Misplaced Pages

Rolls-Royce Turbomeca RTM322

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A turboshaft engine is a form of gas turbine that is optimized to produce shaft horsepower rather than jet thrust . In concept, turboshaft engines are very similar to turbojets , with additional turbine expansion to extract heat energy from the exhaust and convert it into output shaft power. They are even more similar to turboprops , with only minor differences, and a single engine is often sold in both forms.

#881118

64-473: The Rolls-Royce Turbomeca RTM322 is a turboshaft engine currently produced by Safran Helicopter Engines . The RTM322 was originally conceived and manufactured by Rolls-Royce Turbomeca Limited , a joint venture between Rolls-Royce and Turbomeca (now Safran Helicopter Engines). The engine was designed to suit a wide range of military and commercial helicopter designs. The RTM322 can also be employed in maritime and industrial applications. The Safran Aneto

128-552: A 25% weight reduction, and reduced assembly times. A fuel nozzle is the perfect inroad for additive manufacturing in a jet engine since it allows for optimized design of the complex internals and it is a low-stress, non-rotating part. Similarly, in 2015, PW delivered their first AM parts in the PurePower PW1500G to Bombardier. Sticking to low-stress, non-rotating parts, PW selected the compressor stators and synch ring brackets to roll out this new manufacturing technology for

192-494: A 3D service provider specializing in Howtek single nozzle inkjet and SDI printer support. James K. McMahon worked with Steven Zoltan, 1972 drop-on-demand inkjet inventor, at Exxon and has a patent in 1978 that expanded the understanding of the single nozzle design inkjets (Alpha jets) and helped perfect the Howtek, Inc hot-melt inkjets. This Howtek hot-melt thermoplastic technology is popular with metal investment casting, especially in

256-717: A British patient named Steve Verze received the world's first fully 3D-printed prosthetic eye from the Moorfields Eye Hospital in London . In April 2024, the world's largest 3D printer, the Factory of the Future 1.0 was revealed at the University of Maine . It is able to make objects 96 feet long, or 29 meters. In 2024, researchers used machine learning to improve the construction of synthetic bone and set

320-496: A continuous filament of a thermoplastic material, is the most common 3D printing process in use as of 2020 . The umbrella term additive manufacturing (AM) gained popularity in the 2000s, inspired by the theme of material being added together ( in any of various ways ). In contrast, the term subtractive manufacturing appeared as a retronym for the large family of machining processes with material removal as their common process. The term 3D printing still referred only to

384-604: A gas turbine engine. (Most tanks use reciprocating piston diesel engines.) The Swedish Stridsvagn 103 was the first tank to utilize a gas turbine as a secondary, high-horsepower "sprint" engine to augment its primary piston engine's performance. The turboshaft engines used in all these tanks have considerably fewer parts than the piston engines they replace or supplement, mechanically are very reliable, produce reduced exterior noise, and run on virtually any fuel: petrol (gasoline), diesel fuel , and aviation fuels. However, turboshaft engines have significantly higher fuel consumption than

448-521: A number of years. Both BPM 3D printers and SPI 3D printers use Howtek, Inc style Inkjets and Howtek, Inc style materials. Royden Sanders licensed the Helinksi patent prior to manufacturing the Modelmaker 6 Pro at Sanders prototype, Inc (SPI) in 1993. James K. McMahon who was hired by Howtek, Inc to help develop the inkjet, later worked at Sanders Prototype and now operates Layer Grown Model Technology,

512-598: A record for shock absorption. In July 2024, researchers published a paper in Advanced Materials Technologies describing the development of artificial blood vessels using 3D-printing technology, which are as strong and durable as natural blood vessels . The process involved using a rotating spindle integrated into a 3D printer to create grafts from a water-based gel, which were then coated in biodegradable polyester molecules. Additive manufacturing or 3D printing has rapidly gained importance in

576-820: A reverse flow annular combustor, a two stage gas generator axial turbine and a two stage axial power turbine with a forward transmission shaft turning at 21,000   rpm. Fitted with an inlet particle separator, its accessory gearbox is driven by the gas generator and the engine is control by a FADEC . Built upon the Safran Tech 3000 technological demonstrator, it aims to gradually offer up to 15% better fuel economy over current competitors to improve payload-range and offers 25% better power density than existing engines of same volume. Offered for new or for existing models, fewer scheduled maintenance tasks, longer maintenance intervals and health monitoring should improve maintainability . Suited for 8–15 ton helicopters, it

640-420: A way to reduce cost, reduce the number of nonconforming parts, reduce weight in the engines to increase fuel efficiency and find new, highly complex shapes that would not be feasible with the antiquated manufacturing methods. One example of AM integration with aerospace was in 2016 when Airbus delivered the first of GE's LEAP engines. This engine has integrated 3D printed fuel nozzles, reducing parts from 20 to 1,

704-633: Is a later development targeted for the super-medium and heavy helicopters , developed by Safran Helicopter Engines covering the 2,500 to 3,000 hp (1,900 to 2,200 kW) range. The engine was designed for the Hughes AH-64 Apache and Sikorsky UH-60 Blackhawk , competing with the General Electric T700 and the Pratt & Whitney Canada PW100 . The partners shared the £100 million development costs equally, Rolls-Royce made

SECTION 10

#1732771849882

768-552: Is developed from the RTM322: the -1K has a similar architecture but no common parts. Parts made by additive manufacturing are used in the gyratory combustion chamber and the inlet guide vane system. Compatible with hybrid and distributed propulsion systems, in cruise flight one of the two engines could be shut down and restarted when needed. In the AW189, it is offered along the incumbent General Electric CT7, needing minor changes to

832-632: Is the technology's ability to produce complex geometries with high precision and accuracy. This is particularly relevant in the field of microwave engineering, where 3D printing can be used to produce components with unique properties that are difficult to achieve using traditional manufacturing methods. Additive Manufacturing processes generate minimal waste by adding material only where needed, unlike traditional methods that cut away excess material. This reduces both material costs and environmental impact. This reduction in waste also lowers energy consumption for material production and disposal, contributing to

896-640: The Agusta-Westland AW101 fleet and 80% of in-service NH90s . In 2013, Turbomeca (part of the Safran Group , and now known as Safran Helicopter Engines) acquired the entire programme, becoming responsible for both production and product support. Safran Helicopter Engines has since developed a new engine derived from the RTM322, known as the Aneto. The first 2,500 shp -1K was selected to power

960-584: The Leonardo AW149 and Leonardo AW189K twin to extend its capabilities, it flew in March 2017 and was scheduled to be introduced in the fourth quarter of 2018. The more powerful 3,000+ shp “Dash 3” should appear in the early 2020s and will feature a new compressor and hot section. The required documentation was expected to be handed to the EASA in early 2019 for a second quarter certification. By October 2018,

1024-659: The Sikorsky CH-53E Super Stallion uses three General Electric T64 at 4,380 hp each. The first gas turbine engine considered for an armoured fighting vehicle, the GT 101 which was based on the BMW 003 turbojet, was tested in a Panther tank in mid-1944. The first turboshaft engine for rotorcraft was built by the French engine firm Turbomeca , led by its founder Joseph Szydlowski . In 1948, they built

1088-550: The UV exposure area is controlled by a mask pattern or a scanning fiber transmitter. He filed a patent for this XYZ plotter, which was published on 10 November 1981. (JP S56-144478). His research results as journal papers were published in April and November 1981. However, there was no reaction to the series of his publications. His device was not highly evaluated in the laboratory and his boss did not show any interest. His research budget

1152-646: The stereolithography process. The application of the French inventors was abandoned by the French General Electric Company (now Alcatel-Alsthom) and CILAS (The Laser Consortium). The claimed reason was "for lack of business perspective". In 1983, Robert Howard started R.H. Research, later named Howtek, Inc. in Feb 1984 to develop a color inkjet 2D printer, Pixelmaster, commercialized in 1986, using Thermoplastic (hot-melt) plastic ink. A team

1216-647: The turbines , the combustor , and the inlet particle separator while Turbomeca produced the axial - centrifugal compressor and intake . The engine first ran on 15 December 1984, with eight bench prototypes for 30,000 cycles and 13,000 test hours, and four for flight tests, initially aiming for type certification to be issued in 1987. The first order for the RTM322 was received in 1992 to power 44 Royal Navy AugustaWestland Merlin HM1s which subsequently entered service in 1998. Over 1,100 engines are in service, having logged over one million flight hours, powering 60% of

1280-445: The 'gas generator' and the 'power section'. The gas generator consists of the compressor , combustion chambers with ignitors and fuel nozzles , and one or more stages of turbine . The power section consists of additional stages of turbines, a gear reduction system, and the shaft output. The gas generator creates the hot expanding gases to drive the power section. Depending on the design, the engine accessories may be driven either by

1344-448: The 1980s cost upwards of $ 300,000 ($ 650,000 in 2016 dollars). AM processes for metal sintering or melting (such as selective laser sintering , direct metal laser sintering , and selective laser melting) usually went by their own individual names in the 1980s and 1990s. At the time, all metalworking was done by processes that are now called non-additive ( casting , fabrication , stamping , and machining ); although plenty of automation

SECTION 20

#1732771849882

1408-410: The 1980s, 3D printing techniques were considered suitable only for the production of functional or aesthetic prototypes, and a more appropriate term for it at the time was rapid prototyping . As of 2019 , the precision, repeatability, and material range of 3D printing have increased to the point that some 3D printing processes are considered viable as an industrial-production technology; in this context,

1472-730: The 3D printing jewelry industry. Sanders (SDI) first Modelmaker 6Pro customer was Hitchner Corporations, Metal Casting Technology, Inc in Milford, NH a mile from the SDI facility in late 1993-1995 casting golf clubs and auto engine parts. On 8 August 1984 a patent, US4575330, assigned to UVP, Inc., later assigned to Chuck Hull of 3D Systems Corporation was filed, his own patent for a stereolithography fabrication system, in which individual laminae or layers are added by curing photopolymers with impinging radiation, particle bombardment, chemical reaction or just ultraviolet light lasers . Hull defined

1536-448: The VIC 3D printer for this company is available with a video presentation showing a 3D model printed with a single nozzle inkjet. Another employee Herbert Menhennett formed a New Hampshire company HM Research in 1991 and introduced the Howtek, Inc, inkjet technology and thermoplastic materials to Royden Sanders of SDI and Bill Masters of Ballistic Particle Manufacturing (BPM) where he worked for

1600-456: The advantages of design for additive manufacturing , it is clear to engineers that much more is to come. One place that AM is making a significant inroad is in the aviation industry. With nearly 3.8 billion air travelers in 2016, the demand for fuel efficient and easily produced jet engines has never been higher. For large OEMs (original equipment manufacturers) like Pratt and Whitney (PW) and General Electric (GE) this means looking towards AM as

1664-423: The competing CT7s . Comparable engines Related lists Turboshaft Turboshaft engines are commonly used in applications that require a sustained high power output, high reliability, small size, and light weight. These include helicopters , auxiliary power units , boats and ships , tanks , hovercraft , and stationary equipment. A turboshaft engine may be made up of two major parts assemblies:

1728-449: The developing world. In 2012, Filabot developed a system for closing the loop with plastic and allows for any FDM or FFF 3D printer to be able to print with a wider range of plastics. In 2014, Benjamin S. Cook and Manos M. Tentzeris demonstrated the first multi-material, vertically integrated printed electronics additive manufacturing platform (VIPRE) which enabled 3D printing of functional electronics operating up to 40 GHz. As

1792-506: The diesel engines that are used in the majority of modern main battle tanks. Additive manufacturing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model . It can be done in a variety of processes in which material is deposited, joined or solidified under computer control , with the material being added together (such as plastics, liquids or powder grains being fused), typically layer by layer. In

1856-465: The editor-in-chief of Additive Manufacturing magazine, pointed out in 2017 that the terms are still often synonymous in casual usage, but some manufacturing industry experts are trying to make a distinction whereby additive manufacturing comprises 3D printing plus other technologies or other aspects of a manufacturing process . Other terms that have been used as synonyms or hypernyms have included desktop manufacturing , rapid manufacturing (as

1920-606: The fabrication of articles on a substrate. On 2 July 1984, American entrepreneur Bill Masters filed a patent for his computer automated manufacturing process and system ( US 4665492 ). This filing is on record at the USPTO as the first 3D printing patent in history; it was the first of three patents belonging to Masters that laid the foundation for the 3D printing systems used today. On 16 July 1984, Alain Le Méhauté , Olivier de Witte, and Jean Claude André filed their patent for

1984-842: The field of engineering due to its many benefits. The vision of 3D printing is design freedom, individualization, decentralization and executing processes that were previously impossible through alternative methods. Some of these benefits include enabling faster prototyping, reducing manufacturing costs, increasing product customization, and improving product quality. Furthermore, the capabilities of 3D printing have extended beyond traditional manufacturing, like lightweight construction, or repair and maintenance with applications in prosthetics, bioprinting, food industry, rocket building, design and art and renewable energy systems. 3D printing technology can be used to produce battery energy storage systems, which are essential for sustainable energy generation and distribution. Another benefit of 3D printing

Rolls-Royce Turbomeca RTM322 - Misplaced Pages Continue

2048-484: The first French-designed turbine engine, the 100-shp 782. Originally conceived as an auxiliary power unit , it was soon adapted to aircraft propulsion, and found a niche as a powerplant for turboshaft-driven helicopters in the 1950s. In 1950, Turbomeca used its work from the 782 to develop the larger 280-shp Artouste , which was widely used on the Aérospatiale Alouette II and other helicopters. This

2112-453: The first commercial 3D printer, the SLA-1, later in 1987 or 1988. The technology used by most 3D printers to date—especially hobbyist and consumer-oriented models—is fused deposition modeling , a special application of plastic extrusion , developed in 1988 by S. Scott Crump and commercialized by his company Stratasys , which marketed its first FDM machine in 1992. Owning a 3D printer in

2176-426: The first decade in which metal end-use parts such as engine brackets and large nuts would be grown (either before or instead of machining) in job production rather than obligately being machined from bar stock or plate. It is still the case that casting, fabrication, stamping, and machining are more prevalent than additive manufacturing in metalworking, but AM is now beginning to make significant inroads, and with

2240-449: The first patent describing 3D printing with rapid prototyping and controlled on-demand manufacturing of patterns. The patent states: As used herein the term printing is not intended in a limited sense but includes writing or other symbols, character or pattern formation with an ink. The term ink as used in is intended to include not only dye or pigment-containing materials, but any flowable substance or composition suited for application to

2304-411: The first time. While AM is still playing a small role in the total number of parts in the jet engine manufacturing process, the return on investment can already be seen by the reduction in parts, the rapid production capabilities and the "optimized design in terms of performance and cost". As technology matured, several authors began to speculate that 3D printing could aid in sustainable development in

2368-452: The gas generator or by the power section. In most designs, the gas generator and power section are mechanically separate so they can each rotate at different speeds appropriate for the conditions, referred to as a ' free power turbine '. A free power turbine can be an extremely useful design feature for vehicles, as it allows the design to forgo the weight and cost of complex multiple-ratio transmissions and clutches . An unusual example of

2432-414: The goal of many of them being to start developing commercial FDM 3D printers that were more accessible to the general public. As the various additive processes matured, it became clear that soon metal removal would no longer be the only metalworking process done through a tool or head moving through a 3D work envelope, transforming a mass of raw material into a desired shape layer by layer. The 2010s were

2496-427: The high cost would severely limit any widespread enjoyment of a process or apparatus satisfying the foregoing objects. It is therefore an additional object of the invention to minimize use to materials in a process of the indicated class. It is a further object of the invention that materials employed in such a process be salvaged for reuse. According to another aspect of the invention, a combination for writing and

2560-557: The like comprises a carrier for displaying an intelligence pattern and an arrangement for removing the pattern from the carrier. In 1974, David E. H. Jones laid out the concept of 3D printing in his regular column Ariadne in the journal New Scientist . Early additive manufacturing equipment and materials were developed in the 1980s. In April 1980, Hideo Kodama of Nagoya Municipal Industrial Research Institute invented two additive methods for fabricating three-dimensional plastic models with photo-hardening thermoset polymer , where

2624-483: The logical production-level successor to rapid prototyping ), and on-demand manufacturing (which echoes on-demand printing in the 2D sense of printing ). The fact that the application of the adjectives rapid and on-demand to the noun manufacturing was novel in the 2000s reveals the long-prevailing mental model of the previous industrial era during which almost all production manufacturing had involved long lead times for laborious tooling development. Today,

Rolls-Royce Turbomeca RTM322 - Misplaced Pages Continue

2688-565: The manufacturing and research industries, as the technology was still relatively young and was too expensive for most consumers to be able to get their hands on. The 2000s was when larger scale use of the technology began being seen in industry, most often in the architecture and medical industries, though it was typically used for low accuracy modeling and testing, rather than the production of common manufactured goods or heavy prototyping. In 2005 users began to design and distribute plans for 3D printers that could print around 70% of their own parts,

2752-444: The media, and the other used more formally by industrial end-use part producers, machine manufacturers, and global technical standards organizations. Until recently, the term 3D printing has been associated with machines low in price or capability. 3D printing and additive manufacturing reflect that the technologies share the theme of material addition or joining throughout a 3D work envelope under automated control. Peter Zelinski,

2816-542: The mid-1990s, new techniques for material deposition were developed at Stanford and Carnegie Mellon University , including microcasting and sprayed materials. Sacrificial and support materials had also become more common, enabling new object geometries. The term 3D printing originally referred to a powder bed process employing standard and custom inkjet print heads, developed at MIT by Emanuel Sachs in 1993 and commercialized by Soligen Technologies, Extrude Hone Corporation, and Z Corporation . The year 1993 also saw

2880-531: The original plans of which were designed by Adrian Bowyer at the University of Bath in 2004, with the name of the project being RepRap (Replicating Rapid-prototyper). Similarly, in 2006 the Fab@Home project was started by Evan Malone and Hod Lipson , another project whose purpose was to design a low-cost and open source fabrication system that users could develop on their own and post feedback on, making

2944-431: The polymer technologies in most minds, and the term AM was more likely to be used in metalworking and end-use part production contexts than among polymer, inkjet, or stereolithography enthusiasts. By the early 2010s, the terms 3D printing and additive manufacturing evolved senses in which they were alternate umbrella terms for additive technologies, one being used in popular language by consumer-maker communities and

3008-429: The price of printers started to drop people interested in this technology had more access and freedom to make what they wanted. As of 2014, the price for commercial printers was still high with the cost being over $ 2,000. The term "3D printing" originally referred to a process that deposits a binder material onto a powder bed with inkjet printer heads layer by layer. More recently, the popular vernacular has started using

3072-461: The process as a "system for generating three-dimensional objects by creating a cross-sectional pattern of the object to be formed". Hull's contribution was the STL (Stereolithography) file format and the digital slicing and infill strategies common to many processes today. In 1986, Charles "Chuck" Hull was granted a patent for this system, and his company, 3D Systems Corporation was formed and it released

3136-478: The programme had accumulated 4,000 hours, including 105 hours of flight time. In 2018 Sikorsky was considering re-engining its CT7 -powered S-92 . The 1,063 kW (1,426 hp) Aneto-1K was added on the RTM 322 type certificate on 12 December 2019. As an RTM322 variant, the Aneto is a two spool turboshaft with a three stage axial compressor and a single stage centrifugal compressor turning at 36,300   rpm,

3200-512: The project very collaborative. Much of the software for 3D printing available to the public at the time was open source , and as such was quickly distributed and improved upon by many individual users. In 2009 the Fused Deposition Modeling (FDM) printing process patents expired. This opened the door to a new wave of startup companies, many of which were established by major contributors of these open source initiatives, with

3264-470: The start of an inkjet 3D printer company initially named Sanders Prototype, Inc and later named Solidscape , introducing a high-precision polymer jet fabrication system with soluble support structures, (categorized as a "dot-on-dot" technique). In 1995 the Fraunhofer Society developed the selective laser melting process. In the early 2000s 3D printers were still largely being used just in

SECTION 50

#1732771849882

3328-549: The surface for forming symbols, characters, or patterns of intelligence by marking. The preferred ink is of a hot melt type. The range of commercially available ink compositions which could meet the requirements of the invention are not known at the present time. However, satisfactory printing according to the invention has been achieved with the conductive metal alloy as ink. But in terms of material requirements for such large and continuous displays, if consumed at theretofore known rates, but increased in proportion to increase in size,

3392-402: The term additive manufacturing can be used synonymously with 3D printing . One of the key advantages of 3D printing is the ability to produce very complex shapes or geometries that would be otherwise infeasible to construct by hand, including hollow parts or parts with internal truss structures to reduce weight while creating less material waste. Fused deposition modeling (FDM), which uses

3456-624: The term subtractive has not replaced the term machining , instead complementing it when a term that covers any removal method is needed. Agile tooling is the use of modular means to design tooling that is produced by additive manufacturing or 3D printing methods to enable quick prototyping and responses to tooling and fixture needs. Agile tooling uses a cost-effective and high-quality method to quickly respond to customer and market needs, and it can be used in hydro-forming , stamping , injection molding and other manufacturing processes. The general concept of and procedure to be used in 3D-printing

3520-431: The term to encompass a wider variety of additive-manufacturing techniques such as electron-beam additive manufacturing and selective laser melting. The United States and global technical standards use the official term additive manufacturing for this broader sense. The most commonly used 3D printing process (46% as of 2018 ) is a material extrusion technique called fused deposition modeling , or FDM. While FDM technology

3584-900: The top-deck structure and engine cowls. Exempted from U.S. International Traffic in Arms Regulations , it could power the AW189's military derivative, the AW149 or a future attack helicopter based on its dynamic systems. Developed from a French Aviation Authority study, the Safran Power Pack Eco Mode on the Airbus Helicopters Racer allows it to shut down one of engines in cruise, lowering fuel consumption by 15%, and quickly and automatically reactivate it with an electric starter to its maximum power for acceleration, landing or emergencies. The Aneto specific fuel consumption should be 10% better than

3648-712: The turboshaft principle is the Pratt & Whitney F135 -PW-600 turbofan engine for the STOVL Lockheed F-35B Lightning II – in conventional mode it operates as a turbofan, but when powering the Rolls-Royce LiftSystem , it switches partially to turboshaft mode to send 29,000 horsepower forward through a shaft and partially to turbofan mode to continue to send thrust to the main engine's fan and rear nozzle. Large helicopters use two or three turboshaft engines. The Mil Mi-26 uses two Lotarev D-136 at 11,400 hp each, while

3712-668: Was also described by Raymond F. Jones in his story, "Tools of the Trade", published in the November 1950 issue of Astounding Science Fiction magazine. He referred to it as a "molecular spray" in that story. In 1971, Johannes F Gottwald patented the Liquid Metal Recorder, U.S. patent 3596285A, a continuous inkjet metal material device to form a removable metal fabrication on a reusable surface for immediate use or salvaged for printing again by remelting. This appears to be

3776-509: Was applied to those technologies (such as by robot welding and CNC ), the idea of a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape with a toolpath was associated in metalworking only with processes that removed metal (rather than adding it), such as CNC milling , CNC EDM , and many others. However, the automated techniques that added metal, which would later be called additive manufacturing, were beginning to challenge that assumption. By

3840-425: Was first described by Murray Leinster in his 1945 short story "Things Pass By": "But this constructor is both efficient and flexible. I feed magnetronic plastics — the stuff they make houses and ships of nowadays — into this moving arm. It makes drawings in the air following drawings it scans with photo-cells. But plastic comes out of the end of the drawing arm and hardens as it comes ... following drawings only" It

3904-655: Was following the experimental installation of a Boeing T50 turboshaft in an example of the Kaman K-225 synchropter on December 11, 1951, as the world's first-ever turboshaft-powered helicopter of any type to fly. The T-80 tank, which entered service with the Soviet Army in 1976, was the first tank to use a gas turbine as its main engine. Since 1980 the US Army has operated the M1 Abrams tank, which also has

SECTION 60

#1732771849882

3968-565: Was invented after the other two most popular technologies, stereolithography (SLA) and selective laser sintering (SLS), FDM is typically the most inexpensive of the three by a large margin, which lends to the popularity of the process. As of 2020, 3D printers have reached the level of quality and price that allows most people to enter the world of 3D printing. In 2020 decent quality printers can be found for less than US$ 200 for entry-level machines. These more affordable printers are usually fused deposition modeling (FDM) printers. In November 2021

4032-467: Was just 60,000 yen or $ 545 a year. Acquiring the patent rights for the XYZ plotter was abandoned, and the project was terminated. A US 4323756 patent, method of fabricating articles by sequential deposition , granted on 6 April 1982 to Raytheon Technologies Corp describes using hundreds or thousands of "layers" of powdered metal and a laser energy source and represents an early reference to forming "layers" and

4096-515: Was put together, 6 members from Exxon Office Systems, Danbury Systems Division, an inkjet printer startup and some members of Howtek, Inc group who became popular figures in the 3D printing industry. One Howtek member, Richard Helinski (patent US5136515A, Method and Means for constructing three-dimensional articles by particle deposition, application 11/07/1989 granted 8/04/1992) formed a New Hampshire company C.A.D-Cast, Inc, name later changed to Visual Impact Corporation (VIC) on 8/22/1991. A prototype of

#881118