Ground Mobile Forces (GMF) is the term given to the tactical SATCOM portion of the Joint Service program called TRI-TAC developed by GTE-Sylvania in the mid-1970s. The Tri-Service Tactical signal system is a tactical command, control, and communications program. It is a joint service effort to develop and field advanced tactical and multichannel switched communications equipment. The program was conceived to achieve interoperability between service tactical communications systems, establish interoperability with strategic communications systems, take advantage of advances in technology, and eliminate duplication in service acquisitions.
84-519: GMF is configured in a hub-spoke arrangement with the hub terminal being able to ingest four feeds from the outlying spoke terminals. Of the four designated GMF terminals, the AN/TSC-85B and AN/TSC-100A are equipped for point-to-point or hub operations and the AN/TSC-93B and AN/TSC-94A are spoke terminals. The 85B/100A hubs are capable of ingesting up to 48 multiplexed and encrypted channels from
168-479: A 70 MHz IF wideband input, plus are sealed for sustained operations in a chemical/biological/radiological (CBR) environment. GMF communicates via Super High Frequency (SHF) X-band Defense Satellite Communication System (DSCS) satellites. The 85B/100A hub terminals typically use a 20 feet (6.1 m). Quick Reaction Satellite Antenna Group (QRSAG) antenna, while the outlying spoke terminals rely on an 8 feet (2.4 m) parabolic dish antenna. Today, much of
252-647: A band being used for Milstar . Global Navigation Satellite Systems (GNSS) including the Chinese Beidou , the American Global Positioning System (introduced in 1978) and the Russian GLONASS broadcast navigational signals in various bands between about 1.2 GHz and 1.6 GHz. Radar is a radiolocation technique in which a beam of radio waves emitted by a transmitter bounces off an object and returns to
336-408: A router . The telecommunications network at the physical layer also consists of many interconnected wireline network elements (NEs). These NEs can be stand-alone systems or products that are either supplied by a single manufacturer or are assembled by the service provider (user) or system integrator with parts from several different manufacturers. Wireless NEs are the products and devices used by
420-516: A standing wave is present, they may also be used to measure the distance between the nodes , which is equal to half the wavelength. The precision of this method is limited by the determination of the nodal locations. Microwaves are non-ionizing radiation, which means that microwave photons do not contain sufficient energy to ionize molecules or break chemical bonds, or cause DNA damage, as ionizing radiation such as x-rays or ultraviolet can. The word "radiation" refers to energy radiating from
504-458: A . Microwaves travel solely by line-of-sight paths; unlike lower frequency radio waves, they do not travel as ground waves which follow the contour of the Earth, or reflect off the ionosphere ( skywaves ). Although at the low end of the band they can pass through building walls enough for useful reception, usually rights of way cleared to the first Fresnel zone are required. Therefore, on
588-431: A computer-controlled array of antennas that produces a beam that can be electronically steered in different directions. At microwave frequencies, the transmission lines which are used to carry lower frequency radio waves to and from antennas, such as coaxial cable and parallel wire lines , have excessive power losses, so when low attenuation is required, microwaves are carried by metal pipes called waveguides . Due to
672-423: A coupled electric field and magnetic field could travel through space as an electromagnetic wave , and proposed that light consisted of electromagnetic waves of short wavelength. In 1888, German physicist Heinrich Hertz was the first to demonstrate the existence of electromagnetic waves, generating radio waves using a primitive spark gap radio transmitter . Wireless network A wireless network
756-471: A directional antenna is in use, whether nodes employ power control and so on. Cellular wireless networks generally have good capacity, due to their use of directional aerials, and their ability to reuse radio channels in non-adjacent cells. Additionally, cells can be made very small using low power transmitters this is used in cities to give network capacity that scales linearly with population density. Wireless access points are also often close to humans, but
840-535: A frequency near 2.45 GHz (12 cm) through food, causing dielectric heating primarily by absorption of the energy in water. Microwave ovens became common kitchen appliances in Western countries in the late 1970s, following the development of less expensive cavity magnetrons . Water in the liquid state possesses many molecular interactions that broaden the absorption peak. In the vapor phase, isolated water molecules absorb at around 22 GHz, almost ten times
924-422: A harmonic generator and a mixer. The accuracy of the measurement is limited by the accuracy and stability of the reference source. Mechanical methods require a tunable resonator such as an absorption wavemeter , which has a known relation between a physical dimension and frequency. In a laboratory setting, Lecher lines can be used to directly measure the wavelength on a transmission line made of parallel wires,
SECTION 10
#17327871452261008-837: A large number of portable transceivers (e.g., mobile phones, pagers , etc.) to communicate with each other and with fixed transceivers and telephones anywhere in the network, via base stations, even if some of the transceivers are moving through more than one cell during transmission. Although originally intended for cell phones, with the development of smartphones , cellular telephone networks routinely carry data in addition to telephone conversations: Private LTE/5G networks use licensed, shared or unlicensed wireless spectrum thanks to LTE or 5G cellular network base stations, small cells and other radio access network (RAN) infrastructure to transmit voice and data to edge devices (smartphones, embedded modules, routers and gateways. 3GPP defines 5G private networks as non-public networks that typically employ
1092-483: A maximum of four spoke terminals simultaneously, but can double that capability with an external multiplexer (96 channels). Each channel is configured for 16 or 32 kbit/s, which with overhead translates to 48 kbit/s true capacity. The 93B/94A terminals have a capacity of 24 16/32 kbit/s multiplexed channels. All of the GMF terminals have external connections for an AN/TSQ-111 Tech Control Facility, field phones, or
1176-478: A mesh topology. Each node forwards messages on behalf of the other nodes and each node performs routing. Ad hoc networks can "self-heal", automatically re-routing around a node that has lost power. Various network layer protocols are needed to realize ad hoc mobile networks, such as Distance Sequenced Distance Vector routing, Associativity-Based Routing , Ad hoc on-demand distance-vector routing , and Dynamic Source Routing . Wireless metropolitan area networks are
1260-530: A place in the electromagnetic spectrum with frequency above ordinary radio waves , and below infrared light: In descriptions of the electromagnetic spectrum , some sources classify microwaves as radio waves, a subset of the radio wave band, while others classify microwaves and radio waves as distinct types of radiation. This is an arbitrary distinction. Bands of frequencies in the microwave spectrum are designated by letters. Unfortunately, there are several incompatible band designation systems, and even within
1344-515: A receiver, allowing the location, range, speed, and other characteristics of the object to be determined. The short wavelength of microwaves causes large reflections from objects the size of motor vehicles, ships and aircraft. Also, at these wavelengths, the high gain antennas such as parabolic antennas which are required to produce the narrow beamwidths needed to accurately locate objects are conveniently small, allowing them to be rapidly turned to scan for objects. Therefore, microwave frequencies are
1428-696: A short distance using a wireless distribution method, usually providing a connection through an access point for internet access. The use of spread-spectrum or OFDM technologies may allow users to move around within a local coverage area, and still remain connected to the network. Products using the IEEE 802.11 WLAN standards are marketed under the Wi-Fi brand name. Fixed wireless technology implements point-to-point links between computers or networks at two distant locations, often using dedicated microwave or modulated laser light beams over line of sight paths. It
1512-473: A smaller-scale deployment to meet an organization's needs for reliability, accessibility, and maintainability. Open source private networks are based on a collaborative, community-driven software that relies on peer review and production to use, modify and share the source code. A global area network (GAN) is a network used for supporting mobile across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications
1596-449: A source and not to radioactivity . The main effect of absorption of microwaves is to heat materials; the electromagnetic fields cause polar molecules to vibrate. It has not been shown conclusively that microwaves (or other non-ionizing electromagnetic radiation) have significant adverse biological effects at low levels. Some, but not all, studies suggest that long-term exposure may have a carcinogenic effect. During World War II , it
1680-574: A system the frequency ranges corresponding to some of the letters vary somewhat between different application fields. The letter system had its origin in World War 2 in a top-secret U.S. classification of bands used in radar sets; this is the origin of the oldest letter system, the IEEE radar bands. One set of microwave frequency bands designations by the Radio Society of Great Britain (RSGB),
1764-443: A type of wireless network that connects several wireless LANs. Wireless wide area networks are wireless networks that typically cover large areas, such as between neighboring towns and cities, or city and suburb. These networks can be used to connect branch offices of business or as a public Internet access system. The wireless connections between access points are usually point to point microwave links using parabolic dishes on
SECTION 20
#17327871452261848-492: A vacuum under the influence of controlling electric or magnetic fields, and include the magnetron (used in microwave ovens ), klystron , traveling-wave tube (TWT), and gyrotron . These devices work in the density modulated mode, rather than the current modulated mode. This means that they work on the basis of clumps of electrons flying ballistically through them, rather than using a continuous stream of electrons. Low-power microwave sources use solid-state devices such as
1932-479: A wireless carrier to provide support for the backhaul network as well as a mobile switching center (MSC). Reliable wireless service depends on the network elements at the physical layer to be protected against all operational environments and applications (see GR-3171, Generic Requirements for Network Elements Used in Wireless Networks – Physical Layer Criteria ). What are especially important are
2016-444: Is a computer network that uses wireless data connections between network nodes . Wireless networking allows homes, telecommunications networks , and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication . This implementation takes place at
2100-534: Is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequencies between 300 MHz and 300 GHz, broadly construed. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz (wavelengths between 30 cm and 3 mm), or between 1 and 3000 GHz (30 cm and 0.1 mm). The prefix micro- in microwave
2184-416: Is a radio network distributed over land areas called cells, each served by at least one fixed-location transceiver , known as a cell site or base station . In a cellular network, each cell characteristically uses a different set of radio frequencies from all their immediate neighbouring cells to avoid any interference. When joined these cells provide radio coverage over a wide geographic area. This enables
2268-405: Is achieved. Now the wireless network has been running on LTE, which is a 4G mobile communication standard. Users of an LTE network should have data speeds that are 10x faster than a 3G network. Space is another characteristic of wireless networking. Wireless networks offer many advantages when it comes to difficult-to-wire areas trying to communicate such as across a street or river, a warehouse on
2352-566: Is also more bandwidth in the microwave spectrum than in the rest of the radio spectrum; the usable bandwidth below 300 MHz is less than 300 MHz while many GHz can be used above 300 MHz. Typically, microwaves are used in remote broadcasting of news or sports events as the backhaul link to transmit a signal from a remote location to a television station from a specially equipped van. See broadcast auxiliary service (BAS), remote pickup unit (RPU), and studio/transmitter link (STL). Most satellite communications systems operate in
2436-416: Is also used to perform rotational spectroscopy and can be combined with electrochemistry as in microwave enhanced electrochemistry . Microwave frequency can be measured by either electronic or mechanical techniques. Frequency counters or high frequency heterodyne systems can be used. Here the unknown frequency is compared with harmonics of a known lower frequency by use of a low-frequency generator,
2520-457: Is an effective option compared to Ethernet for sharing printers, scanners, and high-speed Internet connections. WLANs help save the cost of installation of cable mediums, save time from physical installation, and also creates mobility for devices connected to the network. Wireless networks are simple and require as few as one single wireless access point connected directly to the Internet via
2604-629: Is defined by a standard that describes unique functions at both the Physical and the Data Link layers of the OSI model . These standards differ in their specified signaling methods, geographic ranges, and frequency usages, among other things. Such differences can make certain technologies better suited to home networks and others better suited to network larger organizations." Each standard varies in geographical range, thus making one standard more ideal than
Ground Mobile Forces - Misplaced Pages Continue
2688-546: Is generally within a person's reach. For example, both Bluetooth radio and invisible infrared light provides a WPAN for interconnecting a headset to a laptop. Zigbee also supports WPAN applications. Wi-Fi PANs are becoming commonplace (2010) as equipment designers start to integrate Wi-Fi into a variety of consumer electronic devices. Intel "My WiFi" and Windows 7 "virtual Wi-Fi" capabilities have made Wi-Fi PANs simpler and easier to set up and configure. A wireless local area network (WLAN) links two or more devices over
2772-545: Is handing off user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial wireless LANs . Space networks are networks used for communication between spacecraft, usually in the vicinity of the Earth. The example of this is NASA's Space Network . Some examples of usage include cellular phones which are part of everyday wireless networks, allowing easy personal communications. Another example, Intercontinental network systems, use radio satellites to communicate across
2856-555: Is inversely proportional to the transmitted frequency. Microwaves are used in spacecraft communication, and much of the world's data, TV, and telephone communications are transmitted long distances by microwaves between ground stations and communications satellites . Microwaves are also employed in microwave ovens and in radar technology. Before the advent of fiber-optic transmission, most long-distance telephone calls were carried via networks of microwave radio relay links run by carriers such as AT&T Long Lines . Starting in
2940-424: Is limited to a few kilometers. A spectral band structure causes absorption peaks at specific frequencies (see graph at right). Above 100 GHz, the absorption of electromagnetic radiation by Earth's atmosphere is so effective that it is in effect opaque , until the atmosphere becomes transparent again in the so-called infrared and optical window frequency ranges. In a microwave beam directed at an angle into
3024-425: Is not meant to suggest a wavelength in the micrometer range; rather, it indicates that microwaves are small (having shorter wavelengths), compared to the radio waves used in prior radio technology . The boundaries between far infrared , terahertz radiation , microwaves, and ultra-high-frequency (UHF) are fairly arbitrary and are used variously between different fields of study. In all cases, microwaves include
3108-417: Is often used in cities to connect networks in two or more buildings without installing a wired link. To connect to Wi-Fi using a mobile device, one can use a device like a wireless router or the private hotspot capability of another mobile device. A wireless ad hoc network, also known as a wireless mesh network or mobile ad hoc network (MANET), is a wireless network made up of radio nodes organized in
3192-432: Is tabulated below: Other definitions exist. The term P band is sometimes used for UHF frequencies below the L band but is now obsolete per IEEE Std 521. When radars were first developed at K band during World War 2, it was not known that there was a nearby absorption band (due to water vapor and oxygen in the atmosphere). To avoid this problem, the original K band was split into a lower band, K u , and upper band, K
3276-475: Is when a node on one network is unable to send because of co-channel interference from a node that is on a different network. The wireless spectrum is a limited resource and shared by all nodes in the range of its transmitters. Bandwidth allocation becomes complex with multiple participating users. Often users are not aware that advertised numbers (e.g., for IEEE 802.11 equipment or LTE networks) are not their capacity, but shared with all other users and thus
3360-616: The Big Bang , and is one of the few sources of information about conditions in the early universe. Due to the expansion and thus cooling of the Universe, the originally high-energy radiation has been shifted into the microwave region of the radio spectrum. Sufficiently sensitive radio telescopes can detect the CMBR as a faint signal that is not associated with any star, galaxy, or other object. A microwave oven passes microwave radiation at
3444-577: The field-effect transistor (at least at lower frequencies), tunnel diodes , Gunn diodes , and IMPATT diodes . Low-power sources are available as benchtop instruments, rackmount instruments, embeddable modules and in card-level formats. A maser is a solid-state device which amplifies microwaves using similar principles to the laser , which amplifies higher frequency light waves. All warm objects emit low level microwave black-body radiation , depending on their temperature , so in meteorology and remote sensing , microwave radiometers are used to measure
Ground Mobile Forces - Misplaced Pages Continue
3528-438: The 2.3 GHz, 2.5 GHz, 3.5 GHz and 5.8 GHz ranges. Mobile Broadband Wireless Access (MBWA) protocols based on standards specifications such as IEEE 802.20 or ATIS/ANSI HC-SDMA (such as iBurst ) operate between 1.6 and 2.3 GHz to give mobility and in-building penetration characteristics similar to mobile phones but with vastly greater spectral efficiency. Some mobile phone networks, like GSM , use
3612-452: The 2.4 GHz and 5.8 GHz band, rather than omnidirectional antennas used with smaller networks. A typical system contains base station gateways, access points and wireless bridging relays. Other configurations are mesh systems where each access point acts as a relay also. When combined with renewable energy systems such as photovoltaic solar panels or wind systems they can be stand-alone systems. A cellular network or mobile network
3696-416: The 2000s ( Edholm's law ). Most of the essential elements of wireless networks are built from MOSFETs, including the mobile transceivers , base station modules, routers , RF power amplifiers , telecommunication circuits , RF circuits , and radio transceivers , in networks such as 2G , 3G , and 4G . Wireless personal area networks (WPANs) connect devices within a relatively small area, that
3780-425: The 5 GHz range. Licensed long-range (up to about 25 km) Wireless Internet Access services have been used for almost a decade in many countries in the 3.5–4.0 GHz range. The FCC recently carved out spectrum for carriers that wish to offer services in this range in the U.S. — with emphasis on 3.65 GHz. Dozens of service providers across the country are securing or have already received licenses from
3864-689: The 95 GHz focused beam heats the skin to a temperature of 54 °C (129 °F) at a depth of 0.4 millimetres ( 1 ⁄ 64 in). The United States Air Force and Marines are currently using this type of active denial system in fixed installations. Microwave radiation is used in electron paramagnetic resonance (EPR or ESR) spectroscopy, typically in the X-band region (~9 GHz) in conjunction typically with magnetic fields of 0.3 T. This technique provides information on unpaired electrons in chemical systems, such as free radicals or transition metal ions such as Cu(II). Microwave radiation
3948-437: The C, X, K a , or K u bands of the microwave spectrum. These frequencies allow large bandwidth while avoiding the crowded UHF frequencies and staying below the atmospheric absorption of EHF frequencies. Satellite TV either operates in the C band for the traditional large dish fixed satellite service or K u band for direct-broadcast satellite . Military communications run primarily over X or K u -band links, with K
4032-457: The FCC to operate in this band. The WIMAX service offerings that can be carried on the 3.65 GHz band will give business customers another option for connectivity. Metropolitan area network (MAN) protocols, such as WiMAX (Worldwide Interoperability for Microwave Access) are based on standards such as IEEE 802.16 , designed to operate between 2 and 11 GHz. Commercial implementations are in
4116-491: The NEs that are located on the cell tower to the base station (BS) cabinet. The attachment hardware and the positioning of the antenna and associated closures and cables are required to have adequate strength, robustness, corrosion resistance, and resistance against wind, storms, icing, and other weather conditions. Requirements for individual components, such as hardware, cables, connectors, and closures, shall take into consideration
4200-457: The TRI-TAC and GMF equipment is obsolete – its bulky circuit-switched equipment having been replaced in the last decade by fly-away quad-band systems containing compact IP-based routers, switches, and encryption equipment. There were, however, a number of GMF terminals still supporting active forces in the extreme operating conditions of Iraq and Afghanistan. Microwave Microwave
4284-490: The body. The lens and cornea of the eye are especially vulnerable because they contain no blood vessels that can carry away heat. Exposure to microwave radiation can produce cataracts by this mechanism, because the microwave heating denatures proteins in the crystalline lens of the eye (in the same way that heat turns egg whites white and opaque). Exposure to heavy doses of microwave radiation (as from an oven that has been tampered with to allow operation even with
SECTION 50
#17327871452264368-508: The door open) can produce heat damage in other tissues as well, up to and including serious burns that may not be immediately evident because of the tendency for microwaves to heat deeper tissues with higher moisture content. Microwaves were first generated in the 1890s in some of the earliest radio wave experiments by physicists who thought of them as a form of "invisible light". James Clerk Maxwell in his 1873 theory of electromagnetism , now called Maxwell's equations , had predicted that
4452-519: The drop off in power over distance is fast, following the inverse-square law . The position of the United Kingdom 's Health Protection Agency (HPA) is that “...radio frequency (RF) exposures from WiFi are likely to be lower than those from mobile phones". It also saw “...no reason why schools and others should not use WiFi equipment". In October 2007, the HPA launched a new "systematic" study into
4536-466: The early 1950s, frequency-division multiplexing was used to send up to 5,400 telephone channels on each microwave radio channel, with as many as ten radio channels combined into one antenna for the hop to the next site, up to 70 km away. Wireless LAN protocols , such as Bluetooth and the IEEE 802.11 specifications used for Wi-Fi, also use microwaves in the 2.4 GHz ISM band , although 802.11a uses ISM band and U-NII frequencies in
4620-819: The earth's surface as ground waves , or reflect from the ionosphere , so terrestrial microwave communication links are limited by the visual horizon to about 40 miles (64 km). At the high end of the band, they are absorbed by gases in the atmosphere, limiting practical communication distances to around a kilometer. Microwaves are widely used in modern technology, for example in point-to-point communication links, wireless networks , microwave radio relay networks, radar , satellite and spacecraft communication , medical diathermy and cancer treatment, remote sensing , radio astronomy , particle accelerators , spectroscopy , industrial heating, collision avoidance systems , garage door openers and keyless entry systems , and for cooking food in microwave ovens . Microwaves occupy
4704-528: The entire super high frequency (SHF) band (3 to 30 GHz, or 10 to 1 cm) at minimum. A broader definition includes UHF and extremely high frequency (EHF) ( millimeter wave ; 30 to 300 GHz) bands as well. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S , C , X , K u , K , or K a band , or by similar NATO or EU designations. Microwaves travel by line-of-sight ; unlike lower frequency radio waves , they do not diffract around hills, follow
4788-414: The frequency can then be calculated. A similar technique is to use a slotted waveguide or slotted coaxial line to directly measure the wavelength. These devices consist of a probe introduced into the line through a longitudinal slot so that the probe is free to travel up and down the line. Slotted lines are primarily intended for measurement of the voltage standing wave ratio on the line. However, provided
4872-406: The frequency of the microwave oven. Microwave heating is used in industrial processes for drying and curing products. Many semiconductor processing techniques use microwaves to generate plasma for such purposes as reactive ion etching and plasma-enhanced chemical vapor deposition (PECVD). Microwaves are used in stellarators and tokamak experimental fusion reactors to help break down
4956-458: The gas into a plasma and heat it to very high temperatures. The frequency is tuned to the cyclotron resonance of the electrons in the magnetic field, anywhere between 2–200 GHz, hence it is often referred to as Electron Cyclotron Resonance Heating (ECRH). The upcoming ITER thermonuclear reactor will use up to 20 MW of 170 GHz microwaves. Microwaves can be used to transmit power over long distances, and post- World War 2 research
5040-459: The high cost and maintenance requirements of waveguide runs, in many microwave antennas the output stage of the transmitter or the RF front end of the receiver is located at the antenna. The term microwave also has a more technical meaning in electromagnetics and circuit theory . Apparatus and techniques may be described qualitatively as "microwave" when the wavelengths of signals are roughly
5124-548: The individual user rate is far lower. With increasing demand, the capacity crunch is more and more likely to happen. User-in-the-loop (UIL) may be an alternative solution to ever upgrading to newer technologies for over-provisioning . Shannon's theorem can describe the maximum data rate of any single wireless link, which relates to the bandwidth in hertz and to the noise on the channel. One can greatly increase channel capacity by using MIMO techniques, where multiple aerials or multiple frequencies can exploit multiple paths to
SECTION 60
#17327871452265208-577: The low-microwave/high-UHF frequencies around 1.8 and 1.9 GHz in the Americas and elsewhere, respectively. DVB-SH and S-DMB use 1.452 to 1.492 GHz, while proprietary/incompatible satellite radio in the U.S. uses around 2.3 GHz for DARS . Microwave radio is used in point-to-point telecommunications transmissions because, due to their short wavelength, highly directional antennas are smaller and therefore more practical than they would be at longer wavelengths (lower frequencies). There
5292-759: The main frequencies used in radar. Microwave radar is widely used for applications such as air traffic control , weather forecasting, navigation of ships, and speed limit enforcement . Long-distance radars use the lower microwave frequencies since at the upper end of the band atmospheric absorption limits the range, but millimeter waves are used for short-range radar such as collision avoidance systems . Microwaves emitted by astronomical radio sources ; planets, stars, galaxies , and nebulas are studied in radio astronomy with large dish antennas called radio telescopes . In addition to receiving naturally occurring microwave radiation, radio telescopes have been used in active radar experiments to bounce microwaves off planets in
5376-598: The next depending on what it is one is trying to accomplish with a wireless network. The performance of wireless networks satisfies a variety of applications such as voice and video. The use of this technology also gives room for expansions, such as from 2G to 3G and, 4G and 5G technologies, which stand for the fourth and fifth generation of cell phone mobile communications standards. As wireless networking has become commonplace, sophistication increases through configuration of network hardware and software, and greater capacity to send and receive larger amounts of data, faster,
5460-520: The origin of the Universe . Microwave technology is extensively used for point-to-point telecommunications (i.e., non-broadcast uses). Microwaves are especially suitable for this use since they are more easily focused into narrower beams than radio waves, allowing frequency reuse ; their comparatively higher frequencies allow broad bandwidth and high data transmission rates , and antenna sizes are smaller than at lower frequencies because antenna size
5544-517: The other side of the premises or buildings that are physically separated but operate as one. Wireless networks allow for users to designate a certain space which the network will be able to communicate with other devices through that network. Space is also created in homes as a result of eliminating clutters of wiring. This technology allows for an alternative to installing physical network mediums such as TPs , coaxes , or fiber-optics , which can also be expensive. For homeowners, wireless technology
5628-620: The physical level (layer) of the OSI model network structure. Examples of wireless networks include cell phone networks , wireless local area networks (WLANs) , wireless sensor networks, satellite communication networks, and terrestrial microwave networks. The first professional wireless network was developed under the brand ALOHAnet in 1969 at the University of Hawaii and became operational in June 1971. The first commercial wireless network
5712-425: The printed circuit inverted F antenna (PIFA) used in cell phones. Their short wavelength also allows narrow beams of microwaves to be produced by conveniently small high gain antennas from a half meter to 5 meters in diameter. Therefore, beams of microwaves are used for point-to-point communication links, and for radar . An advantage of narrow beams is that they do not interfere with nearby equipment using
5796-580: The receiver to achieve much higher throughput – by a factor of the product of the frequency and aerial diversity at each end. Under Linux, the Central Regulatory Domain Agent (CRDA) controls the setting of channels. The total network bandwidth depends on how dispersive the medium is (more dispersive medium generally has better total bandwidth because it minimises interference), how many frequencies are available, how noisy those frequencies are, how many aerials are used and whether
5880-419: The receiver, in other cases, particularly with metallic or conductive materials reflection occurs. This can cause dead zones where no reception is available. Aluminium foiled thermal isolation in modern homes can easily reduce indoor mobile signals by 10 dB frequently leading to complaints about the bad reception of long-distance rural cell signals. In multipath fading two or more different routes taken by
5964-639: The same as the dimensions of the circuit, so that lumped-element circuit theory is inaccurate, and instead distributed circuit elements and transmission-line theory are more useful methods for design and analysis. As a consequence, practical microwave circuits tend to move away from the discrete resistors , capacitors , and inductors used with lower-frequency radio waves . Open-wire and coaxial transmission lines used at lower frequencies are replaced by waveguides and stripline , and lumped-element tuned circuits are replaced by cavity resonators or resonant stubs . In turn, at even higher frequencies, where
6048-406: The same frequency, allowing frequency reuse by nearby transmitters. Parabolic ("dish") antennas are the most widely used directive antennas at microwave frequencies, but horn antennas , slot antennas and lens antennas are also used. Flat microstrip antennas are being increasingly used in consumer devices. Another directive antenna practical at microwave frequencies is the phased array ,
6132-421: The signal, due to reflections, can cause the signal to cancel out each other at certain locations, and to be stronger in other places ( upfade ). The hidden node problem occurs in some types of network when a node is visible from a wireless access point (AP), but not from other nodes communicating with that AP. This leads to difficulties in medium access control (collisions). The exposed terminal problem
6216-898: The sky, a small amount of the power will be randomly scattered as the beam passes through the troposphere . A sensitive receiver beyond the horizon with a high gain antenna focused on that area of the troposphere can pick up the signal. This technique has been used at frequencies between 0.45 and 5 GHz in tropospheric scatter (troposcatter) communication systems to communicate beyond the horizon, at distances up to 300 km. The short wavelengths of microwaves allow omnidirectional antennas for portable devices to be made very small, from 1 to 20 centimeters long, so microwave frequencies are widely used for wireless devices such as cell phones , cordless phones , and wireless LANs (Wi-Fi) access for laptops , and Bluetooth earphones. Antennas used include short whip antennas , rubber ducky antennas , sleeve dipoles , patch antennas , and increasingly
6300-651: The solar system, to determine the distance to the Moon or map the invisible surface of Venus through cloud cover. A recently completed microwave radio telescope is the Atacama Large Millimeter Array , located at more than 5,000 meters (16,597 ft) altitude in Chile, which observes the universe in the millimeter and submillimeter wavelength ranges. The world's largest ground-based astronomy project to date, it consists of more than 66 dishes and
6384-463: The structure to which they are attached. Compared to wired systems, wireless networks are frequently subject to electromagnetic interference . This can be caused by other networks or other types of equipment that generate radio waves that are within, or close, to the radio bands used for communication. Interference can degrade the signal or cause the system to fail. Some materials cause absorption of electromagnetic waves, preventing it from reaching
6468-433: The surface of the Earth, microwave communication links are limited by the visual horizon to about 30–40 miles (48–64 km). Microwaves are absorbed by moisture in the atmosphere, and the attenuation increases with frequency, becoming a significant factor ( rain fade ) at the high end of the band. Beginning at about 40 GHz, atmospheric gases also begin to absorb microwaves, so above this frequency microwave transmission
6552-464: The temperature of objects or terrain. The sun and other astronomical radio sources such as Cassiopeia A emit low level microwave radiation which carries information about their makeup, which is studied by radio astronomers using receivers called radio telescopes . The cosmic microwave background radiation (CMBR), for example, is a weak microwave noise filling empty space which is a major source of information on cosmology 's Big Bang theory of
6636-410: The wavelength of the electromagnetic waves becomes small in comparison to the size of the structures used to process them, microwave techniques become inadequate, and the methods of optics are used. High-power microwave sources use specialized vacuum tubes to generate microwaves. These devices operate on different principles from low-frequency vacuum tubes, using the ballistic motion of electrons in
6720-459: The world. Emergency services such as the police utilize wireless networks to communicate effectively as well. Individuals and businesses use wireless networks to send and share data rapidly, whether it be in a small office building or across the world. In a general sense, wireless networks offer a vast variety of uses by both business and home users. "Now, the industry accepts a handful of different wireless technologies. Each wireless technology
6804-416: Was built in an international collaboration by Europe, North America, East Asia and Chile. A major recent focus of microwave radio astronomy has been mapping the cosmic microwave background radiation (CMBR) discovered in 1964 by radio astronomers Arno Penzias and Robert Wilson . This faint background radiation, which fills the universe and is almost the same in all directions, is "relic radiation" from
6888-443: Was done to examine possibilities. NASA worked in the 1970s and early 1980s to research the possibilities of using solar power satellite (SPS) systems with large solar arrays that would beam power down to the Earth's surface via microwaves. Less-than-lethal weaponry exists that uses millimeter waves to heat a thin layer of human skin to an intolerable temperature so as to make the targeted person move away. A two-second burst of
6972-493: Was observed that individuals in the radiation path of radar installations experienced clicks and buzzing sounds in response to microwave radiation. Research by NASA in the 1970s has shown this to be caused by thermal expansion in parts of the inner ear. In 1955, Dr. James Lovelock was able to reanimate rats chilled to 0 and 1 °C (32 and 34 °F) using microwave diathermy. When injury from exposure to microwaves occurs, it usually results from dielectric heating induced in
7056-617: Was the WaveLAN product family, developed by NCR in 1986. Advances in MOSFET (MOS transistor) wireless technology enabled the development of digital wireless networks . The wide adoption of RF CMOS ( radio frequency CMOS ), power MOSFET and LDMOS (lateral diffused MOS) devices led to the development and proliferation of digital wireless networks by the 1990s, with further advances in MOSFET technology leading to increasing bandwidth in
#225774