Misplaced Pages

Yamaha Tenori-on

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Yamaha Tenori-on is an electronic musical instrument designed and created by the Japanese artist Toshio Iwai and Yu Nishibori of the Music and Human Interface Group at the Yamaha Center for Advanced Sound Technology.

#371628

113-412: The Tenori-on consists of a hand-held screen in which a sixteen-by-sixteen grid of LED switches are held within a magnesium plastic frame. Any of these switches may be activated in a number of different ways to create sounds. Two built-in speakers are located on the top of the frame, as well as a dial and buttons that control the type of sound and beats per minute produced. There are two versions of

226-440: A current requires the flow of electrons, and semiconductors have their valence bands filled, preventing the entire flow of new electrons. Several developed techniques allow semiconducting materials to behave like conducting materials, such as doping or gating . These modifications have two outcomes: n-type and p-type . These refer to the excess or shortage of electrons, respectively. A balanced number of electrons would cause

339-439: A cut-off frequency of one cycle per second, too low for any practical applications, but an effective application of the available theory. At Bell Labs , William Shockley and A. Holden started investigating solid-state amplifiers in 1938. The first p–n junction in silicon was observed by Russell Ohl about 1941 when a specimen was found to be light-sensitive, with a sharp boundary between p-type impurity at one end and n-type at

452-563: A GaAs p-n junction light emitter and an electrically isolated semiconductor photodetector. On August 8, 1962, Biard and Pittman filed a patent titled "Semiconductor Radiant Diode" based on their findings, which described a zinc-diffused p–n junction LED with a spaced cathode contact to allow for efficient emission of infrared light under forward bias . After establishing the priority of their work based on engineering notebooks predating submissions from G.E. Labs, RCA Research Labs, IBM Research Labs, Bell Labs , and Lincoln Lab at MIT ,

565-513: A common semi-insulator is gallium arsenide . Some materials, such as titanium dioxide , can even be used as insulating materials for some applications, while being treated as wide-gap semiconductors for other applications. The partial filling of the states at the bottom of the conduction band can be understood as adding electrons to that band. The electrons do not stay indefinitely (due to the natural thermal recombination ) but they can move around for some time. The actual concentration of electrons

678-423: A completely full valence band is inert, not conducting any current. If an electron is taken out of the valence band, then the trajectory that the electron would normally have taken is now missing its charge. For the purposes of electric current, this combination of the full valence band, minus the electron, can be converted into a picture of a completely empty band containing a positively charged particle that moves in

791-671: A current source of a battery or a pulse generator and with a comparison to a variant, pure, crystal in 1953. Rubin Braunstein of the Radio Corporation of America reported on infrared emission from gallium arsenide (GaAs) and other semiconductor alloys in 1955. Braunstein observed infrared emission generated by simple diode structures using gallium antimonide (GaSb), GaAs, indium phosphide (InP), and silicon-germanium (SiGe) alloys at room temperature and at 77  kelvins . In 1957, Braunstein further demonstrated that

904-474: A current to flow throughout the material. Homojunctions occur when two differently doped semiconducting materials are joined. For example, a configuration could consist of p-doped and n-doped germanium . This results in an exchange of electrons and holes between the differently doped semiconducting materials. The n-doped germanium would have an excess of electrons, and the p-doped germanium would have an excess of holes. The transfer occurs until an equilibrium

1017-554: A glass window or lens to let the light out. Modern indicator LEDs are packed in transparent molded plastic cases, tubular or rectangular in shape, and often tinted to match the device color. Infrared devices may be dyed, to block visible light. More complex packages have been adapted for efficient heat dissipation in high-power LEDs . Surface-mounted LEDs further reduce the package size. LEDs intended for use with fiber optics cables may be provided with an optical connector. The first blue -violet LED, using magnesium-doped gallium nitride

1130-410: A guide to the construction of more capable and reliable devices. Alexander Graham Bell used the light-sensitive property of selenium to transmit sound over a beam of light in 1880. A working solar cell, of low efficiency, was constructed by Charles Fritts in 1883, using a metal plate coated with selenium and a thin layer of gold; the device became commercially useful in photographic light meters in

1243-1198: A layer of light-emitting phosphor on the semiconductor device. Appearing as practical electronic components in 1962, the earliest LEDs emitted low-intensity infrared (IR) light. Infrared LEDs are used in remote-control circuits, such as those used with a wide variety of consumer electronics. The first visible-light LEDs were of low intensity and limited to red. Early LEDs were often used as indicator lamps, replacing small incandescent bulbs , and in seven-segment displays . Later developments produced LEDs available in visible , ultraviolet (UV), and infrared wavelengths with high, low, or intermediate light output, for instance, white LEDs suitable for room and outdoor lighting. LEDs have also given rise to new types of displays and sensors, while their high switching rates are useful in advanced communications technology with applications as diverse as aviation lighting , fairy lights , strip lights , automotive headlamps , advertising, general lighting , traffic signals , camera flashes, lighted wallpaper , horticultural grow lights , and medical devices. LEDs have many advantages over incandescent light sources, including lower power consumption,

SECTION 10

#1732787205372

1356-568: A longer lifetime, improved physical robustness, smaller sizes, and faster switching. In exchange for these generally favorable attributes, disadvantages of LEDs include electrical limitations to low voltage and generally to DC (not AC) power, the inability to provide steady illumination from a pulsing DC or an AC electrical supply source, and a lesser maximum operating temperature and storage temperature. LEDs are transducers of electricity into light. They operate in reverse of photodiodes , which convert light into electricity. Electroluminescence as

1469-485: A loudspeaker. Intercepting the beam stopped the music. We had a great deal of fun playing with this setup." In September 1961, while working at Texas Instruments in Dallas , Texas , James R. Biard and Gary Pittman discovered near-infrared (900 nm) light emission from a tunnel diode they had constructed on a GaAs substrate. By October 1961, they had demonstrated efficient light emission and signal coupling between

1582-445: A low-pressure chamber to create plasma . A common etch gas is chlorofluorocarbon , or more commonly known Freon . A high radio-frequency voltage between the cathode and anode is what creates the plasma in the chamber. The silicon wafer is located on the cathode, which causes it to be hit by the positively charged ions that are released from the plasma. The result is silicon that is etched anisotropically . The last process

1695-557: A method for producing high-brightness blue LEDs using a new two-step process in 1991. In 2015, a US court ruled that three Taiwanese companies had infringed Moustakas's prior patent, and ordered them to pay licensing fees of not less than US$ 13 million. Two years later, in 1993, high-brightness blue LEDs were demonstrated by Shuji Nakamura of Nichia Corporation using a gallium nitride (GaN) growth process. These LEDs had efficiencies of 10%. In parallel, Isamu Akasaki and Hiroshi Amano of Nagoya University were working on developing

1808-626: A non-equilibrium situation. This introduces electrons and holes to the system, which interact via a process called ambipolar diffusion . Whenever thermal equilibrium is disturbed in a semiconducting material, the number of holes and electrons changes. Such disruptions can occur as a result of a temperature difference or photons , which can enter the system and create electrons and holes. The processes that create or annihilate electrons and holes are called generation and recombination, respectively. In certain semiconductors, excited electrons can relax by emitting light instead of producing heat. Controlling

1921-519: A pair is completed. Such carrier traps are sometimes purposely added to reduce the time needed to reach the steady-state. The conductivity of semiconductors may easily be modified by introducing impurities into their crystal lattice . The process of adding controlled impurities to a semiconductor is known as doping . The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. Doped semiconductors are referred to as extrinsic . By adding impurity to

2034-523: A phenomenon was discovered in 1907 by the English experimenter Henry Joseph Round of Marconi Labs , using a crystal of silicon carbide and a cat's-whisker detector . Russian inventor Oleg Losev reported the creation of the first LED in 1927. His research was distributed in Soviet, German and British scientific journals, but no practical use was made of the discovery for several decades, partly due to

2147-574: A phosphor-silicon mixture on the LED using techniques such as jet dispensing, and allowing the solvents to evaporate, the LEDs are often tested, and placed on tapes for SMT placement equipment for use in LED light bulb production. Some "remote phosphor" LED light bulbs use a single plastic cover with YAG phosphor for one or several blue LEDs, instead of using phosphor coatings on single-chip white LEDs. Ce:YAG phosphors and epoxy in LEDs can degrade with use, and

2260-508: A red light-emitting diode. GaAsP was the basis for the first wave of commercial LEDs emitting visible light. It was mass produced by the Monsanto and Hewlett-Packard companies and used widely for displays in calculators and wrist watches. M. George Craford , a former graduate student of Holonyak, invented the first yellow LED and improved the brightness of red and red-orange LEDs by a factor of ten in 1972. In 1976, T. P. Pearsall designed

2373-501: A silicon atom in the crystal, a vacant state (an electron "hole") is created, which can move around the lattice and function as a charge carrier. Group V elements have five valence electrons, which allows them to act as a donor; substitution of these atoms for silicon creates an extra free electron. Therefore, a silicon crystal doped with boron creates a p-type semiconductor whereas one doped with phosphorus results in an n-type material. During manufacture , dopants can be diffused into

SECTION 20

#1732787205372

2486-783: A theory of solid-state physics , which developed greatly in the first half of the 20th century. In 1878 Edwin Herbert Hall demonstrated the deflection of flowing charge carriers by an applied magnetic field, the Hall effect . The discovery of the electron by J.J. Thomson in 1897 prompted theories of electron-based conduction in solids. Karl Baedeker , by observing a Hall effect with the reverse sign to that in metals, theorized that copper iodide had positive charge carriers. Johan Koenigsberger  [ de ] classified solid materials like metals, insulators, and "variable conductors" in 1914 although his student Josef Weiss already introduced

2599-476: A trade-off between the luminous efficacy and color rendering. For example, the dichromatic white LEDs have the best luminous efficacy (120 lm/W), but the lowest color rendering capability. Although tetrachromatic white LEDs have excellent color rendering capability, they often have poor luminous efficacy. Trichromatic white LEDs are in between, having both good luminous efficacy (>70 lm/W) and fair color rendering capability. Semiconductor A semiconductor

2712-737: A true musical instrument for the digital age. The instrument builds on Iwai's previous work, such as his Electroplankton software for the Nintendo DS in the blending of light and sound, as well as the aesthetic elements of the interface. A World Tour introducing Tenori-on began in Frankfurt, Germany, on March 12, and finished in Tokyo on 25 April 2008. Artists on the tour included Jim O'Rourke , Atom Heart , To Rococo Rot , Pole , Robert Lippok, Sutekh, The Books , Krikor, Safety Scissors , I Am Robot and Proud , Lou6Journey and Nathan Michel . It

2825-476: A vacuum, though with a different effective mass . Because the electrons behave like an ideal gas, one may also think about conduction in very simplistic terms such as the Drude model , and introduce concepts such as electron mobility . For partial filling at the top of the valence band, it is helpful to introduce the concept of an electron hole . Although the electrons in the valence band are always moving around,

2938-567: A variety of proportions. These compounds share with better-known semiconductors the properties of intermediate conductivity and a rapid variation of conductivity with temperature, as well as occasional negative resistance . Such disordered materials lack the rigid crystalline structure of conventional semiconductors such as silicon. They are generally used in thin film structures, which do not require material of higher electronic quality, being relatively insensitive to impurities and radiation damage. Almost all of today's electronic technology involves

3051-416: Is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes , releasing energy in the form of photons . The color of the light (corresponding to the energy of the photons) is determined by the energy required for electrons to cross the band gap of the semiconductor. White light is obtained by using multiple semiconductors or

3164-415: Is a combination of processes that are used to prepare semiconducting materials for ICs. One process is called thermal oxidation , which forms silicon dioxide on the surface of the silicon . This is used as a gate insulator and field oxide . Other processes are called photomasks and photolithography . This process is what creates the patterns on the circuit in the integrated circuit. Ultraviolet light

3277-547: Is a critical element for fabricating most electronic circuits . Semiconductor devices can display a range of different useful properties, such as passing current more easily in one direction than the other, showing variable resistance, and having sensitivity to light or heat. Because the electrical properties of a semiconductor material can be modified by doping and by the application of electrical fields or light, devices made from semiconductors can be used for amplification, switching, and energy conversion . The term semiconductor

3390-472: Is a function of the temperature, as the probability of getting enough thermal energy to produce a pair increases with temperature, being approximately exp(− E G / kT ) , where k is the Boltzmann constant , T is the absolute temperature and E G is bandgap. The probability of meeting is increased by carrier traps – impurities or dislocations which can trap an electron or hole and hold it until

3503-453: Is a material that is between the conductor and insulator in ability to conduct electrical current. In many cases their conducting properties may be altered in useful ways by introducing impurities (" doping ") into the crystal structure . When two differently doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers , which include electrons , ions , and electron holes , at these junctions

Yamaha Tenori-on - Misplaced Pages Continue

3616-574: Is also featured as the Tonematrix on Audiotool . In the 8th episode of the fourth series of the British coming-of-age television drama series Skins the character Pandora performs an original song she wrote to cheer her friend Effy up on her Tenori-On. Several years later in a look back video on his favorite Skins musical moments, series co-creator Jamie Brittain revealed the Tenori-On used in

3729-428: Is also used to describe materials used in high capacity, medium- to high-voltage cables as part of their insulation, and these materials are often plastic XLPE ( Cross-linked polyethylene ) with carbon black. The conductivity of silicon is increased by adding a small amount (of the order of 1 in 10 ) of pentavalent ( antimony , phosphorus , or arsenic ) or trivalent ( boron , gallium , indium ) atoms. This process

3842-404: Is called diffusion . This is the process that gives the semiconducting material its desired semiconducting properties. It is also known as doping . The process introduces an impure atom to the system, which creates the p–n junction . To get the impure atoms embedded in the silicon wafer, the wafer is first put in a 1,100 degree Celsius chamber. The atoms are injected in and eventually diffuse with

3955-550: Is difficult but desirable since it takes advantage of existing semiconductor manufacturing infrastructure. It allows for the wafer-level packaging of LED dies resulting in extremely small LED packages. GaN is often deposited using metalorganic vapour-phase epitaxy (MOCVD), and it also uses lift-off . Even though white light can be created using individual red, green and blue LEDs, this results in poor color rendering , since only three narrow bands of wavelengths of light are being emitted. The attainment of high efficiency blue LEDs

4068-492: Is difficult on silicon , while others, like the University of Cambridge, choose a multi-layer structure, in order to reduce (crystal) lattice mismatch and different thermal expansion ratios, to avoid cracking of the LED chip at high temperatures (e.g. during manufacturing), reduce heat generation and increase luminous efficiency. Sapphire substrate patterning can be carried out with nanoimprint lithography . GaN-on-Si

4181-780: Is inert, blocking the passage of other electrons via that state. The energies of these quantum states are critical since a state is partially filled only if its energy is near the Fermi level (see Fermi–Dirac statistics ). High conductivity in material comes from it having many partially filled states and much state delocalization. Metals are good electrical conductors and have many partially filled states with energies near their Fermi level. Insulators , by contrast, have few partially filled states, their Fermi levels sit within band gaps with few energy states to occupy. Importantly, an insulator can be made to conduct by increasing its temperature: heating provides energy to promote some electrons across

4294-418: Is known as doping, and the resulting semiconductors are known as doped or extrinsic semiconductors . Apart from doping, the conductivity of a semiconductor can be improved by increasing its temperature. This is contrary to the behavior of a metal, in which conductivity decreases with an increase in temperature. The modern understanding of the properties of a semiconductor relies on quantum physics to explain

4407-794: Is more apparent with higher concentrations of Ce:YAG in phosphor-silicone mixtures, because the Ce:YAG decomposes with use. The output of LEDs can shift to yellow over time due to degradation of the silicone. There are several variants of Ce:YAG, and manufacturers in many cases do not reveal the exact composition of their Ce:YAG offerings. Several other phosphors are available for phosphor-converted LEDs to produce several colors such as red, which uses nitrosilicate phosphors, and many other kinds of phosphor materials exist for LEDs such as phosphors based on oxides, oxynitrides, oxyhalides, halides, nitrides, sulfides, quantum dots, and inorganic-organic hybrid semiconductors. A single LED can have several phosphors at

4520-845: Is neither a very good insulator nor a very good conductor. However, one important feature of semiconductors (and some insulators, known as semi-insulators ) is that their conductivity can be increased and controlled by doping with impurities and gating with electric fields. Doping and gating move either the conduction or valence band much closer to the Fermi level and greatly increase the number of partially filled states. Some wider-bandgap semiconductor materials are sometimes referred to as semi-insulators . When undoped, these have electrical conductivity nearer to that of electrical insulators, however they can be doped (making them as useful as semiconductors). Semi-insulators find niche applications in micro-electronics, such as substrates for HEMT . An example of

4633-599: Is perceived as white light, with improved color rendering compared to wavelengths from the blue LED/YAG phosphor combination. The first white LEDs were expensive and inefficient. The light output then increased exponentially . The latest research and development has been propagated by Japanese manufacturers such as Panasonic and Nichia , and by Korean and Chinese manufacturers such as Samsung , Solstice, Kingsun, Hoyol and others. This trend in increased output has been called Haitz's law after Roland Haitz. Light output and efficiency of blue and near-ultraviolet LEDs rose and

Yamaha Tenori-on - Misplaced Pages Continue

4746-598: Is possible to play a synchronized session, or to send and receive songs between two of the devices. In 2001 Toshio Iwai did a limited-edition release of a simple step sequencer for the handheld game console WonderSwan , named Tenori-on ( テノリオン ) . This non-game would be the precursor to the more advanced 2005 version released together with Yamaha. The Yamaha Tenori-on was demonstrated at SIGGRAPH 2005 held in Los Angeles in August, 2005. A detailed discussion of

4859-404: Is reached by a process called recombination , which causes the migrating electrons from the n-type to come in contact with the migrating holes from the p-type. The result of this process is a narrow strip of immobile ions , which causes an electric field across the junction. A difference in electric potential on a semiconducting material would cause it to leave thermal equilibrium and create

4972-413: Is the basis of diodes , transistors , and most modern electronics . Some examples of semiconductors are silicon , germanium , gallium arsenide , and elements near the so-called " metalloid staircase " on the periodic table . After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes , solar cells , microwave-frequency integrated circuits , and others. Silicon

5085-451: Is to use individual LEDs that emit three primary colors —red, green and blue—and then mix all the colors to form white light. The other is to use a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light, similar to a fluorescent lamp . The yellow phosphor is cerium -doped YAG crystals suspended in the package or coated on the LED. This YAG phosphor causes white LEDs to appear yellow when off, and

5198-504: Is typically very dilute, and so (unlike in metals) it is possible to think of the electrons in the conduction band of a semiconductor as a sort of classical ideal gas , where the electrons fly around freely without being subject to the Pauli exclusion principle . In most semiconductors, the conduction bands have a parabolic dispersion relation , and so these electrons respond to forces (electric field, magnetic field, etc.) much as they would in

5311-402: Is used along with a photoresist layer to create a chemical change that generates the patterns for the circuit. The etching is the next process that is required. The part of the silicon that was not covered by the photoresist layer from the previous step can now be etched. The main process typically used today is called plasma etching . Plasma etching usually involves an etch gas pumped in

5424-532: The Annalen der Physik und Chemie in 1835; Rosenschöld's findings were ignored. Simon Sze stated that Braun's research was the earliest systematic study of semiconductor devices. Also in 1874, Arthur Schuster found that a copper oxide layer on wires had rectification properties that ceased when the wires are cleaned. William Grylls Adams and Richard Evans Day observed the photovoltaic effect in selenium in 1876. A unified explanation of these phenomena required

5537-934: The Nobel Prize in Physics in 2014 for "the invention of efficient blue light-emitting diodes, which has enabled bright and energy-saving white light sources." In 1995, Alberto Barbieri at the Cardiff University Laboratory (GB) investigated the efficiency and reliability of high-brightness LEDs and demonstrated a "transparent contact" LED using indium tin oxide (ITO) on (AlGaInP/GaAs). In 2001 and 2002, processes for growing gallium nitride (GaN) LEDs on silicon were successfully demonstrated. In January 2012, Osram demonstrated high-power InGaN LEDs grown on silicon substrates commercially, and GaN-on-silicon LEDs are in production at Plessey Semiconductors . As of 2017, some manufacturers are using SiC as

5650-429: The Pauli exclusion principle ). These states are associated with the electronic band structure of the material. Electrical conductivity arises due to the presence of electrons in states that are delocalized (extending through the material), however in order to transport electrons a state must be partially filled , containing an electron only part of the time. If the state is always occupied with an electron, then it

5763-454: The Siege of Leningrad after successful completion. In 1926, Julius Edgar Lilienfeld patented a device resembling a field-effect transistor , but it was not practical. R. Hilsch  [ de ] and R. W. Pohl  [ de ] in 1938 demonstrated a solid-state amplifier using a structure resembling the control grid of a vacuum tube; although the device displayed power gain, it had

SECTION 50

#1732787205372

5876-553: The U.S. patent office issued the two inventors the patent for the GaAs infrared light-emitting diode (U.S. Patent US3293513 ), the first practical LED. Immediately after filing the patent, Texas Instruments (TI) began a project to manufacture infrared diodes. In October 1962, TI announced the first commercial LED product (the SNX-100), which employed a pure GaAs crystal to emit an 890 nm light output. In October 1963, TI announced

5989-445: The band gap , be accompanied by the emission of thermal energy (in the form of phonons ) or radiation (in the form of photons ). In some states, the generation and recombination of electron–hole pairs are in equipoise. The number of electron-hole pairs in the steady state at a given temperature is determined by quantum statistical mechanics . The precise quantum mechanical mechanisms of generation and recombination are governed by

6102-470: The conservation of energy and conservation of momentum . As the probability that electrons and holes meet together is proportional to the product of their numbers, the product is in the steady-state nearly constant at a given temperature, providing that there is no significant electric field (which might "flush" carriers of both types, or move them from neighbor regions containing more of them to meet together) or externally driven pair generation. The product

6215-457: The human eye as a pure ( saturated ) color. Also unlike most lasers, its radiation is not spatially coherent , so it cannot approach the very high intensity characteristic of lasers . By selection of different semiconductor materials , single-color LEDs can be made that emit light in a narrow band of wavelengths from near-infrared through the visible spectrum and into the ultraviolet range. The required operating voltages of LEDs increase as

6328-461: The 1930s. Point-contact microwave detector rectifiers made of lead sulfide were used by Jagadish Chandra Bose in 1904; the cat's-whisker detector using natural galena or other materials became a common device in the development of radio . However, it was somewhat unpredictable in operation and required manual adjustment for best performance. In 1906, H.J. Round observed light emission when electric current passed through silicon carbide crystals,

6441-451: The 3-subpixel model for digital displays. The technology uses a gallium nitride semiconductor that emits light of different frequencies modulated by voltage changes. A prototype display achieved a resolution of 6,800 PPI or 3k x 1.5k pixels. In a light-emitting diode, the recombination of electrons and electron holes in a semiconductor produces light (be it infrared, visible or UV), a process called " electroluminescence ". The wavelength of

6554-492: The Tenori-on website. Iwai's intention was to create an electronic instrument of beauty. In days gone by, a musical instrument had to have a beauty, of shape as well as of sound, and had to fit the player almost organically. [...] Modern electronic instruments don't have this inevitable relationship between the shape, the sound, and the player. What I have done is to try to bring back these [...] elements and build them in to

6667-416: The band gap, inducing partially filled states in both the band of states beneath the band gap ( valence band ) and the band of states above the band gap ( conduction band ). An (intrinsic) semiconductor has a band gap that is smaller than that of an insulator and at room temperature, significant numbers of electrons can be excited to cross the band gap. A pure semiconductor, however, is not very useful, as it

6780-800: The blending of the colors. Since LEDs have slightly different emission patterns, the color balance may change depending on the angle of view, even if the RGB sources are in a single package, so RGB diodes are seldom used to produce white lighting. Nonetheless, this method has many applications because of the flexibility of mixing different colors, and in principle, this mechanism also has higher quantum efficiency in producing white light. There are several types of multicolor white LEDs: di- , tri- , and tetrachromatic white LEDs. Several key factors that play among these different methods include color stability, color rendering capability, and luminous efficacy. Often, higher efficiency means lower color rendering, presenting

6893-1088: The cladding and quantum well layers for ultraviolet LEDs, but these devices have not yet reached the level of efficiency and technological maturity of InGaN/GaN blue/green devices. If unalloyed GaN is used in this case to form the active quantum well layers, the device emits near-ultraviolet light with a peak wavelength centred around 365 nm. Green LEDs manufactured from the InGaN/GaN system are far more efficient and brighter than green LEDs produced with non-nitride material systems, but practical devices still exhibit efficiency too low for high-brightness applications. With AlGaN and AlGaInN , even shorter wavelengths are achievable. Near-UV emitters at wavelengths around 360–395 nm are already cheap and often encountered, for example, as black light lamp replacements for inspection of anti- counterfeiting UV watermarks in documents and bank notes, and for UV curing . Substantially more expensive, shorter-wavelength diodes are commercially available for wavelengths down to 240 nm. As

SECTION 60

#1732787205372

7006-406: The concentration and regions of p- and n-type dopants. A single semiconductor device crystal can have many p- and n-type regions; the p–n junctions between these regions are responsible for the useful electronic behavior. Using a hot-point probe , one can determine quickly whether a semiconductor sample is p- or n-type. A few of the properties of semiconductor materials were observed throughout

7119-489: The concept of band gaps had been developed. Walter H. Schottky and Nevill Francis Mott developed models of the potential barrier and of the characteristics of a metal–semiconductor junction . By 1938, Boris Davydov had developed a theory of the copper-oxide rectifier, identifying the effect of the p–n junction and the importance of minority carriers and surface states. Agreement between theoretical predictions (based on developing quantum mechanics) and experimental results

7232-417: The cost of reliable devices fell. This led to relatively high-power white-light LEDs for illumination, which are replacing incandescent and fluorescent lighting. Experimental white LEDs were demonstrated in 2014 to produce 303 lumens per watt of electricity (lm/W); some can last up to 100,000 hours. Commercially available LEDs have an efficiency of up to 223 lm/W as of 2018. A previous record of 135 lm/W

7345-730: The design of the Tenori-on is given in a paper presented at NIME 2006 conference held at IRCAM , Centre Pompidou in Paris, France in June, 2006. Toshio Iwai has been using the Tenori-on in live performances (such as at Sónar in Barcelona , in June 2006, and Futuresonic in Manchester] in July 2006, the Futuresonic 2006 live show had some good feedback from the audience and that was one of

7458-422: The device available. The original TNR-W (Tenori-On White) features a magnesium frame, 256 rear panel LEDs and can run on batteries whilst the more affordable TNR-O (Tenori-On Orange) features a white plastic frame, has no rear LEDs and does not take batteries. The modes and sound sets in these instruments are the same. Both devices have an LCD screen on the bottom edge of the frame. Using the connection function, it

7571-453: The electrical properties of materials. The properties of the time-temperature coefficient of resistance, rectification, and light-sensitivity were observed starting in the early 19th century. Thomas Johann Seebeck was the first to notice that semiconductors exhibit special feature such that experiment concerning an Seebeck effect emerged with much stronger result when applying semiconductors, in 1821. In 1833, Michael Faraday reported that

7684-530: The electrons in the conduction band). When ionizing radiation strikes a semiconductor, it may excite an electron out of its energy level and consequently leave a hole. This process is known as electron-hole pair generation . Electron-hole pairs are constantly generated from thermal energy as well, in the absence of any external energy source. Electron-hole pairs are also apt to recombine. Conservation of energy demands that these recombination events, in which an electron loses an amount of energy larger than

7797-543: The emitted wavelengths become shorter (higher energy, red to blue), because of their increasing semiconductor band gap. Blue LEDs have an active region consisting of one or more InGaN quantum wells sandwiched between thicker layers of GaN, called cladding layers. By varying the relative In/Ga fraction in the InGaN quantum wells, the light emission can in theory be varied from violet to amber. Aluminium gallium nitride (AlGaN) of varying Al/Ga fraction can be used to manufacture

7910-514: The fast response of crystal detectors. Considerable research and development of silicon materials occurred during the war to develop detectors of consistent quality. Detector and power rectifiers could not amplify a signal. Many efforts were made to develop a solid-state amplifier and were successful in developing a device called the point contact transistor which could amplify 20 dB or more. In 1922, Oleg Losev developed two-terminal, negative resistance amplifiers for radio, but he died in

8023-496: The field of luminescence with research on radium . Hungarian Zoltán Bay together with György Szigeti patenting a lighting device in Hungary in 1939 based on silicon carbide, with an option on boron carbide, that emitted white, yellowish white, or greenish white depending on impurities present. Kurt Lehovec , Carl Accardo, and Edward Jamgochian explained these first LEDs in 1951 using an apparatus employing SiC crystals with

8136-612: The first commercial hemispherical LED, the SNX-110. In the 1960s, several laboratories focused on LEDs that would emit visible light. A particularly important device was demonstrated by Nick Holonyak on October 9, 1962, while he was working for General Electric in Syracuse, New York . The device used the semiconducting alloy gallium phosphide arsenide (GaAsP). It was the first semiconductor laser to emit visible light, albeit at low temperatures. At room temperature it still functioned as

8249-521: The first commercially available blue LED, based on the indirect bandgap semiconductor, silicon carbide (SiC). SiC LEDs had very low efficiency, no more than about 0.03%, but did emit in the blue portion of the visible light spectrum. In the late 1980s, key breakthroughs in GaN epitaxial growth and p-type doping ushered in the modern era of GaN-based optoelectronic devices. Building upon this foundation, Theodore Moustakas at Boston University patented

8362-721: The first high-brightness, high-efficiency LEDs for optical fiber telecommunications by inventing new semiconductor materials specifically adapted to optical fiber transmission wavelengths. Until 1968, visible and infrared LEDs were extremely costly, on the order of US$ 200 per unit, and so had little practical use. The first commercial visible-wavelength LEDs used GaAsP semiconductors and were commonly used as replacements for incandescent and neon indicator lamps , and in seven-segment displays , first in expensive equipment such as laboratory and electronics test equipment, then later in such appliances as calculators, TVs, radios, telephones, as well as watches. The Hewlett-Packard company (HP)

8475-407: The important GaN deposition on sapphire substrates and the demonstration of p-type doping of GaN. This new development revolutionized LED lighting, making high-power blue light sources practical, leading to the development of technologies like Blu-ray . Nakamura was awarded the 2006 Millennium Technology Prize for his invention. Nakamura, Hiroshi Amano , and Isamu Akasaki were awarded

8588-417: The light depends on the energy band gap of the semiconductors used. Since these materials have a high index of refraction, design features of the devices such as special optical coatings and die shape are required to efficiently emit light. Unlike a laser , the light emitted from an LED is neither spectrally coherent nor even highly monochromatic . Its spectrum is sufficiently narrow that it appears to

8701-420: The light produced is engineered to suit the human eye. Because of metamerism , it is possible to have quite different spectra that appear white. The appearance of objects illuminated by that light may vary as the spectrum varies. This is the issue of color rendition, quite separate from color temperature. An orange or cyan object could appear with the wrong color and much darker as the LED or phosphor does not emit

8814-543: The material's majority carrier . The opposite carrier is called the minority carrier , which exists due to thermal excitation at a much lower concentration compared to the majority carrier. For example, the pure semiconductor silicon has four valence electrons that bond each silicon atom to its neighbors. In silicon, the most common dopants are group III and group V elements. Group III elements all contain three valence electrons, causing them to function as acceptors when used to dope silicon. When an acceptor atom replaces

8927-435: The mid-19th and first decades of the 20th century. The first practical application of semiconductors in electronics was the 1904 development of the cat's-whisker detector , a primitive semiconductor diode used in early radio receivers. Developments in quantum physics led in turn to the invention of the transistor in 1947 and the integrated circuit in 1958. Semiconductors in their natural state are poor conductors because

9040-472: The most important triggers to make it a real product). The instrument was launched in London on September 4, 2007, for a recommended retail price of $ 1,200 (£599). To promote this launch, three prominent electronic and experimental musicians -- Jim O'Rourke , Atom Heart , and Robert Lippok —were invited to compose "demo" tracks utilizing the device. These tracks have since been released as promotional MP3s from

9153-505: The movement of charge carriers in a crystal lattice . Doping greatly increases the number of charge carriers within the crystal. When a semiconductor is doped by Group V elements, they will behave like donors creating free electrons , known as " n-type " doping. When a semiconductor is doped by Group III elements, they will behave like acceptors creating free holes, known as " p-type " doping. The semiconductor materials used in electronic devices are doped under precise conditions to control

9266-449: The other. A slice cut from the specimen at the p–n boundary developed a voltage when exposed to light. The first working transistor was a point-contact transistor invented by John Bardeen , Walter Houser Brattain , and William Shockley at Bell Labs in 1947. Shockley had earlier theorized a field-effect amplifier made from germanium and silicon, but he failed to build such a working device, before eventually using germanium to invent

9379-448: The phosphors, the Ce:YAG phosphor converts blue light to green and red (yellow) light, and the PFS phosphor converts blue light to red light. The color, emission spectrum or color temperature of white phosphor converted and other phosphor converted LEDs can be controlled by changing the concentration of several phosphors that form a phosphor blend used in an LED package. The 'whiteness' of

9492-599: The photosensitivity of microorganisms approximately matches the absorption spectrum of DNA , with a peak at about 260 nm, UV LED emitting at 250–270 nm are expected in prospective disinfection and sterilization devices. Recent research has shown that commercially available UVA LEDs (365 nm) are already effective disinfection and sterilization devices. UV-C wavelengths were obtained in laboratories using aluminium nitride (210 nm), boron nitride (215 nm) and diamond (235 nm). There are two primary ways of producing white light-emitting diodes. One

9605-508: The point-contact transistor. In France, during the war, Herbert Mataré had observed amplification between adjacent point contacts on a germanium base. After the war, Mataré's group announced their " Transistron " amplifier only shortly after Bell Labs announced the " transistor ". In 1954, physical chemist Morris Tanenbaum fabricated the first silicon junction transistor at Bell Labs . However, early junction transistors were relatively bulky devices that were difficult to manufacture on

9718-524: The principle behind the light-emitting diode . Oleg Losev observed similar light emission in 1922, but at the time the effect had no practical use. Power rectifiers, using copper oxide and selenium, were developed in the 1920s and became commercially important as an alternative to vacuum tube rectifiers. The first semiconductor devices used galena , including German physicist Ferdinand Braun's crystal detector in 1874 and Indian physicist Jagadish Chandra Bose's radio crystal detector in 1901. In

9831-574: The pure semiconductors, the electrical conductivity may be varied by factors of thousands or millions. A 1 cm specimen of a metal or semiconductor has the order of 10 atoms. In a metal, every atom donates at least one free electron for conduction, thus 1 cm of metal contains on the order of 10 free electrons, whereas a 1 cm sample of pure germanium at 20   °C contains about 4.2 × 10 atoms, but only 2.5 × 10 free electrons and 2.5 × 10 holes. The addition of 0.001% of arsenic (an impurity) donates an extra 10 free electrons in

9944-629: The resistance of specimens of silver sulfide decreases when they are heated. This is contrary to the behavior of metallic substances such as copper. In 1839, Alexandre Edmond Becquerel reported observation of a voltage between a solid and a liquid electrolyte, when struck by light, the photovoltaic effect . In 1873, Willoughby Smith observed that selenium resistors exhibit decreasing resistance when light falls on them. In 1874, Karl Ferdinand Braun observed conduction and rectification in metallic sulfides , although this effect had been discovered earlier by Peter Munck af Rosenschöld ( sv ) writing for

10057-421: The rudimentary devices could be used for non-radio communication across a short distance. As noted by Kroemer Braunstein "…had set up a simple optical communications link: Music emerging from a record player was used via suitable electronics to modulate the forward current of a GaAs diode. The emitted light was detected by a PbS diode some distance away. This signal was fed into an audio amplifier and played back by

10170-480: The same time. Some LEDs use phosphors made of glass-ceramic or composite phosphor/glass materials. Alternatively, the LED chips themselves can be coated with a thin coating of phosphor-containing material, called a conformal coating. The temperature of the phosphor during operation and how it is applied limits the size of an LED die. Wafer-level packaged white LEDs allow for extremely small LEDs. In 2024, QPixel introduced as polychromatic LED that could replace

10283-534: The same volume and the electrical conductivity is increased by a factor of 10,000. The materials chosen as suitable dopants depend on the atomic properties of both the dopant and the material to be doped. In general, dopants that produce the desired controlled changes are classified as either electron acceptors or donors . Semiconductors doped with donor impurities are called n-type , while those doped with acceptor impurities are known as p-type . The n and p type designations indicate which charge carrier acts as

10396-472: The same way as the electron. Combined with the negative effective mass of the electrons at the top of the valence band, we arrive at a picture of a positively charged particle that responds to electric and magnetic fields just as a normal positively charged particle would do in a vacuum, again with some positive effective mass. This particle is called a hole, and the collection of holes in the valence band can again be understood in simple classical terms (as with

10509-591: The scale at which the materials are used. A high degree of crystalline perfection is also required, since faults in the crystal structure (such as dislocations , twins , and stacking faults ) interfere with the semiconducting properties of the material. Crystalline faults are a major cause of defective semiconductor devices. The larger the crystal, the more difficult it is to achieve the necessary perfection. Current mass production processes use crystal ingots between 100 and 300 mm (3.9 and 11.8 in) in diameter, grown as cylinders and sliced into wafers . There

10622-425: The semiconductor body by contact with gaseous compounds of the desired element, or ion implantation can be used to accurately position the doped regions. Some materials, when rapidly cooled to a glassy amorphous state, have semiconducting properties. These include B, Si , Ge, Se, and Te, and there are multiple theories to explain them. The history of the understanding of semiconductors begins with experiments on

10735-1007: The semiconductor composition and electrical current allows for the manipulation of the emitted light's properties. These semiconductors are used in the construction of light-emitting diodes and fluorescent quantum dots . Semiconductors with high thermal conductivity can be used for heat dissipation and improving thermal management of electronics. They play a crucial role in electric vehicles , high-brightness LEDs and power modules , among other applications. Semiconductors have large thermoelectric power factors making them useful in thermoelectric generators , as well as high thermoelectric figures of merit making them useful in thermoelectric coolers . A large number of elements and compounds have semiconducting properties, including: The most common semiconducting materials are crystalline solids, but amorphous and liquid semiconductors are also known. These include hydrogenated amorphous silicon and mixtures of arsenic , selenium , and tellurium in

10848-480: The show is actually his and he lent it to the production as producers did not want to spend money on buying one for that scene. As of June 2011, Yamaha made Tenori-on also available as a software app for Apple iOS devices (iPhone, iPad, iPod). In 2013, a second app TNR-e was released, with a changed sound set to suit the EDM style of music, and an additional effects section. LED A light-emitting diode ( LED )

10961-458: The silicon. After the process is completed and the silicon has reached room temperature, the doping process is done and the semiconducting wafer is almost prepared. Semiconductors are defined by their unique electric conductive behavior, somewhere between that of a conductor and an insulator. The differences between these materials can be understood in terms of the quantum states for electrons, each of which may contain zero or one electron (by

11074-408: The space between the crystals allow some blue light to pass through in LEDs with partial phosphor conversion. Alternatively, white LEDs may use other phosphors like manganese(IV)-doped potassium fluorosilicate (PFS) or other engineered phosphors. PFS assists in red light generation, and is used in conjunction with conventional Ce:YAG phosphor. In LEDs with PFS phosphor, some blue light passes through

11187-547: The subsequent device Pankove and Miller built, the first actual gallium nitride light-emitting diode, emitted green light. In 1974 the U.S. Patent Office awarded Maruska, Rhines, and Stanford professor David Stevenson a patent for their work in 1972 (U.S. Patent US3819974 A ). Today, magnesium-doping of gallium nitride remains the basis for all commercial blue LEDs and laser diodes . In the early 1970s, these devices were too dim for practical use, and research into gallium nitride devices slowed. In August 1989, Cree introduced

11300-480: The substrate for LED production, but sapphire is more common, as it has the most similar properties to that of gallium nitride, reducing the need for patterning the sapphire wafer (patterned wafers are known as epi wafers). Samsung , the University of Cambridge , and Toshiba are performing research into GaN on Si LEDs. Toshiba has stopped research, possibly due to low yields. Some opt for epitaxy , which

11413-569: The team at Fairchild led by optoelectronics pioneer Thomas Brandt to achieve the needed cost reductions. LED producers have continued to use these methods as of about 2009. The early red LEDs were bright enough for use as indicators, as the light output was not enough to illuminate an area. Readouts in calculators were so small that plastic lenses were built over each digit to make them legible. Later, other colors became widely available and appeared in appliances and equipment. Early LEDs were packaged in metal cases similar to those of transistors, with

11526-407: The term Halbleiter (a semiconductor in modern meaning) in his Ph.D. thesis in 1910. Felix Bloch published a theory of the movement of electrons through atomic lattices in 1928. In 1930, B. Gudden  [ de ] stated that conductivity in semiconductors was due to minor concentrations of impurities. By 1931, the band theory of conduction had been established by Alan Herries Wilson and

11639-406: The use of semiconductors, with the most important aspect being the integrated circuit (IC), which are found in desktops , laptops , scanners, cell-phones , and other electronic devices. Semiconductors for ICs are mass-produced. To create an ideal semiconducting material, chemical purity is paramount. Any small imperfection can have a drastic effect on how the semiconducting material behaves due to

11752-461: The very inefficient light-producing properties of silicon carbide, the semiconductor Losev used. In 1936, Georges Destriau observed that electroluminescence could be produced when zinc sulphide (ZnS) powder is suspended in an insulator and an alternating electrical field is applied to it. In his publications, Destriau often referred to luminescence as Losev-Light. Destriau worked in the laboratories of Madame Marie Curie , also an early pioneer in

11865-538: The wavelength it reflects. The best color rendition LEDs use a mix of phosphors, resulting in less efficiency and better color rendering. The first white light-emitting diodes (LEDs) were offered for sale in the autumn of 1996. Nichia made some of the first white LEDs which were based on blue LEDs with Ce:YAG phosphor. Ce:YAG is often grown using the Czochralski method . Mixing red, green, and blue sources to produce white light needs electronic circuits to control

11978-467: The years preceding World War II, infrared detection and communications devices prompted research into lead-sulfide and lead-selenide materials. These devices were used for detecting ships and aircraft, for infrared rangefinders, and for voice communication systems. The point-contact crystal detector became vital for microwave radio systems since available vacuum tube devices could not serve as detectors above about 4000 MHz; advanced radar systems relied on

12091-618: Was achieved by Nichia in 2010. Compared to incandescent bulbs, this is a huge increase in electrical efficiency, and even though LEDs are more expensive to purchase, overall lifetime cost is significantly cheaper than that of incandescent bulbs. The LED chip is encapsulated inside a small, plastic, white mold although sometimes an LED package can incorporate a reflector. It can be encapsulated using resin ( polyurethane -based), silicone, or epoxy containing (powdered) Cerium-doped YAG phosphor particles. The viscosity of phosphor-silicon mixtures must be carefully controlled. After application of

12204-415: Was engaged in research and development (R&D) on practical LEDs between 1962 and 1968, by a research team under Howard C. Borden, Gerald P. Pighini at HP Associates and HP Labs . During this time HP collaborated with Monsanto Company on developing the first usable LED products. The first usable LED products were HP's LED display and Monsanto's LED indicator lamp , both launched in 1968. Monsanto

12317-433: Was made at Stanford University in 1972 by Herb Maruska and Wally Rhines , doctoral students in materials science and engineering. At the time Maruska was on leave from RCA Laboratories , where he collaborated with Jacques Pankove on related work. In 1971, the year after Maruska left for Stanford, his RCA colleagues Pankove and Ed Miller demonstrated the first blue electroluminescence from zinc-doped gallium nitride, though

12430-443: Was quickly followed by the development of the first white LED . In this device a Y 3 Al 5 O 12 :Ce (known as " YAG " or Ce:YAG phosphor) cerium -doped phosphor coating produces yellow light through fluorescence . The combination of that yellow with remaining blue light appears white to the eye. Using different phosphors produces green and red light through fluorescence. The resulting mixture of red, green and blue

12543-637: Was sometimes poor. This was later explained by John Bardeen as due to the extreme "structure sensitive" behavior of semiconductors, whose properties change dramatically based on tiny amounts of impurities. Commercially pure materials of the 1920s containing varying proportions of trace contaminants produced differing experimental results. This spurred the development of improved material refining techniques, culminating in modern semiconductor refineries producing materials with parts-per-trillion purity. Devices using semiconductors were at first constructed based on empirical knowledge before semiconductor theory provided

12656-571: Was the first intelligent LED display, and was a revolution in digital display technology, replacing the Nixie tube and becoming the basis for later LED displays. In the 1970s, commercially successful LED devices at less than five cents each were produced by Fairchild Optoelectronics. These devices employed compound semiconductor chips fabricated with the planar process (developed by Jean Hoerni , ). The combination of planar processing for chip fabrication and innovative packaging methods enabled

12769-484: Was the first organization to mass-produce visible LEDs, using Gallium arsenide phosphide (GaAsP) in 1968 to produce red LEDs suitable for indicators. Monsanto had previously offered to supply HP with GaAsP, but HP decided to grow its own GaAsP. In February 1969, Hewlett-Packard introduced the HP Model 5082-7000 Numeric Indicator, the first LED device to use integrated circuit (integrated LED circuit ) technology. It

#371628