The ARM Cortex-A is a group of 32-bit and 64-bit RISC ARM processor cores licensed by Arm Holdings . The cores are intended for application use. The group consists of 32-bit only cores: ARM Cortex-A5 , ARM Cortex-A7 , ARM Cortex-A8 , ARM Cortex-A9 , ARM Cortex-A12 , ARM Cortex-A15 , ARM Cortex-A17 MPCore , and ARM Cortex-A32 , 32/64-bit mixed operation cores: ARM Cortex-A35 , ARM Cortex-A53 , ARM Cortex-A55 , ARM Cortex-A57 , ARM Cortex-A72 , ARM Cortex-A73 , ARM Cortex-A75 , ARM Cortex-A76 , ARM Cortex-A77 , ARM Cortex-A78 , ARM Cortex-A710 , and ARM Cortex-A510 Refresh , and 64-bit only cores: ARM Cortex-A34 , ARM Cortex-A65 , ARM Cortex-A510 (2021) , ARM Cortex-A715 , ARM Cortex-A520 , and ARM Cortex-A720 .
90-851: The 32-bit ARM Cortex-A cores, except for the Cortex-A32, implement the ARMv7-A profile of the ARMv7 architecture . The main distinguishing feature of the ARMv7-A profile, compared to the other two profiles, the ARMv7-R profile implemented by the ARM Cortex-R cores and the ARMv7-M profile implemented by most of the ARM Cortex-M cores, is that only the ARMv7-A profile includes a memory management unit (MMU). Many modern operating systems require
180-409: A 32-bit to a 64-bit architecture is a fundamental alteration, as most operating systems must be extensively modified to take advantage of the new architecture, because that software has to manage the actual memory addressing hardware. Other software must also be ported to use the new abilities; older 32-bit software may be supported either by virtue of the 64-bit instruction set being a superset of
270-613: A virtual machine of a 16- or 32-bit operating system to run 16-bit applications or use one of the alternatives for NTVDM . Mac OS X 10.4 "Tiger" and Mac OS X 10.5 "Leopard" had only a 32-bit kernel, but they can run 64-bit user-mode code on 64-bit processors. Mac OS X 10.6 "Snow Leopard" had both 32- and 64-bit kernels, and, on most Macs, used the 32-bit kernel even on 64-bit processors. This allowed those Macs to support 64-bit processes while still supporting 32-bit device drivers; although not 64-bit drivers and performance advantages that can come with them. Mac OS X 10.7 "Lion" ran with
360-725: A 16 MiB ( 16 × 1024 bytes ) address space. 32-bit superminicomputers , such as the DEC VAX , became common in the 1970s, and 32-bit microprocessors, such as the Motorola 68000 family and the 32-bit members of the x86 family starting with the Intel 80386 , appeared in the mid-1980s, making 32 bits something of a de facto consensus as a convenient register size. A 32-bit address register meant that 2 addresses, or 4 GB of random-access memory (RAM), could be referenced. When these architectures were devised, 4 GB of memory
450-423: A 32- or 64-bit Java virtual machine with no modification. The lengths and precision of all the built-in types, such as char , short , int , long , float , and double , and the types that can be used as array indices, are specified by the standard and are not dependent on the underlying architecture. Java programs that run on a 64-bit Java virtual machine have access to a larger address space. Speed
540-609: A 64-bit kernel on more Macs, and OS X 10.8 "Mountain Lion" and later macOS releases only have a 64-bit kernel. On systems with 64-bit processors, both the 32- and 64-bit macOS kernels can run 32-bit user-mode code, and all versions of macOS up to macOS Mojave (10.14) include 32-bit versions of libraries that 32-bit applications would use, so 32-bit user-mode software for macOS will run on those systems. The 32-bit versions of libraries have been removed by Apple in macOS Catalina (10.15). Linux and most other Unix-like operating systems, and
630-548: A MMU to run. The 64-bit ARM Cortex-A cores as well as the 32-bit ARM Cortex-A32 implement the ARMv8-A profile of the ARMv8 architecture. Arm Holdings neither manufactures nor sells CPU devices based on its own designs, but rather licenses the processor architecture to interested parties. ARM offers a variety of licensing terms, varying in cost and deliverables. To all licensees, ARM provides an integratable hardware description of
720-861: A customer reaches foundry tapeout or prototyping. 75% of ARM's most recent IP over the last two years are included in ARM Flexible Access. As of October 2019: Arm provides a list of vendors who implement ARM cores in their design (application specific standard products (ASSP), microprocessor and microcontrollers). ARM cores are used in a number of products, particularly PDAs and smartphones . Some computing examples are Microsoft 's first generation Surface , Surface 2 and Pocket PC devices (following 2002 ), Apple 's iPads , and Asus 's Eee Pad Transformer tablet computers , and several Chromebook laptops. Others include Apple's iPhone smartphones and iPod portable media players , Canon PowerShot digital cameras , Nintendo Switch hybrid,
810-820: A design service foundry offers lower overall pricing (through subsidisation of the licence fee). For high volume mass-produced parts, the long term cost reduction achievable through lower wafer pricing reduces the impact of ARM's NRE ( non-recurring engineering ) costs, making the dedicated foundry a better choice. Companies that have developed chips with cores designed by Arm include Amazon.com 's Annapurna Labs subsidiary, Analog Devices , Apple , AppliedMicro (now: MACOM Technology Solutions ), Atmel , Broadcom , Cavium , Cypress Semiconductor , Freescale Semiconductor (now NXP Semiconductors ), Huawei , Intel , Maxim Integrated , Nvidia , NXP , Qualcomm , Renesas , Samsung Electronics , ST Microelectronics , Texas Instruments , and Xilinx . In February 2016, ARM announced
900-780: A driver for a 32-bit PCI device asking the device to DMA data into upper areas of a 64-bit machine's memory could not satisfy requests from the operating system to load data from the device to memory above the 4 gigabyte barrier, because the pointers for those addresses would not fit into the DMA registers of the device. This problem is solved by having the OS take the memory restrictions of the device into account when generating requests to drivers for DMA, or by using an input–output memory management unit (IOMMU). As of August 2023 , 64-bit architectures for which processors are being manufactured include: Most architectures of 64 bits that are derived from
990-449: A generation of computers in which 64-bit processors are the norm. 64 bits is a word size that defines certain classes of computer architecture, buses, memory, and CPUs and, by extension, the software that runs on them. 64-bit CPUs have been used in supercomputers since the 1970s ( Cray-1 , 1975) and in reduced instruction set computers (RISC) based workstations and servers since the early 1990s. In 2003, 64-bit CPUs were introduced to
SECTION 10
#17327753614001080-484: A given process and can have implications for efficient processor cache use. Maintaining a partial 32-bit model is one way to handle this, and is in general reasonably effective. For example, the z/OS operating system takes this approach, requiring program code to reside in 31-bit address spaces (the high order bit is not used in address calculation on the underlying hardware platform) while data objects can optionally reside in 64-bit regions. Not all such applications require
1170-751: A large address space or manipulate 64-bit data items, so these applications do not benefit from these features. x86-based 64-bit systems sometimes lack equivalents of software that is written for 32-bit architectures. The most severe problem in Microsoft Windows is incompatible device drivers for obsolete hardware. Most 32-bit application software can run on a 64-bit operating system in a compatibility mode , also termed an emulation mode, e.g., Microsoft WoW64 Technology for IA-64 and AMD64. The 64-bit Windows Native Mode driver environment runs atop 64-bit NTDLL.DLL , which cannot call 32-bit Win32 subsystem code (often devices whose actual hardware function
1260-807: A lawsuit settlement, and Intel took the opportunity to supplement their i960 line with the StrongARM. Intel later developed its own high performance implementation named XScale , which it has since sold to Marvell . Transistor count of the ARM core remained essentially the same throughout these changes; ARM2 had 30,000 transistors, while ARM6 grew only to 35,000. In 2005, about 98% of all mobile phones sold used at least one ARM processor. In 2010, producers of chips based on ARM architectures reported shipments of 6.1 billion ARM-based processors , representing 95% of smartphones , 35% of digital televisions and set-top boxes , and 10% of mobile computers . In 2011,
1350-504: A merchant foundry that holds an ARM licence, such as Samsung or Fujitsu, can offer fab customers reduced licensing costs. In exchange for acquiring the ARM core through the foundry's in-house design services, the customer can reduce or eliminate payment of ARM's upfront licence fee. Compared to dedicated semiconductor foundries (such as TSMC and UMC ) without in-house design services, Fujitsu/Samsung charge two- to three-times more per manufactured wafer . For low to mid volume applications,
1440-521: A problem. 64-bit drivers were not provided for many older devices, which could consequently not be used in 64-bit systems. Driver compatibility was less of a problem with open-source drivers, as 32-bit ones could be modified for 64-bit use. Support for hardware made before early 2007, was problematic for open-source platforms, due to the relatively small number of users. 64-bit versions of Windows cannot run 16-bit software . However, most 32-bit applications will work well. 64-bit users are forced to install
1530-552: A processor is a 64-bit computer. From the software perspective, 64-bit computing means the use of machine code with 64-bit virtual memory addresses. However, not all 64-bit instruction sets support full 64-bit virtual memory addresses; x86-64 and AArch64 for example, support only 48 bits of virtual address, with the remaining 16 bits of the virtual address required to be all zeros (000...) or all ones (111...), and several 64-bit instruction sets support fewer than 64 bits of physical memory address. The term 64-bit also describes
1620-413: A processor with 64-bit memory addresses can directly access 2 bytes (16 exabytes or EB) of byte-addressable memory. With no further qualification, a 64-bit computer architecture generally has integer and addressing registers that are 64 bits wide, allowing direct support for 64-bit data types and addresses. However, a CPU might have external data buses or address buses with different sizes from
1710-558: A quirk of the 6502's design, the CPU left the memory untouched for half of the time. Thus by running the CPU at 1 MHz, the video system could read data during those down times, taking up the total 2 MHz bandwidth of the RAM. In the BBC Micro, the use of 4 MHz RAM allowed the same technique to be used, but running at twice the speed. This allowed it to outperform any similar machine on
1800-455: A ready-to-manufacture verified semiconductor intellectual property core . For these customers, Arm Holdings delivers a gate netlist description of the chosen ARM core, along with an abstracted simulation model and test programs to aid design integration and verification. More ambitious customers, including integrated device manufacturers (IDM) and foundry operators, choose to acquire the processor IP in synthesizable RTL ( Verilog ) form. With
1890-686: A simple chip design could nevertheless have extremely high performance, much higher than the latest 32-bit designs on the market. The second was a visit by Steve Furber and Sophie Wilson to the Western Design Center , a company run by Bill Mensch and his sister, which had become the logical successor to the MOS team and was offering new versions like the WDC 65C02 . The Acorn team saw high school students producing chip layouts on Apple II machines, which suggested that anyone could do it. In contrast,
SECTION 20
#17327753614001980-405: A single integer register can store the memory address to any location in the computer's physical or virtual memory . Therefore, the total number of addresses to memory is often determined by the width of these registers. The IBM System/360 of the 1960s was an early 32-bit computer; it had 32-bit integer registers, although it only used the low order 24 bits of a word for addresses, resulting in
2070-551: A small team to design the actual processor based on Wilson's ISA. The official Acorn RISC Machine project started in October 1983. Acorn chose VLSI Technology as the "silicon partner", as they were a source of ROMs and custom chips for Acorn. Acorn provided the design and VLSI provided the layout and production. The first samples of ARM silicon worked properly when first received and tested on 26 April 1985. Known as ARM1, these versions ran at 6 MHz. The first ARM application
2160-434: A special case; not only are they allowed to sell finished silicon containing ARM cores, they generally hold the right to re-manufacture ARM cores for other customers. Arm Holdings prices its IP based on perceived value. Lower performing ARM cores typically have lower licence costs than higher performing cores. In implementation terms, a synthesisable core costs more than a hard macro (blackbox) core. Complicating price matters,
2250-825: A variety of licensing terms, varying in cost and deliverables. Arm Holdings provides to all licensees an integratable hardware description of the ARM core as well as complete software development toolset ( compiler , debugger , software development kit ), and the right to sell manufactured silicon containing the ARM CPU. SoC packages integrating ARM's core designs include Nvidia Tegra's first three generations, CSR plc's Quatro family, ST-Ericsson's Nova and NovaThor, Silicon Labs's Precision32 MCU, Texas Instruments's OMAP products, Samsung's Hummingbird and Exynos products, Apple's A4 , A5 , and A5X , and NXP 's i.MX . Fabless licensees, who wish to integrate an ARM core into their own chip design, are usually only interested in acquiring
2340-477: A visit to another design firm working on modern 32-bit CPU revealed a team with over a dozen members who were already on revision H of their design and yet it still contained bugs. This cemented their late 1983 decision to begin their own CPU design, the Acorn RISC Machine. The original Berkeley RISC designs were in some sense teaching systems, not designed specifically for outright performance. To
2430-662: Is a family of RISC instruction set architectures (ISAs) for computer processors . Arm Holdings develops the ISAs and licenses them to other companies, who build the physical devices that use the instruction set. It also designs and licenses cores that implement these ISAs. Due to their low costs, low power consumption, and low heat generation, ARM processors are useful for light, portable, battery-powered devices, including smartphones , laptops , and tablet computers , as well as embedded systems . However, ARM processors are also used for desktops and servers , including Fugaku ,
2520-522: Is an abbreviation of "Long, Pointer, 64". Other models are the ILP64 data model in which all three data types are 64 bits wide, and even the SILP64 model where short integers are also 64 bits wide. However, in most cases the modifications required are relatively minor and straightforward, and many well-written programs can simply be recompiled for the new environment with no changes. Another alternative
2610-483: Is emulated in user mode software, like Winprinters). Because 64-bit drivers for most devices were unavailable until early 2007 (Vista x64), using a 64-bit version of Windows was considered a challenge. However, the trend has since moved toward 64-bit computing, more so as memory prices dropped and the use of more than 4 GB of RAM increased. Most manufacturers started to provide both 32-bit and 64-bit drivers for new devices, so unavailability of 64-bit drivers ceased to be
2700-413: Is not the only factor to consider in comparing 32-bit and 64-bit processors. Applications such as multi-tasking, stress testing, and clustering – for high-performance computing (HPC) – may be more suited to a 64-bit architecture when deployed appropriately. For this reason, 64-bit clusters have been widely deployed in large organizations, such as IBM, HP, and Microsoft. Summary: A common misconception
2790-441: Is often written with implicit assumptions about the widths of data types. C code should prefer ( u ) intptr_t instead of long when casting pointers into integer objects. A programming model is a choice made to suit a given compiler, and several can coexist on the same OS. However, the programming model chosen as the primary model for the OS application programming interface (API) typically dominates. Another consideration
ARM Cortex-A - Misplaced Pages Continue
2880-504: Is often, but not always, based on 64-bit units of data. For example, although the x86 / x87 architecture has instructions able to load and store 64-bit (and 32-bit) floating-point values in memory, the internal floating-point data and register format is 80 bits wide, while the general-purpose registers are 32 bits wide. In contrast, the 64-bit Alpha family uses a 64-bit floating-point data and register format, and 64-bit integer registers. Many computer instruction sets are designed so that
2970-418: Is that 64-bit architectures are no better than 32-bit architectures unless the computer has more than 4 GB of random-access memory . This is not entirely true: The main disadvantage of 64-bit architectures is that, relative to 32-bit architectures, the same data occupies more space in memory (due to longer pointers and possibly other types, and alignment padding). This increases the memory requirements of
3060-495: Is the IBM AS/400 , software for which is compiled into a virtual instruction set architecture (ISA) called Technology Independent Machine Interface (TIMI); TIMI code is then translated to native machine code by low-level software before being executed. The translation software is all that must be rewritten to move the full OS and all software to a new platform, as when IBM transitioned the native instruction set for AS/400 from
3150-507: Is the LLP64 model, which maintains compatibility with 32-bit code by leaving both int and long as 32-bit. LL refers to the long long integer type, which is at least 64 bits on all platforms, including 32-bit environments. There are also systems with 64-bit processors using an ILP32 data model, with the addition of 64-bit long long integers; this is also used on many platforms with 32-bit processors. This model reduces code size and
3240-400: Is the data model used for device drivers . Drivers make up the majority of the operating system code in most modern operating systems (although many may not be loaded when the operating system is running). Many drivers use pointers heavily to manipulate data, and in some cases have to load pointers of a certain size into the hardware they support for direct memory access (DMA). As an example,
3330-649: The Apple Watch Series 4 and 5. Many 64-bit platforms today use an LP64 model (including Solaris, AIX , HP-UX , Linux, macOS, BSD, and IBM z/OS). Microsoft Windows uses an LLP64 model. The disadvantage of the LP64 model is that storing a long into an int truncates. On the other hand, converting a pointer to a long will "work" in LP64. In the LLP64 model, the reverse is true. These are not problems which affect fully standard-compliant code, but code
3420-513: The C and C++ toolchains for them, have supported 64-bit processors for many years. Many applications and libraries for those platforms are open-source software , written in C and C++, so that if they are 64-bit-safe, they can be compiled into 64-bit versions. This source-based distribution model, with an emphasis on frequent releases, makes availability of application software for those operating systems less of an issue. In 32-bit programs, pointers and data types such as integers generally have
3510-464: The Cray-1 , used registers up to 64 bits wide, and supported 64-bit integer arithmetic, although they did not support 64-bit addressing. In the mid-1980s, Intel i860 development began culminating in a 1989 release; the i860 had 32-bit integer registers and 32-bit addressing, so it was not a fully 64-bit processor, although its graphics unit supported 64-bit integer arithmetic. However, 32 bits remained
3600-963: The Nintendo 64 and the PlayStation 2 had 64-bit microprocessors before their introduction in personal computers. High-end printers, network equipment, and industrial computers also used 64-bit microprocessors, such as the Quantum Effect Devices R5000 . 64-bit computing started to trickle down to the personal computer desktop from 2003 onward, when some models in Apple 's Macintosh lines switched to PowerPC 970 processors (termed G5 by Apple), and Advanced Micro Devices (AMD) released its first 64-bit x86-64 processor. Physical memory eventually caught up with 32 bit limits. In 2023, laptop computers were commonly equipped with 16GB and servers up to 64 GB of memory, greatly exceeding
3690-603: The PC ). The ARM2 had a transistor count of just 30,000, compared to Motorola's six-year-older 68000 model with around 68,000. Much of this simplicity came from the lack of microcode , which represents about one-quarter to one-third of the 68000's transistors, and the lack of (like most CPUs of the day) a cache . This simplicity enabled the ARM2 to have a low power consumption and simpler thermal packaging by having fewer powered transistors. Nevertheless, ARM2 offered better performance than
ARM Cortex-A - Misplaced Pages Continue
3780-689: The Wii security processor and 3DS handheld game consoles , and TomTom turn-by-turn navigation systems . In 2005, Arm took part in the development of Manchester University 's computer SpiNNaker , which used ARM cores to simulate the human brain . ARM chips are also used in Raspberry Pi , BeagleBoard , BeagleBone , PandaBoard , and other single-board computers , because they are very small, inexpensive, and consume very little power. The 32-bit ARM architecture ( ARM32 ), such as ARMv7-A (implementing AArch32; see section on Armv8-A for more on it),
3870-468: The 32-bit ARM architecture was the most widely used architecture in mobile devices and the most popular 32-bit one in embedded systems. In 2013, 10 billion were produced and "ARM-based chips are found in nearly 60 percent of the world's mobile devices". Arm Holdings's primary business is selling IP cores , which licensees use to create microcontrollers (MCUs), CPUs , and systems-on-chips based on those cores. The original design manufacturer combines
3960-521: The 32-bit instruction set, so that processors that support the 64-bit instruction set can also run code for the 32-bit instruction set, or through software emulation , or by the actual implementation of a 32-bit processor core within the 64-bit processor, as with some Itanium processors from Intel, which included an IA-32 processor core to run 32-bit x86 applications. The operating systems for those 64-bit architectures generally support both 32-bit and 64-bit applications. One significant exception to this
4050-833: The 32-bit limit of 4 GB ( 4 × 1024 bytes ), allowing room for later expansion and incurring no overhead of translating full 64-bit addresses. The Power ISA v3.0 allows 64 bits for an effective address, mapped to a segmented address with between 65 and 78 bits allowed, for virtual memory, and, for any given processor, up to 60 bits for physical memory. The Oracle SPARC Architecture 2015 allows 64 bits for virtual memory and, for any given processor, between 40 and 56 bits for physical memory. The ARM AArch64 Virtual Memory System Architecture allows 48 bits for virtual memory and, for any given processor, from 32 to 48 bits for physical memory. The DEC Alpha specification requires minimum of 43 bits of virtual memory address space (8 TB) to be supported, and hardware need to check and trap if
4140-655: The 4 GB address capacity of 32 bits. In principle, a 64-bit microprocessor can address 16 EB ( 16 × 1024 = 2 = 18,446,744,073,709,551,616 bytes ) of memory. However, not all instruction sets, and not all processors implementing those instruction sets, support a full 64-bit virtual or physical address space. The x86-64 architecture (as of 2016 ) allows 48 bits for virtual memory and, for any given processor, up to 52 bits for physical memory. These limits allow memory sizes of 256 TB ( 256 × 1024 bytes ) and 4 PB ( 4 × 1024 bytes ), respectively. A PC cannot currently contain 4 petabytes of memory (due to
4230-764: The ARM core with other parts to produce a complete device, typically one that can be built in existing semiconductor fabrication plants (fabs) at low cost and still deliver substantial performance. The most successful implementation has been the ARM7TDMI with hundreds of millions sold. Atmel has been a precursor design center in the ARM7TDMI-based embedded system. The ARM architectures used in smartphones, PDAs and other mobile devices range from ARMv5 to ARMv8-A . In 2009, some manufacturers introduced netbooks based on ARM architecture CPUs, in direct competition with netbooks based on Intel Atom . Arm Holdings offers
4320-736: The ARM core, as well as complete software development toolset, and the right to sell manufactured silicon containing the ARM CPU. Integrated device manufacturers (IDM) receive the ARM Processor IP as synthesizable RTL (written in Verilog ). In this form, they have the ability to perform architectural level optimizations and extensions. This allows the manufacturer to achieve custom design goals, such as higher clock speed, very low power consumption, instruction set extensions, optimizations for size, debug support, etc. To determine which components have been included in an ARM IC chip, consult
4410-584: The ARM instruction sets. These cores must comply fully with the ARM architecture. Companies that have designed cores that implement an ARM architecture include Apple, AppliedMicro (now: Ampere Computing ), Broadcom, Cavium (now: Marvell), Digital Equipment Corporation , Intel, Nvidia, Qualcomm, Samsung Electronics, Fujitsu , and NUVIA Inc. (acquired by Qualcomm in 2021). On 16 July 2019, ARM announced ARM Flexible Access. ARM Flexible Access provides unlimited access to included ARM intellectual property (IP) for development. Per product licence fees are required once
4500-696: The ARM6, first released in early 1992. Apple used the ARM6-based ARM610 as the basis for their Apple Newton PDA. In 1994, Acorn used the ARM610 as the main central processing unit (CPU) in their RiscPC computers. DEC licensed the ARMv4 architecture and produced the StrongARM . At 233 MHz , this CPU drew only one watt (newer versions draw far less). This work was later passed to Intel as part of
4590-700: The ARMv8.2-A architecture. The Cortex-A510, A710 and A715 cores implement the ARMv9-A architecture. The Cortex-A520 and A720 cores implement the ARMv9.2-A architecture A typical top-down documentation tree is: IC Manufacturers usually have additional documents, including: evaluation board user manuals, application notes, getting started with development software, software library documents, errata, and more. ARM architecture#32-bit architecture ARM (stylised in lowercase as arm , formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine )
SECTION 50
#17327753614004680-582: The Built on ARM Cortex Technology licence, often shortened to Built on Cortex (BoC) licence. This licence allows companies to partner with ARM and make modifications to ARM Cortex designs. These design modifications will not be shared with other companies. These semi-custom core designs also have brand freedom, for example Kryo 280 . Companies that are current licensees of Built on ARM Cortex Technology include Qualcomm . Companies can also obtain an ARM architectural licence for designing their own CPU cores using
4770-419: The CPU can be in only one mode, but it can switch modes due to external events (interrupts) or programmatically. The original (and subsequent) ARM implementation was hardwired without microcode , like the much simpler 8-bit 6502 processor used in prior Acorn microcomputers. The 32-bit ARM architecture (and the 64-bit architecture for the most part) includes the following RISC features: To compensate for
4860-401: The CPU designs available. Their conclusion about the existing 16-bit designs was that they were a lot more expensive and were still "a bit crap", offering only slightly higher performance than their BBC Micro design. They also almost always demanded a large number of support chips to operate even at that level, which drove up the cost of the computer as a whole. These systems would simply not hit
4950-490: The DRAM chip. Berkeley's design did not consider page mode and treated all memory equally. The ARM design added special vector-like memory access instructions, the "S-cycles", that could be used to fill or save multiple registers in a single page using page mode. This doubled memory performance when they could be used, and was especially important for graphics performance. The Berkeley RISC designs used register windows to reduce
5040-447: The PC and the status flags. This decision halved the interrupt overhead. Another change, and among the most important in terms of practical real-world performance, was the modification of the instruction set to take advantage of page mode DRAM . Recently introduced, page mode allowed subsequent accesses of memory to run twice as fast if they were roughly in the same location, or "page", in
5130-622: The RISC's basic register-heavy and load/store concepts, ARM added a number of the well-received design notes of the 6502. Primary among them was the ability to quickly serve interrupts , which allowed the machines to offer reasonable input/output performance with no added external hardware. To offer interrupts with similar performance as the 6502, the ARM design limited its physical address space to 64 MB of total addressable space, requiring 26 bits of address. As instructions were 4 bytes (32 bits) long, and required to be aligned on 4-byte boundaries,
5220-676: The addition of simultaneous multithreading (SMT) for improved performance or fault tolerance . Acorn Computers ' first widely successful design was the BBC Micro , introduced in December 1981. This was a relatively conventional machine based on the MOS Technology 6502 CPU but ran at roughly double the performance of competing designs like the Apple II due to its use of faster dynamic random-access memory (DRAM). Typical DRAM of
5310-605: The architecture, ARMv7, defines three architecture "profiles": Although the architecture profiles were first defined for ARMv7, ARM subsequently defined the ARMv6-M architecture (used by the Cortex M0 / M0+ / M1 ) as a subset of the ARMv7-M profile with fewer instructions. Except in the M-profile, the 32-bit ARM architecture specifies several CPU modes, depending on the implemented architecture features. At any moment in time,
5400-498: The contemporary 1987 IBM PS/2 Model 50 , which initially utilised an Intel 80286 , offering 1.8 MIPS @ 10 MHz, and later in 1987, the 2 MIPS of the PS/2 70, with its Intel 386 DX @ 16 MHz. A successor, ARM3, was produced with a 4 KB cache, which further improved performance. The address bus was extended to 32 bits in the ARM6, but program code still had to lie within the first 64 MB of memory in 26-bit compatibility mode, due to
5490-489: The design goal. They also considered the new 32-bit designs, but these cost even more and had the same issues with support chips. According to Sophie Wilson , all the processors tested at that time performed about the same, with about a 4 Mbit/s bandwidth. Two key events led Acorn down the path to ARM. One was the publication of a series of reports from the University of California, Berkeley , which suggested that
SECTION 60
#17327753614005580-484: The earlier 8-bit designs simply could not compete. Even newer 32-bit designs were also coming to market, such as the Motorola 68000 and National Semiconductor NS32016 . Acorn began considering how to compete in this market and produced a new paper design named the Acorn Business Computer . They set themselves the goal of producing a machine with ten times the performance of the BBC Micro, but at
5670-450: The era ran at about 2 MHz; Acorn arranged a deal with Hitachi for a supply of faster 4 MHz parts. Machines of the era generally shared memory between the processor and the framebuffer , which allowed the processor to quickly update the contents of the screen without having to perform separate input/output (I/O). As the timing of the video display is exacting, the video hardware had to have priority access to that memory. Due to
5760-582: The interrupt itself. This meant FIQ requests did not have to save out their registers, further speeding interrupts. The first use of the ARM2 was the Acorn Archimedes personal computer models A305, A310, and A440 launched in 1987. According to the Dhrystone benchmark, the ARM2 was roughly seven times the performance of a typical 7 MHz 68000-based system like the Amiga or Macintosh SE . It
5850-421: The lower 2 bits of an instruction address were always zero. This meant the program counter (PC) only needed to be 24 bits, allowing it to be stored along with the eight bit processor flags in a single 32-bit register. That meant that upon receiving an interrupt, the entire machine state could be saved in a single operation, whereas had the PC been a full 32-bit value, it would require separate operations to store
5940-631: The mainstream PC market in the form of x86-64 processors and the PowerPC G5 . A 64-bit register can hold any of 2 (over 18 quintillion or 1.8×10 ) different values. The range of integer values that can be stored in 64 bits depends on the integer representation used. With the two most common representations, the range is 0 through 18,446,744,073,709,551,615 (equal to 2 − 1) for representation as an ( unsigned ) binary number , and −9,223,372,036,854,775,808 (−2 ) through 9,223,372,036,854,775,807 (2 − 1) for representation as two's complement . Hence,
6030-402: The manufacturer datasheet and related documentation. The Cortex-A5 / A7 / A8 / A9 / A12 / A15 / A17 cores implement the ARMv7-A architecture. The Cortex-A32 / A34 / A35 / A53 / A57 / A72 / A73 cores implement the ARMv8-A architecture. ARMv8-A architecture provides exclusive loads and stores instructions as synchronization primitives. The Cortex-A55 / A65 / A75 / A76 / A77 / A78 cores implement
6120-493: The market. 1981 was also the year that the IBM Personal Computer was introduced. Using the recently introduced Intel 8088 , a 16-bit CPU compared to the 6502's 8-bit design, it offered higher overall performance. Its introduction changed the desktop computer market radically: what had been largely a hobby and gaming market emerging over the prior five years began to change to a must-have business tool where
6210-542: The mid-1990s, HAL Computer Systems , Sun Microsystems , IBM , Silicon Graphics , and Hewlett-Packard had developed 64-bit architectures for their workstation and server systems. A notable exception to this trend were mainframes from IBM, which then used 32-bit data and 31-bit address sizes; the IBM mainframes did not include 64-bit processors until 2000. During the 1990s, several low-cost 64-bit microprocessors were used in consumer electronics and embedded applications. Notably,
6300-409: The norm until the early 1990s, when the continual reductions in the cost of memory led to installations with amounts of RAM approaching 4 GB, and the use of virtual memory spaces exceeding the 4 GB ceiling became desirable for handling certain types of problems. In response, MIPS and DEC developed 64-bit microprocessor architectures, initially for high-end workstation and server machines. By
6390-498: The number of register saves and restores performed in procedure calls ; the ARM design did not adopt this. Wilson developed the instruction set, writing a simulation of the processor in BBC ;BASIC that ran on a BBC Micro with a second 6502 processor . This convinced Acorn engineers they were on the right track. Wilson approached Acorn's CEO, Hermann Hauser , and requested more resources. Hauser gave his approval and assembled
6480-763: The older 32/48-bit IMPI to the newer 64-bit PowerPC-AS , codenamed Amazon . The IMPI instruction set was quite different from even 32-bit PowerPC, so this transition was even bigger than moving a given instruction set from 32 to 64 bits. On 64-bit hardware with x86-64 architecture (AMD64), most 32-bit operating systems and applications can run with no compatibility issues. While the larger address space of 64-bit architectures makes working with large data sets in applications such as digital video , scientific computing, and large databases easier, there has been considerable debate on whether they or their 32-bit compatibility modes will be faster than comparably priced 32-bit systems for other tasks. A compiled Java program can run on
6570-428: The other types of registers cannot. The size of these registers therefore normally limits the amount of directly addressable memory, even if there are registers, such as floating-point registers, that are wider. Most high performance 32-bit and 64-bit processors (some notable exceptions are older or embedded ARM architecture (ARM) and 32-bit MIPS architecture (MIPS) CPUs) have integrated floating point hardware, which
6660-420: The physical size of the memory chips), but AMD envisioned large servers, shared memory clusters, and other uses of physical address space that might approach this in the foreseeable future. Thus the 52-bit physical address provides ample room for expansion while not incurring the cost of implementing full 64-bit physical addresses. Similarly, the 48-bit virtual address space was designed to provide 65,536 (2 ) times
6750-578: The registers, even larger (the 32-bit Pentium had a 64-bit data bus, for instance). Processor registers are typically divided into several groups: integer , floating-point , single instruction, multiple data (SIMD), control , and often special registers for address arithmetic which may have various uses and names such as address , index , or base registers . However, in modern designs, these functions are often performed by more general purpose integer registers. In most processors, only integer or address-registers can be used to address data in memory;
6840-547: The remaining unsupported bits are zero (to support compatibility on future processors). Alpha 21064 supported 43 bits of virtual memory address space (8 TB) and 34 bits of physical memory address space (16 GB). Alpha 21164 supported 43 bits of virtual memory address space (8 TB) and 40 bits of physical memory address space (1 TB). Alpha 21264 supported user-configurable 43 or 48 bits of virtual memory address space (8 TB or 256 TB) and 44 bits of physical memory address space (16 TB). A change from
6930-512: The reserved bits for the status flags. In the late 1980s, Apple Computer and VLSI Technology started working with Acorn on newer versions of the ARM core. In 1990, Acorn spun off the design team into a new company named Advanced RISC Machines Ltd., which became ARM Ltd. when its parent company, Arm Holdings plc, floated on the London Stock Exchange and Nasdaq in 1998. The new Apple–ARM work would eventually evolve into
7020-486: The same length. This is not necessarily true on 64-bit machines. Mixing data types in programming languages such as C and its descendants such as C++ and Objective-C may thus work on 32-bit implementations but not on 64-bit implementations. In many programming environments for C and C-derived languages on 64-bit machines, int variables are still 32 bits wide, but long integers and pointers are 64 bits wide. These are described as having an LP64 data model , which
7110-501: The same price. This would outperform and underprice the PC. At the same time, the recent introduction of the Apple Lisa brought the graphical user interface (GUI) concept to a wider audience and suggested the future belonged to machines with a GUI. The Lisa, however, cost $ 9,995, as it was packed with support chips, large amounts of memory, and a hard disk drive , all very expensive then. The engineers then began studying all of
7200-688: The simpler design, compared with processors like the Intel 80286 and Motorola 68020 , some additional design features were used: ARM includes integer arithmetic operations for add, subtract, and multiply; some versions of the architecture also support divide operations. 64-bit computing In computer architecture , 64-bit integers , memory addresses , or other data units are those that are 64 bits wide. Also, 64-bit central processing units (CPU) and arithmetic logic units (ALU) are those that are based on processor registers , address buses , or data buses of that size. A computer that uses such
7290-502: The simulations on the ARM1 boards led to the late 1986 introduction of the ARM2 design running at 8 MHz, and the early 1987 speed-bumped version at 10 to 12 MHz. A significant change in the underlying architecture was the addition of a Booth multiplier , whereas formerly multiplication had to be carried out in software. Further, a new Fast Interrupt reQuest mode, FIQ for short, allowed registers 8 through 14 to be replaced as part of
7380-448: The size of data structures containing pointers, at the cost of a much smaller address space, a good choice for some embedded systems. For instruction sets such as x86 and ARM in which the 64-bit version of the instruction set has more registers than does the 32-bit version, it provides access to the additional registers without the space penalty. It is common in 64-bit RISC machines, explored in x86 as x32 ABI , and has recently been used in
7470-536: The synthesizable RTL, the customer has the ability to perform architectural level optimisations and extensions. This allows the designer to achieve exotic design goals not otherwise possible with an unmodified netlist ( high clock speed , very low power consumption, instruction set extensions, etc.). While Arm Holdings does not grant the licensee the right to resell the ARM architecture itself, licensees may freely sell manufactured products such as chip devices, evaluation boards and complete systems. Merchant foundries can be
7560-449: The world's fastest supercomputer from 2020 to 2022. With over 230 billion ARM chips produced, since at least 2003, and with its dominance increasing every year , ARM is the most widely used family of instruction set architectures. There have been several generations of the ARM design. The original ARM1 used a 32-bit internal structure but had a 26-bit address space that limited it to 64 MB of main memory . This limitation
7650-511: Was as a second processor for the BBC Micro, where it helped in developing simulation software to finish development of the support chips (VIDC, IOC, MEMC), and sped up the CAD software used in ARM2 development. Wilson subsequently rewrote BBC BASIC in ARM assembly language . The in-depth knowledge gained from designing the instruction set enabled the code to be very dense, making ARM BBC BASIC an extremely good test for any ARM emulator. The result of
7740-458: Was often found on workstations. The graphics system was also simplified based on the same set of underlying assumptions about memory and timing. The result was a dramatically simplified design, offering performance on par with expensive workstations but at a price point similar to contemporary desktops. The ARM2 featured a 32-bit data bus , 26-bit address space and 27 32-bit registers , of which 16 are accessible at any one time (including
7830-624: Was removed in the ARMv3 series, which has a 32-bit address space, and several additional generations up to ARMv7 remained 32-bit. Released in 2011, the ARMv8-A architecture added support for a 64-bit address space and 64-bit arithmetic with its new 32-bit fixed-length instruction set. Arm Holdings has also released a series of additional instruction sets for different rules; the "Thumb" extension adds both 32- and 16-bit instructions for improved code density , while Jazelle added instructions for directly handling Java bytecode . More recent changes include
7920-416: Was so far beyond the typical amounts (4 MiB) in installations, that this was considered to be enough headroom for addressing. 4.29 billion addresses were considered an appropriate size to work with for another important reason: 4.29 billion integers are enough to assign unique references to most entities in applications like databases . Some supercomputer architectures of the 1970s and 1980s, such as
8010-572: Was the most widely used architecture in mobile devices as of 2011 . Since 1995, various versions of the ARM Architecture Reference Manual (see § External links ) have been the primary source of documentation on the ARM processor architecture and instruction set, distinguishing interfaces that all ARM processors are required to support (such as instruction semantics) from implementation details that may vary. The architecture has evolved over time, and version seven of
8100-493: Was twice as fast as an Intel 80386 running at 16 MHz, and about the same speed as a multi-processor VAX-11/784 superminicomputer . The only systems that beat it were the Sun SPARC and MIPS R2000 RISC-based workstations . Further, as the CPU was designed for high-speed I/O, it dispensed with many of the support chips seen in these machines; notably, it lacked any dedicated direct memory access (DMA) controller which
#399600