Misplaced Pages

Cave (company)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

CAVE Interactive Co., Ltd. is a Japanese video game company founded in 1994 by former employees of Toaplan following its bankruptcy. They are known primarily for their " bullet hell " shoot 'em ups ; from 1995 up to 2013, CAVE was one of the most prolific shoot 'em up developers in the Japanese market. Alongside this, CAVE has produced a variety of other types games for arcades, home consoles, PCs, and smartphones, also dating back to 1995.

#773226

64-410: "CAVE" is an acronym for "Computer Art Visual Entertainment". During a stockholder meeting in August 2011, the company changed the English company name to 'CAVE Interactive Co., Ltd'. However, the foreign www.caveinteractive.com domain name had already been established on May 15, 2011. Key staff members include Tsuneki Ikeda (director and COO) and Makoto Asada (game development department head) who left

128-423: A 32-bit instruction set , with 32-bit registers and a 16-bit internal data bus . The address bus is 24 bits and does not use memory segmentation , which made it easier to program for. Internally, it uses a 16-bit data arithmetic logic unit (ALU) and two more 16-bit ALUs used mostly for addresses, and has a 16-bit external data bus . For this reason, Motorola termed it a 16/32-bit processor. As one of

192-525: A 16-bit status register. The upper 8 bits is the system byte, and modification of it is privileged. The lower 8 bits is the user byte, also known as the condition code register (CCR), and modification of it is not privileged. The 68000 comparison, arithmetic, and logic operations modify condition codes to record their results for use by later conditional jumps. The condition code bits are "carry" (C), "overflow" (V), "zero" (Z), "negative" (N) and "extend" (X). The "extend" (X) flag deserves special mention, because it

256-413: A 64-pin package. This became known as the "Texas Cockroach". By the mid-1970s, Motorola's MOS design techniques had become less advanced than their competition, and their fabrication lines at times struggled with low yields . By the late-1970s, the company had entered a technology exchange program with Hitachi , dramatically improving their production capabilities. As part of this, a new fab named MOS-8

320-429: A download voucher for Guwange on XBLA), a disc containing all DLC for the aforementioned titles, 7 "superplay" DVDs, and a 10-disc soundtrack selection with songs from all of the included games except Guwange . This bundle was re-released as Cave Shooting Collection Complete on May 22, 2014 including DoDonPachi SaiDaiOuJou but not including the soundtrack collection. ^a Not released outside Japan but release

384-467: A dual 68000 CPU configuration, and systems with a triple 68000 CPU configuration also exist (such as Galaxy Force and others based on the Sega Y Board), along with a quad 68000 CPU configuration, which has been used by Jaleco (one 68000 for sound has a lower clock rate compared to the other 68000 CPUs) for games such as Big Run and Cisco Heat ; another, fifth 68000 (at a different clock rate than

448-491: A higher-numbered interrupt can always interrupt a lower-numbered interrupt. In the status register, a privileged instruction allows setting the current minimum interrupt level, blocking lower or equal priority interrupts. For example, if the interrupt level in the status register is set to 3, higher levels from 4 to 7 can cause an exception. Level 7 is a level triggered non-maskable interrupt (NMI). Level 1 can be interrupted by any higher level. Level 0 means no interrupt. The level

512-437: A logically flat 32-bit address space , while accessing only a 24-bit physical address space. Motorola's intent with the internal 32-bit address space was forward compatibility, making it feasible to write 68000 software that would take full advantage of later 32-bit implementations of the 68000 instruction set. However, this did not prevent programmers from writing forward incompatible software. "24-bit" software that discarded

576-413: A minimum instruction size of 16 bits. Many instructions and addressing modes are longer to include more address or mode bits. The CPU, and later the whole family, implements two levels of privilege. User mode gives access to everything except privileged instructions such as interrupt level controls. Supervisor privilege gives access to everything. An interrupt always becomes supervisory. The supervisor bit

640-560: A second-source maker of the CMOS 68HC000 (TMP68HC000). Encrypted variants of the 68000, being the Hitachi FD1089 and FD1094, store decryption keys for opcodes and opcode data in battery-backed memory and were used in certain Sega arcade systems including System 16 to prevent piracy and illegal bootleg games. The 68HC000, the first CMOS version of the 68000, was designed by Hitachi and jointly introduced in 1985. Motorola's version

704-525: A supervisor-mode trap handler must simulate the instruction and continue the user-mode code after that instruction. This was done so that the 68010 and 68012 would meet the Popek and Goldberg virtualization requirements , specifically that a new OS could run as guest and not be aware. A new unprivileged MOVE from CCR instruction was added to compensate for the penalty of trapping user-mode MOVE from SR. The 68010 and 68012 can recover from bus faults, and continue

SECTION 10

#1732773318774

768-474: Is also powered by the 68000. Later processors in the Motorola 68000 series , beginning with the Motorola 68020 , use full 32-bit ALUs and have full 32-bit address and data buses, speeding up 32-bit operations and allowing 32-bit addressing, rather than the 24-bit addressing of the 68000 and 68010 or the 31-bit addressing of the Motorola 68012 . The original 68k is generally software forward-compatible with

832-616: Is also the CPU of the Sega Pico , a young childrens' educational game console. The multi-processor Atari Jaguar console from 1993 used a 68000 as a support chip, although, due to familiarity, some developers used it as the primary processor. The 1994 Sega Saturn console used the 68000 as a sound co-processor. In October 1995, the 68000 made it into a handheld game console , Sega's Genesis Nomad , as its CPU. Certain arcade games (such as Steel Gunner and others based on Namco System 2 ) use

896-771: Is called the MC68HC000, while Hitachi's is the HD68HC000. The 68HC000 offers speeds of 8–20 MHz. Except for using CMOS circuitry, it behaved identically to the HMOS MC68000, but the change to CMOS greatly reduced its power consumption. The original HMOS MC68000 consumed around 1.35  watts at an ambient temperature of 25  °C , regardless of clock speed, while the MC68HC000 consumed only 0.13 watts at 8 MHz and 0.38 watts at 20 MHz. (Unlike CMOS circuits, HMOS still draws power when idle, so power consumption varies little with clock rate.) Apple selected

960-490: Is region-free. ^b Not released outside Japan but regular edition release is region-free. ^c Not released outside Japan and Europe but release is region-free. Motorola 68000 The Motorola 68000 (sometimes shortened to Motorola 68k or m68k and usually pronounced "sixty-eight-thousand") is a 16/32-bit complex instruction set computer (CISC) microprocessor , introduced in 1979 by Motorola Semiconductor Products Sector. The design implements

1024-410: Is separate from the carry flag . This permits the extra bit from arithmetic, logic, and shift operations to be separated from the carry multiprecision arithmetic . The designers attempted to make the assembly language orthogonal . That is, instructions are divided into operations and address modes , and almost all address modes are available for almost all instructions. There are 56 instructions and

1088-458: Is stored in the status register, and is visible to user programs. An advantage of this system is that the supervisor level has a separate stack pointer. This permits a multitasking system to use very small stacks for tasks, because the designers do not have to allocate the memory required to hold the stack frames of a maximum stack-up of interrupts. The CPU recognizes seven interrupt levels. Levels 1 through 5 are strictly prioritized. That is,

1152-412: Is stored in the status register, and is visible to user-level programs. Hardware interrupts are signalled to the CPU using three inputs that encode the highest pending interrupt priority. A separate encoder is usually required to encode the interrupts, though for systems that do not require more than three hardware interrupts it is possible to connect the interrupt signals directly to the encoded inputs at

1216-450: The 68020 and 88000 projects. Several other companies were second-source manufacturers of the HMOS 68000. These included Hitachi (HD68000), who shrank the feature size to 2.7 μm for their 12.5 MHz version, Mostek (MK68000), Rockwell (R68000), Signetics (SCN68000), Thomson / SGS-Thomson (originally EF68000 and later TS68000), and Toshiba (TMP68000). Toshiba was also

1280-540: The 680x0 , CPU32 , and Coldfire families, were also still in production. More recently, with the Sendai fab closure, all 68HC000, 68020, 68030, and 68882 parts have been discontinued, leaving only the 68SEC000 in production. Since being succeeded by "true" 32-bit microprocessors, the 68000 is used as the core of many microcontrollers . In 1989, Motorola introduced the MC68302 communications processor. IBM considered

1344-670: The Data General Nova or PDP-8 . Based on the semiconductor manufacturing processes of the era, these were often multi-chip solutions like the National Semiconductor IMP-16 , or the single-chip PACE that had issues with speed. With the sales prospects for the 6800 dimming, but still cash-flush from the engine control sales, in late 1976 Colin Crook, Operations Manager, began considering how to successfully win future sales. They were aware that Intel

SECTION 20

#1732773318774

1408-491: The Macintosh moved from the 6809 to the 68k. The average price eventually reached $ 14.76. In 1982, the 68000 received a minor update to its instruction set architecture (ISA) to support virtual memory and to conform to the Popek and Goldberg virtualization requirements . The updated chip is called the 68010 . It also adds a new "loop mode" which speeds up small loops, and increases overall performance by about 10% at

1472-660: The Motorola 68000 . The 68010 and 68012 added virtualization features, optimized loops and fixed several small flaws to the 68000. The MC68010 variants were pin compatible with its predecessor while the MC68012 is an 84-pin PGA version with its directly accessible memory space extended to 2  GiB . The 68010 and 68012 are completely user-mode compatible with the 68000, except that the MOVE from SR instruction traps in user mode, so that, to support user-mode code using that instruction,

1536-510: The Motorola 68000 Educational Computer Board , a single-board computer for educational and training purposes which in addition to the 68000 itself contained memory, I/O devices, programmable timer and wire-wrap area for custom circuitry. The board remained in use in US colleges as a tool for learning assembly programming until the early 1990s. At its introduction, the 68000 was first used in high-priced systems, including multiuser microcomputers like

1600-858: The Palm PDAs and the Handspring Visor used the DragonBall , a derivative of the 68000. AlphaSmart used the DragonBall family in later versions of its portable word processors. Texas Instruments used the 68000 in its high-end graphing calculators, the TI-89 and TI-92 series and Voyage 200 . A modified version of the 68000 formed the basis of the IBM XT/370 hardware emulator of the System 370 processor. Video game manufacturers used

1664-572: The WICAT 150, early Alpha Microsystems computers, Sage II / IV , Tandy 6000 / TRS-80 Model 16 , and Fortune 32:16 ; single-user workstations such as Hewlett-Packard 's HP 9000 Series 200 systems, the first Apollo/Domain systems, Sun Microsystems ' Sun-1 , and the Corvus Concept ; and graphics terminals like Digital Equipment Corporation 's VAXstation 100 and Silicon Graphics ' IRIS 1000 and 1200. Unix systems rapidly moved to

1728-439: The 1990s in low-end printers. The 68000 was successful in the field of industrial control systems. Among the systems benefited from having a 68000 or derivative as their microprocessor were families of programmable logic controllers (PLCs) manufactured by Allen-Bradley , Texas Instruments and subsequently, following the acquisition of that division of TI, by Siemens . Users of such systems do not accept product obsolescence at

1792-497: The 6-byte instruction cache while subsequent memory read/write cycles are only needed for the data operands for the duration of the loop. It provided for performance improvements averaging 50%, as a result of the elimination of instruction opcodes fetching during the loop. The MC68012 variant, in addition to its memory space being extended to 2 GiB, also added a read-modify-write cycle (RMC) pin, indicating that an indivisible read-modify-write cycle in progress, in order to help

1856-550: The 6800, as they felt the 8-bit designs were too limited to be the basis for new designs. The new system was influenced by the PDP-11 , the most popular minicomputer design of the era. At the time, a key concept in minis was the concept of an orthogonal instruction set , in which every operation was allowed to work on any sort of data. To feed the correct data into the internal units, MACSS made extensive use of microcode , essentially small programs in read only memory that gathered up

1920-450: The 68000 (including the 9400/9400A) can also perform fast Fourier transform functions on a waveform. The 683XX microcontrollers, based on the 68000 architecture, are used in networking and telecom equipment, television set-top boxes, laboratory and medical instruments, and even handheld calculators. The MC68302 and its derivatives have been used in many telecom products from Cisco, 3com, Ascend, Marconi, Cyclades and others. Past models of

1984-528: The 68000 as the backbone of many arcade games and home game consoles : Atari's Food Fight , from 1982, was one of the first 68000-based arcade games. Others included Sega 's System 16 , Capcom 's CP System and CPS-2 , and SNK 's Neo Geo . By the late 1980s, the 68000 was inexpensive enough to power home game consoles, such as Sega's Genesis console, and also the Sega CD attachment for it (a Sega CD system has three CPUs, two of them 68000s.) The 68000

Cave (company) - Misplaced Pages Continue

2048-511: The 68000 for the IBM PC but chose the Intel 8088 ; however, IBM Instruments briefly sold the 68000-based IBM System 9000 laboratory computer systems. The 68k instruction set is particularly well suited to implement Unix, and the 68000 and its successors became the dominant CPUs for Unix-based workstations including Sun workstations and Apollo/Domain workstations. In 1981, Motorola introduced

2112-503: The 68000 itself had to succeed despite initially adopting a metal-gate design. Though the point about playing catch-up is clear, this could not have been an entirely accurate summary because Motorola's 1976 datasheets, predating the inception of the MACCS project, denote the majority of its 6800 family in silicon-gate. Indeed, Gunter's own 1979 article introducing the 68000 highlighted it as a silicon-gate depletion-mode HMOS design. Whatever

2176-472: The 68000 to respond quickly to interrupts (even in the worst case where all 8 data registers D0–D7 and 7 address registers A0–A6 needed to be saved, 15 registers in total), and yet large enough to make most calculations fast, because they could be done entirely within the processor without keeping any partial results in memory. (Note that an exception routine in supervisor mode can also save the user stack pointer A7, which would total 8 address registers. However,

2240-475: The 68000 until the 68020 was introduced. Atari Games used the 68010 in some of their arcade boards such as the Atari System 1 . Some owners of Amiga and Atari ST computers and Sega Genesis game consoles replaced their system's 68000 CPU with a 68010 to gain a small speed boost. In practice, the overall speed gain over a 68000 at the same frequency is less than 10%. The 68010 could be used with

2304-637: The 68010's small speed boost over the 68000 and its support for virtual memory, it can be found in a number of smaller Unix systems, both with the 68451 MMU (for example in the Torch Triple X ), and with a custom MMU (such as the Sun-2 Workstation , AT&T UNIX PC/3B1 , Convergent Technologies MiniFrame, Plexus P/15 and P/20, NCR Tower XP, Apollo Computer 's DN300 and DN320 , and HP 9000 Model 310) and various research machines. Most other vendors (such as Apple Computer) stayed with

2368-685: The 68HC000 for use in the Macintosh Portable . Motorola replaced the MC68008 with the MC68HC001 in 1990. This chip resembles the 68HC000 in most respects, but its data bus can operate in either 16-bit or 8-bit mode, depending on the value of an input pin at reset. Thus, like the 68008, it can be used in systems with cheaper 8-bit memories. The later evolution of the 68000 focused on more modern embedded control applications and on-chip peripherals. The 68EC000 chip and SCM68000 core remove

2432-550: The Imagen Imprint-10 were controlled by external boards equipped with the 68000. The first HP LaserJet , introduced in 1984, came with a built-in 8 MHz 68000. Other printer manufacturers adopted the 68000, including Apple with its introduction of the LaserWriter in 1985, the first PostScript laser printer. The 68000 continued to be widely used in printers throughout the rest of the 1980s, persisting well into

2496-581: The M6800 peripheral bus, and exclude the MOVE from SR instruction from user mode programs, making the 68EC000 and 68SEC000 the only 68000 CPUs not 100% object code compatible with previous 68000 CPUs when run in User Mode. When run in Supervisor Mode, there is no difference. In 1996, Motorola updated the standalone core with fully static circuitry, drawing only 2  μW in low-power mode, calling it

2560-736: The MC68000, the fastest version of the original HMOS chip, was not produced until the late 1980s. By the start of 1981, the 68k was winning orders in the high end, and Gunter began to approach Apple to win their business. At that time, the 68k sold for about $ 125 in quantity. In meetings with Steve Jobs , Jobs talked about using the 68k in the Apple Lisa , but stated "the real future is in this product that I'm personally doing. If you want this business, you got to commit that you'll sell it for $ 15." Motorola countered by offering to sell it at $ 55 at first, then step down to $ 35, and so on. Jobs agreed, and

2624-518: The MC68SEC000. Motorola ceased production of the HMOS MC68000, as well as the MC68008, MC68010, MC68330, and MC68340 in on June 1, 1996, but its spin-off company Freescale Semiconductor was still producing the MC68HC000, MC68HC001, MC68EC000, and MC68SEC000, as well as the MC68302 and MC68306 microcontrollers and later versions of the DragonBall family. The 68000's architectural descendants,

Cave (company) - Misplaced Pages Continue

2688-615: The company in 2013. On January 24, 2014, community manager "Masa-King" announced that the Cave-World Twitter and blog were shutting down on February 28, 2014, terminating all existing English social media presence in the west. Within the Guinness World Records , CAVE holds the record for the "most prolific developer of danmaku shooters", having released 48 games in the genre since 1995 as of October 2010. CAVE's arcade titles have used various arcade boards over

2752-644: The cost of more software complexity. The interrupt controller can be as simple as a 74LS148 priority encoder, or may be part of a very large-scale integration (VLSI) peripheral chip such as the MC68901 Multi-Function Peripheral (used in the Atari ST range of computers and X68000 ), which also provides a UART , timer, and parallel I/O. Motorola 68010 The Motorola MC68010 and Motorola MC68012 are 16/32-bit microprocessors from Motorola , released in 1982 as successors to

2816-694: The degree of Motorola's process and manufacturing deficits in the early days, the team was undeterred and would not compromise in its pursuit of a microprocessor with industry-leading performance. Formally introduced in September 1979, initial samples were released in February 1980, with production chips available over the counter in November. Initial speed grades were 4, 6, and 8  MHz . 10 MHz chips became available during 1981, and 12.5 MHz chips by June 1982. The 16.67 MHz "12F" version of

2880-412: The design of multiprocessor systems with virtual memory. The expansion of the memory space in the 68012 caused an issue for any programs that used the high byte of an address to store data, a programming trick that was successful with those processors that only have a 24-bit address bus (68000 and 68010). A similar problem affected the 68020 . The 68010 was never as popular as the 68000. However, due to

2944-416: The dual stack pointer (A7 and supervisor-mode A7') design of the 68000 makes this normally unnecessary, except when a task switch is performed in a multitasking system.) Having the two types of registers allows one 32-bit address and one 16-bit data calculation to take place at the same time. This results in reduced instruction execution time as addresses and data can be processed in parallel. The 68000 has

3008-672: The end of 1976. Crook formed the Motorola Advanced Computer System on Silicon (MACSS) project to build the design and hired Tom Gunter to be its principal architect. Gunter began forming his team in January 1977. The performance goal was set at 1 million instructions per second (MIPS). They wanted the design to not only win back microcomputer vendors like Apple Computer and Tandy , but also minicomputer companies like NCR and AT&T . The team decided to abandon an attempt at backward compatibility with

3072-500: The faulting instruction, allowing them to implement virtual memory . This means that the exception stack frame is different. A 32-bit Vector Base Register (VBR) holds the base address for the exception vector table. The 68000 vector table was always based at address zero. A "loop mode" accelerates loops consisting of only a "loopable" instruction and a DBcc (Decrement/Branch on condition); an example would be MOVE and DBRA. The two-instruction mini-loop opcodes are prefetched and held in

3136-409: The first widely available processors with a 32-bit instruction set, large unsegmented address space, and relatively high speed for the era, the 68k was a popular design through the 1980s. It was widely used in a new generation of personal computers with graphical user interfaces , including the Macintosh 128K , Amiga , Atari ST , and X68000 . The Sega Genesis/Mega Drive console, released in 1988,

3200-421: The market. In order to compete, they set themselves the goal of being two times as powerful at the same cost, or one-half the cost with the same performance. Crook decided that they would attack the high-end of the market with the most powerful processor on the market. Another 16-bit would not do, their design would have to be bigger, and that meant having some 32-bit features. Crook had decided on this approach by

3264-543: The more capable later generations of the 68k line, which remained popular in that market throughout the 1980s. By the mid-1980s, falling production cost made the 68000 viable for use in personal computers starting with the Apple Lisa and Macintosh , and followed by the Amiga , Atari ST , and X68000 . The Sinclair QL microcomputer, along with its derivatives, such as the ICL One Per Desk business terminal,

SECTION 50

#1732773318774

3328-527: The other 68000 CPUs) was used in the Jaleco arcade game Wild Pilot for input/output (I/O) processing. The 68000 has a 24-bit external address bus and two byte-select signals "replaced" A0. These 24 lines can therefore address 16 MB of physical memory with byte resolution. Address storage and computation uses 32 bits internally; however, the 8 high-order address bits are ignored due to the physical lack of device pins. This allows it to run software written for

3392-417: The release of the 1989 Mac IIci. The 68000 family stores multi-byte integers in memory in big-endian order. The CPU has eight 32-bit general-purpose data registers (D0-D7), and eight address registers (A0-A7). The last address register is the stack pointer , and assemblers accept the label SP as equivalent to A7. This was a good number of registers at the time in many ways. It was small enough to allow

3456-508: The required data, performed the operations and wrote out the results. MACSS was among the first to use this technique in a microprocessor. There was a large amount of support hardware for the 6800 that would remain useful, things like UARTs and similar interfacing systems. For this reason, the new design retained a bus protocol compatibility mode for existing 6800 peripheral devices. A chip with 32 data and 32 addressing pins would require 64 pins, plus more for power and other features. At

3520-415: The rest of the line despite being limited to a 16-bit wide external bus. After 45 years in production , the 68000 architecture is still in use. Motorola's first widely produced microprocessor was the 6800 , introduced in early 1974 and available in quantity late that year. The company set itself the goal of selling 25,000 units by September 1976, a goal they did meet. Although a capable design, it

3584-423: The same clock speeds. A further extended version, which exposes 31 bits of the address bus, was also produced in small quantities as the 68012 . To support lower-cost systems and control applications with smaller memory sizes, Motorola introduced the 8-bit compatible MC68008 , also in 1982. This is a 68000 with an 8-bit data bus and a smaller (20-bit) address bus. After 1982, Motorola devoted more attention to

3648-611: The same rate as domestic users, and it is entirely likely that despite having been installed over 20 years ago, many 68000-based controllers will continue in reliable service well into the 21st century. In a number of digital oscilloscopes from the 80s, the 68000 has been used as a waveform display processor; some models including the LeCroy 9400/9400A also use the 68000 as a waveform math processor (including addition, subtraction, multiplication, and division of two waveforms/references/waveform memories), and some digital oscilloscopes using

3712-422: The time, 64-pin dual inline package (DIP)s were "large, heavy-cost" systems and "just terrible", making that the largest they could consider. To make it fit, Crook selected a hybrid design, with a 32-bit instruction set architecture (ISA) but 16-bit components implementing it, like the arithmetic logic unit (ALU). The external interface was reduced to 16 data pins and 24 for addresses, allowing it all to fit in

3776-464: The upper address byte, or used it for purposes other than addressing, could fail on 32-bit 68000 implementations. For example, early (pre-7.0) versions of Apple's Mac OS used the high byte of memory-block master pointers to hold flags such as locked and purgeable . Later versions of the OS moved the flags to a nearby location, and Apple began shipping computers which had " 32-bit clean " ROMs beginning with

3840-930: The years. Earlier titles used a CAVE-designed board based on a Motorola 68000 CPU, with later releases moving over to the PolyGame Master hardware, and then, starting with Mushihimesama , onto boards based on the Hitachi SH-3 CPU. CAVE dabbled in PC-based hardware for Deathsmiles II , but switched back to SH-3 for later titles. On March 28, 2013 Cave released a special bundle called Cave Shooting Collection  [ ja ] which contained all Xbox 360 titles published by them to that date ( Akai Katana , Deathsmiles , Deathsmiles IIX , DoDonPachi Daifukkatsu Black Label , DoDonPachi Daifukkatsu Ver 1.5 , Espgaluda II , Muchi Muchi Pork & Pink Sweets , Mushihimesama , Mushihimesama Futari Ver 1.5 , and

3904-466: Was built using the latest 5-inch wafer sizes and Intel's HMOS process with a 3.5  μm feature size. This was an investment aimed at catching the competition: even upstart semiconductor companies such as Zilog and MOS Technology had introduced CPUs fabricated on depletion-mode NMOS logic before Motorola did. In fact, Motorola may have substantially lagged contemporaries in phasing out enhancement mode and metal gate, with Gunter recollecting that

SECTION 60

#1732773318774

3968-580: Was eclipsed by more powerful designs, such as the Zilog Z80 , and less expensive designs, such as the MOS Technology 6502 . By late 1976, the sales book was flat and the division was only saved by a project for General Motors that turned into a huge product line for engine control and other tasks. By the time the 6800 was introduced, a small number of 16-bit designs had come to market. These were generally modeled on minicomputer platforms like

4032-751: Was the most commercially important utilisation of the 68008. Helix Systems (in Missouri, United States) designed an extension to the SWTPC SS-50 bus , the SS-64, and produced systems built around the 68008 processor. While the adoption of RISC and x86 displaced the 68000 series as desktop/workstation CPU, the processor found substantial use in embedded applications. By the early 1990s, quantities of 68000 CPUs could be purchased for less than 30  USD per part. The 68000 also saw great success as an embedded controller. As early as 1981, laser printers such as

4096-457: Was working on a 16-bit extension of their 8080 series, which would emerge as the Intel 8086 , and had heard rumors of a 16-bit Zilog Z80 , which became the Z8000 . These would use new design techniques that would eliminate the problems seen in earlier 16-bit systems. Motorola knew that if they launched a product similar to the 8086, within 10% of its capabilities, Intel would outperform them in

#773226