early Katian also witnessed yet another humidification event. Further cooling during the Hirnantian, at the end of the Ordovician, led to the Late Ordovician glaciation . The Ordovician saw the highest sea levels of the Paleozoic, and the low relief of the continents led to many shelf deposits being formed under hundreds of metres of water. The sea level rose more or less continuously throughout
4266-425: The extinction and reappearing well into the Silurian, which suggests that the taxa survived in small numbers in refugia . An alternate extinction hypothesis suggested that a ten-second gamma-ray burst could have destroyed the ozone layer and exposed terrestrial and marine surface-dwelling life to deadly ultraviolet radiation and initiated global cooling. Recent work considering the sequence stratigraphy of
4345-485: The fauna that emerged in the Ordovician were the template for the remainder of the Palaeozoic. The fauna was dominated by tiered communities of suspension feeders, mainly with short food chains. The ecological system reached a new grade of complexity far beyond that of the Cambrian fauna, which has persisted until the present day. Though less famous than the Cambrian explosion , the Ordovician radiation (also known as
4424-578: The first rugose corals appeared. The planktonic graptolites remained diverse, with the Diplograptina making their appearance. One of the earliest known armoured agnathan (" ostracoderm ") vertebrates, Arandaspis , dates from the Middle Ordovician. During the Middle Ordovician there was a large increase in the intensity and diversity of bioeroding organisms. This is known as the Ordovician Bioerosion Revolution. It
4503-432: The formation of fold and thrust type belts along the margins of the collapsed orogen. Characteristics of gravitational collapse include outward verging, normal sense shear zones along the margins of the core complexes and exhumation-only type P-T-t paths. Ordovician The Ordovician ( / ɔːr d ə ˈ v ɪ ʃ i . ə n , - d oʊ -, - ˈ v ɪ ʃ ən / or-də- VISH -ee-ən, -doh-, - VISH -ən )
4582-502: The globe. At the start of the period, the continents of Laurentia (in present-day North America ), Siberia , and Baltica (present-day northern Europe) were separated from Gondwana by over 5,000 kilometres (3,100 mi) of ocean. These smaller continents were also sufficiently widely separated from each other to develop distinct communities of benthic organisms. The small continent of Avalonia had just rifted from Gondwana and began to move north towards Baltica and Laurentia, opening
4661-496: The latter case, rocks (or rock packages) from deeper crustal levels (meter to kilometer depths below the Earth's surface) are brought towards the Earth's surface (i.e.shallower crustal levels) by crustal thickening (see compared also tectonic uplift ) and/or extensional tectonics and are subsequently exposed by erosion. Often exhumation involves a complex interaction between crustal thickening, extensional tectonics and erosion. Notably, there are overlapping characteristics between
4740-548: The ophiuroids ("brittle stars") and the first sea stars . Nevertheless, the arthropods remained abundant; all the Late Cambrian orders continued, and were joined by the new group Phacopida . The first evidence of land plants also appeared (see evolutionary history of life ). In the Middle Ordovician, the trilobite-dominated Early Ordovician communities were replaced by generally more mixed ecosystems, in which brachiopods, bryozoans, molluscs, cornulitids , tentaculitids and echinoderms all flourished, tabulate corals diversified and
4819-459: The orogen that was built up during collision. During collapse, high-grade rocks from the core of the orogen are exhumed through upward flow towards now thinned crustal areas forming domal shaped metamorphic core complexes . Alternatively, or in conjunction with the extension of the center of the orogen, propagation of the rock-mass towards the margin may lead to exhumation along a series of brittle or ductile thrusts and normal faults and ultimately
SECTION 60
#17327799045084898-405: The previous Musgrave Orogen and likely parts of several poorly exposed Proterozoic orogenic belts and igneous provinces . As such, the rocks of the Petermann Orogen are considered prospective territory for mineral exploration . The history of mineral exploration in the Petermann Orogen extends back to the last half of the 19th century, with a series of prospectors and exploring pioneers transiting
4977-402: The roof and the base of the channel respectively, high-temperature retrograde metamorphic assemblages, cooing ages should be younger to the front of the channel and P-T-t paths suggesting prolonged burial and synchronous exhumation throughout the channel. Post-convergent gravitational collapse (extension) occurs once the convergence forces can no longer support the gravitational force of
5056-400: The sea level dropped, and the vast shallow intra-continental Ordovician seas withdrew, which eliminated many ecological niches. When they returned, they carried diminished founder populations that lacked many whole families of organisms. They then withdrew again with the next pulse of glaciation, eliminating biological diversity with each change. Species limited to a single epicontinental sea on
5135-426: The sea, and about 49% of genera of fauna disappeared forever; brachiopods and bryozoans were greatly reduced, along with many trilobite , conodont and graptolite families. The most commonly accepted theory is that these events were triggered by the onset of cold conditions in the late Katian, followed by an ice age , in the Hirnantian faunal stage, that ended the long, stable greenhouse conditions typical of
5214-512: The second largest of the five major extinction events in Earth's history in terms of percentage of genera that became extinct. The only larger one was the Permian–Triassic extinction event . The extinctions occurred approximately 447–444 million years ago and mark the boundary between the Ordovician and the following Silurian Period. At that time all complex multicellular organisms lived in
5293-425: The shells of most molluscs , dissolved rapidly on the sea floor after death. Unlike Cambrian times, when calcite production was dominated by microbial and non-biological processes, animals (and macroalgae) became a dominant source of calcareous material in Ordovician deposits. The Early Ordovician climate was very hot, with intense greenhouse conditions and sea surface temperatures comparable to those during
5372-459: The subduction to the collisional phases of the orogenic cycle, a tectonic wedge forms on the prowedge (side of the subducting plate) and commonly the retrowedge (continental side) of the orogen. During the continued convergence, the wedge maintains its shape by maintaining its critical angle of taper by the interaction of thickening through basal accretion or foreland propagation (frontal accretion) and thinning through normal faulting and erosion at
5451-492: The sun's rays from the proposed Ordovician ring system, which also caused the Ordovician meteor event , may have also led to the glaciation. As the southern supercontinent Gondwana drifted over the South Pole, ice caps formed on it, which have been detected in Upper Ordovician rock strata of North Africa and then-adjacent northeastern South America, which were south-polar locations at the time. As glaciers grew,
5530-478: The surface by the tectonic process of obduction and then exposed. Exhumation of deep crustal rocks during an orogenic cycle occurs mainly during continental collision or during post-collision extension and is thus, is broadly grouped into the three mechanisms which are used to describe the burial and exhumation of the cycle namely, syn-convergent orogenic wedges, channel flow (also known as ductile extrusion) and post-convergence gravitational collapse. During
5609-446: The thrust faults upon which they were developed. S regionally pervasive stretching lineation is potentially associated with some of these faults, especially in the deeper areas of the crust which have been exhumed, because these were within the temperature and pressure conditions for brittle -ductile and ductile deformation. The tectonics of the Petermann Orogeny are extremely unusual, as it occurred in an intraplate setting in
5688-577: The time period from c. 450 Ma to c. 443 Ma. The Rawtheyan, the second last of the Ashgill ages, was from c. 449 Ma to c. 445 Ma. It is in the Katian Age of the ICS's Geologic Time Scale . During the Ordovician, the southern continents were assembled into Gondwana , which reached from north of the equator to the South Pole . The Panthalassic Ocean, centered in the northern hemisphere, covered over half
5767-399: The trinucleids developed a broad pitted margin around their head shields. Some trilobites such as Asaphus kowalewski evolved long eyestalks to assist in detecting predators whereas other trilobite eyes in contrast disappeared completely. Molecular clock analyses suggest that early arachnids started living on land by the end of the Ordovician. Although solitary corals date back to at least
5846-441: The upper part of the wedge. Erosion of the wedge significantly impacts the dynamics within the wedge, which promotes exhumation by thrusting mid-crustal rocks to the hanging wall of the wedge. Characteristics of this mode of exhumation include, evidence for strong non coaxial reverse-shearing, pro-grade metamorphism, cooling ages are progressively younger towards deeper structural levels and that exhumation at higher structural levels
5925-693: Was adopted as an official period of the Paleozoic Era by the International Geological Congress . Life continued to flourish during the Ordovician as it had in the earlier Cambrian Period, although the end of the period was marked by the Ordovician–Silurian extinction events . Invertebrates, namely molluscs and arthropods , dominated the oceans, with members of the latter group probably starting their establishment on land during this time, becoming fully established by
6004-537: Was closed off by the Late Ordovician, Iapetus Ocean , and the new Rheic Ocean . For most of the Late Ordovician life continued to flourish, but at and near the end of the period there were mass-extinction events that seriously affected conodonts and planktonic forms like graptolites . The trilobites Agnostida and Ptychopariida completely died out, and the Asaphida were much reduced. Brachiopods , bryozoans and echinoderms were also heavily affected, and
6083-554: Was distributed widely during peak sea levels in the Sandbian. Some new cystoids and crinoids appeared. It was long thought that the first true vertebrates (fish — Ostracoderms ) appeared in the Ordovician, but recent discoveries in China reveal that they probably originated in the Early Cambrian . The first gnathostome (jawed fish) may have appeared in the Late Ordovician epoch. Chitinozoans, which first appeared late in
6162-495: Was limited to the Iapetus margin of Laurentia; elsewhere, the pattern was of rifting in back-arc basins followed by remerger. This reflected episodic switching from extension to compression. The initiation of new subduction reflected a global reorganization of tectonic plates centered on the amalgamation of Gondwana. The Taconic orogeny , a major mountain-building episode, was well under way in Cambrian times. This continued into
6241-532: Was traditionally broken into Early (Tremadocian and Arenig ), Middle ( Llanvirn (subdivided into Abereiddian and Llandeilian) and Llandeilo ) and Late ( Caradoc and Ashgill) epochs. The corresponding rocks of the Ordovician System are referred to as coming from the Lower, Middle, or Upper part of the column. The Tremadoc corresponds to the ICS's Tremadocian. The Arenig corresponds to the Floian, all of
#507492